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Brief overview of:

Recent results

* Mass resolving tests

* REXTRAP upgrade

* Diamond detector results
* New fast tape-station

On-going projects

* MCP for stable beam counting

* Monolithic Si-detector as AE-E

* Polarized beams

* TwinEBIS setup

* Polarized post-accelerated beams

Future ideas

* Upgrade of REX charge breeder
* Going towards CW beams in REX
* REXTRAP-ISCOOL Ping-Pong

* “Super” resolution separator




Isobaric mass resolution in REXTRAP

Challenges for isobaric separation inside REXTRAP:

1. Maintain efficiency
2. Rapid cooling

3. Large number of ions (compared with mass measurement)

1. ISCOOL used as cooler and buncher
2. REXTRAP for mass separation

Pulsed REXTRAP barriers

High pressure region

""" Injection -------—--- Extraction
Cooling

Latest: Measure beam after the REXEBIS ->
trap cooling sufficient
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REXTRAP Nucl. Instrum. Meth. 626-627, 8



Counts

Mass separation results and follow up

%01 Space charge effects > 1E6 ions/pulse
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REXTRAP upgrade

Complete renovation of REXTRAP auxiliary systems
controls, beam diagnostics, RF generation etc

1. RF excitation more linear over o Hz to 15 MHz

no A/4 notches as before
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2. Easy setup of different RF excitation sequences
3. Quadrupolar, dipolar and rotating wall
4. Soon also backwards ejection

RexTrap RF editor
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On the horizon

Better prepared in case of mass-resolving beams required
Future tests with octupolar and rotating wall cooling

Fig. 1 — Measured amplifier load impedance

Courtesy of M. Paoluzzi, CERN




REXTRAP-ISCOOL ping-pong
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* Post-accelerated beams can suffer from

Beam identification

severe (stable) contamination:

* Until now the beam composition analysis

ha

Grid

isobaric (from ISOLDE or REX)
non-isobaric (from REX) contamination

s been handled by the experiment

Gas-Si telescope detector at Miniball
* Work horse at REX, Z<40

* |sobaric resolution

* Difficult to improve resolution

Isobaric resolution results with AE-E
(gas-Si) for 3 MeV/u beams
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Fig. 20. A-E spectrum, measured with a radioactive A=30
beam, produced with a standard surface ionization ion source
(A) and with a laser ion source (RILIS) tuned to resonance
ionization of Mg (B). A huge enhancement of the laser ionized
species is observed in (B).

Courtesy of J. van de Walle



Monolithic Si detector as telescope

* ST Microelectronics in Catania made some

integrated AE-E in Si

* Robust; no gas (risk); mounted on actuator
before the experiment

* SRIM simulation suggests similar resolution
as present AE-E (gas-Si setup)
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This monolithic silicon telescope allows simultaneous charge
and energy determination of heavy ions with low energy threshold.

Courtesy of ST Microelectronics
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Simulated the signal response in a monolithic
AE-E detector.

Yellow=88Sr, Red=88Rb, 3 MeV/u, deltaE=2 um
Mean energy loss in dE: Sr=21477 keV,

Rb= 20561 keV, difference= 916 keV

Standard deviation in dE: Sr= 258 keV, Rb=1264 keV
Mean energy difference / Standard deviation = 4.9

Tentative beam test with Sr/Rb
beam (Z=37,38) in autumn 2011.
Detector setup from and specialist
support by O. Tengblad.




Diamond detectors for REX beam diagnostics

Possible applications:

- intensity measurements: large dynamic range (from particle counting mode to

pA) + radiation hardness

- energy measurements/beam composition

- ToF/bunch length/cavity phase measurements (fast response)

Test with poly-crystalline and single crystal CVD diamond detectors with C4+
and A/g=4 beam at 1.9 and 2.8 MeV/u

pCVD, 10x20 mm?, 5oo um thick 1
plated with square 8x8 mm?2 Al electrodes RF-Amplifier Oscilloscope
thickness of 25 nm ) o .
I I/
sCVD, 5x5 mm?, 500 um thick CVD i yon oo
plated with 3 mm diameter Au electrodes T Counter
thickness of 5oo nm HY o—r——1 pA-Meter 888888
M == 1.5n
Manufacturer: Diamond Detectors Ltd T
own contact layers
Test ‘outsourced’ to:

