Designing Safety into a High-power Neutron Spallation Source

Yacine Kadi (CERN) Karel Samec (Formerly Paul Scherrer Institute currently ENSI / CERN)

- LESSONS LEARNED FROM DEVELOPING NEUTRON SPALLATION SOURCES
- APPLICATION TO A PROPOSED NEW DESIGN
- POSSIBLE APPLICATIONS AND CURRENT OPPORTUNITIES

Purpose of a compact neutron source

Neutron sources are used in laboratories

- SINQ Villigen Switzerland,
- JSNS Hokkaido Japan,
- SNS Oakridge USA

Further installations are planned (ESS in Lund SE, MYRRHA in BE)

- Life sciences / Material sciences / Nuclear physics

Industrial applications are possible:

- power from Thorium / spent Uranium / ADS
- Isotope production for medical purposes
- Irradiation facility for nuclear materials

Neutron spallation source development

- 2006 MEGAPIE with iradiation
 - First Liquid Metal neutron source
 - Megawatt range
- 2009 EURISOL without iradiation
 - High speed compact Liquid metal source
 - 4 MW range
- 2011 ESS
 - Liquid metal vs Solid target
 - 4 to 10 MW range

Lessons learnt

Relevance	Relevant Safety Guideline
System	Multiple containment strategy is vital
	Natural circulation is of little value
	Leaks must not flow into the path of the beam
	Leak analysis and mitigation strategy in place
	No organic cooling liquid inside source
	Development using multi-physics analysis
Component	Calibrated electro-magnetic pumps are reliable
	High-grade finishes reduce drag losses
	T91 /316 stainless steel are an appropriate choice
Signal	Diversify flow-meter instrumentation
	Instruments in- and outside of source (beam)
	Ensure leak detection using diverse sensors
	Pressure transducers and TCs are resilient

Small Power units < 100 kW

Way Forward

- Design, build and test with end-use focus
- Key goals :
 - Build and test thermally at 4 MW or 100 kW (test data)
 - Demonstrate capability 10 kW 10 MW
 - Demonstrate neutronic performance
 - Design test under irradiation

Output: (test data) (analysis) (analysis) (drawings)

Tests for validating the source

- Hydraulics inside the target. Electromagnetic Pump trips
- Thermal cooling at the beam window under normal operations and during pump trips. (strain gauges / TCs)
- Structural integrity of the target under the impact of a water leak from the heat exchanger
- Hydraulic performance of the heat exchanger, in particular transients consecutive to a pump trip
- Structural integrity of the containment under a double perforation of the target leading to liquid metal leaking

Thank you