E. Griesmayer, Vienna and Bergoz Instrumentation, St Genis, France



ForsCVD

+ Very low noise level (< 1mV)
-> Noise discrimination easy

+ Particle counting up to 1E7 part/s

+ ~1% energy resolution 12C4+ 1.9 MeV/u
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See also: "High-Resolution Energy and Intensity..." -> position tuning difficult; always better at fresh pixel

E. Griesmayer et [., CERN-BE-Note-2009-028 -> counting problems

Follow up of diamond tests by M. Parlog within HIE-REX framework



MCP in ISOLDE low-energy beam line

* |dentification of stable isobaric beam composition not possible,
only total particle counting
* Complement to the radioactive beam yield measurement

1. Initial tests with old MCP

Particle counting rate (discriminator and counter or scope) showed too low values.
Peak height distribution from anode signal not optimal?

2. New MCP ordered

Double stage MCP F9890-135221 from Hamamatsu
Low-resistance extended range
Negligible ringing
Fast for TOF

Counting rate up to 1E6 particles/s

¢ \Oreseen

; installation
. HRS measurement

Tape station

Courtesy of Hamamatsu



Act as:
1. spare solenoid for REXEBIS

2. test bench for new
REX electron
cathodes and guns

\Modified
Wehnelt

electrode

Courtesy of T. Berg

3. provider of highly charged ions (if possible)
for cw trap tests (EMILIE proposal by P. Delahaye)
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Courtesy of P. Delahaye

TwinEBIS testbench

From Manne Siegbahn Laboratory

Collaborations and
postdocs/students
are welcome!




REX charge breeder upgrade

To fully make use of HIE-REX linac performance -> address:

1. Long breeding times (>100 ms) for heavy elements (A>100)

2. Low efficiency for heavy elements <\/

3. Limited ion capacity (not a real problem until now)
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What does Test Storage Ring require?
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Preliminary TSR requirements

For most of the suggested experiments

REXEBIS + stripper foil after 10 MeV/u will give sufficient charge state

However some experiences require:
* Fully stripped to Z=60 (REXEBIS goes to Z=19)

* Few-electron system, ideally down to Li-like for very heavy ions, such as Th/U (REXEBIS goes to 56+)

CBSIM - charge breeding simulation for BARIUM, input file = BaRRCX10.suk

.

Energy=150000eV
Alpha=0
deltaU=1.0E10ev
Uhlim=1.0E10eV

LogTc=1.000E10
LogT1=-3.000
LogT2=5.000
Fa
LOGSCALE=F
\ Logpl=-4.00
Logp2=0

Label=T
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Recomb=T
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log (J*TAU)
Charge state development simulations for Z=56 for an electron
beam energy of 150 keV. Radiative recombination has been
included as well as charge exchange with a residual gas pressure
of 1E-13 mbar and neutral ionization potential of 12 eV.

Superbreeder REXEBIS
Electron current >5A 0.3A
Electron current density >50 kA/cm?2 150 A/cm?2
Electron beam energy >100 keV <5 keV
Solenoid field >6T 2T
Full-field trap length >50 cm 80 cm
Trap region pressure <1E-13 mbar 1E-11 mbar

Main design parameters for an upgraded EBIS/T charge breeder

aimed to produce very highly charged ions for TSR injection.

Extreme challenge to produce a few stable
ions with this charge state.

Doing it as an efficient charge breeding

is one step further!




In conclusion:

1. Plenty of projects
Several not mentioned here:
New commissioned fast tape-station
Polarized post-accelerated beams
Going towards CW beams in REX
Super resolution separator

2. Several opportunities for involvement

3. Two years fellow position open for challenging charge breeder development
https://hr-recruit.web.cern.ch/hr-recruit/special/CATHI.asp




