Radioactive beams at LNS

L. Celona

INFN - Laboratori Nazionali del Sud Catania, Italy

EURISOL-NET (ENSAR/NA03) Working Group Meeting CERN – Switzerland 27 June 2011

The LNS 15 MV Tandem accelerator

The LNS K800 Superconducting Cyclotron

It's able to accelerate all the ions from hydrogen to uranium with energies up to 100 MeV/amu

EXCYT (EXotics with CYclotron and Tandem) A facility for the production of radioactive nuclei

Maximun Energy: $2.5 \div 150 \text{ MeV}$ (preacceleration energy up to 300 keV) *Low emittance* (<0.5 π mm.mrad): clear-cut beam spot e low angular spread *Easy variable beam energy (excitation function study) Low energy spread*: $\Delta E/E = 10^{-4}$.

EXCYT layout

EXCYT Project

The mass separator

The mass separator system consists of a pre-separator and 2 main stages, the pre-separator and the first stage being assembled on two 250 kV platforms

Assuming a beam with $\varepsilon_x = \varepsilon_y = 4\pi$ mm•mrad ($x_0 = y_0 = \pm 0.2$ mm, $a_0 = b_0 = \pm 20$ mrad), the mass resolution of each stage is:

 $(M/\Delta M)_{Pre} \approx 180$ (pre-separator : 18° magnet and a set of 4 electrostatic quadrupoles) $(M/\Delta M)_{1st} \approx 2000$ (I stage: 2 magnets (77°, 90°) and 2 sets of 4 electrostatic quadrupoles) $(M/\Delta M)_{2nd} \approx 20000$ (II stage: 2 magnets (90°) and a set of 4 electrostatic quadrupoles) *L.Celona - CERN 27 June 2011*

EXCYT layout

Remote handling

EXCYT layout

Beam lines to the Tandem

The Target-ion source complex

L.Celona - CERN 27 June 2011

Target-Ion Source

Total RIB Production yield :

- -Primary ion beam intensity and energy
- -Cross-section of production
- -Diffusion through the target bulk
- -Effusion to ionizer
- -lonisation efficiency
- -Charge exchange efficiency
- -Transport, Separation and Post-acceleration efficiency

8Li concentration plot versus time, near the target surface

TARGET material UTR146 graphite

EXCYT Ion sources

PIS : Positive Ion Source by surface ionisation High efficiency for Li: Suitable for alcalines (Li, Na, K)

• HPIS : Hot Plasma Ion Source

Tungsten Tube

ITEM	NAME					
1	Cathode					
5	Cathode Support					
3	Anode Grid					
4	Anode Body					
5	Anode Isolator					
6	Dutlet					
7	Thermal Screen					
8	External Thernal Screen					
9	Support Assembly					

•NIS : Negative Ion Source by surface ionisation. High efficiency for halogens (CI, Br..) except F

Charge-exchange cell

 $Li + Cs \rightarrow Li^{-} + Cs^{+}$ $\Delta E = E_i(Cs) - E_a(Li) = 3.89 \, eV - 0.62 \, eV = 3.27 \, eV$

EXCYT transmission factors

Production: at least 3 times the value found at Ganil (cylinder target)

A factor 1.4 after the Charge Exchange Cell (CEC)

The Tandem transmission could be increased by a factor 1.3

With a primary beam power of 200 watt, 1.8 • 10⁵ pps might be expected on target

BIGBANG

Measurement of the ${}^{8}Li(\alpha,n)^{11}B$ cross section in the c.o.m. energy range from about 1.5 MeV down to the Gamow peak (~0.5 MeV). Key reaction in the inhomogeneous Big-Bang model

Published on Physics Letters B 664 (2008) 157-161

RCS

Measurement of the ^{8,9}Li + ²⁸Si reaction cross section at near barrier energies to determine the size of the unstable Li isotopes

RSM

Measurement of the α -^{8,9}Li elastic scattering excitation functions in reverse kinematics, aimed at studying backward angle resonances associated with cluster configurations of ^{12,13}B

IJMPE 4 (2011) 1026-1029 – J.Phys.Conf. Ser. 267 012011

MAGNEX-RIB

Exploratory attempt to investigate ⁸He states using the (⁸Li,⁸Be) charge exchange reaction

2.10⁵ pps required, now feasible – Beam lines equipped with diagnostics

•Optimization of transmission through preseparator and tandem.

◆Increase of primary beam power to reach the design value of 500 W.

◆Cold Testbench installation for Ion Source developments.

♦ "Warm" Testbench installation for target characterisation in collaboration with LNL staff of SPES project.

EXCYT & SPES Testbench

- Better undestanding of diffusion-effusion models (improve target design)
- New target materials (e.g. Foams, Fibers, Ta foils,...)
- New container geometry to increase the transport efficiency (effusion) to the ioniser.
- New PIS surface materials
- Sources development (HPIS, negative, microwave)

primary beam

To be installed in the Magnex hall

EXCYT possible future beams

A primary beam power of 500 watt is assumed

^{8, 9} Li	Positive Ion Source	3·10⁵ pps ⁸ Li	3 ⋅10 ⁷ @	300 KeV		
^{20, 21} Na	Positive Ion Source	3.10 ⁴ pps ²¹ Na	6·10 ⁶ @	300 KeV		
¹⁵ O	Hot Plasma	2.5·10 ⁶ pps	3·10 ⁷ @	300 KeV		
25, 26 AI	Hot Plasma					
^{26, 27} Si	Hot Plasma					
^{7, 11} Be	Hot Plasma					
10, 11 C	Hot Plasma					
38, 39, 40 CI	Negative Ion Source, no CEC					
17, 18 F	KENIS ion source, no CEC					

Increasing the Cyclotron beam intensity $100 \rightarrow 500$ watt

Septum: directly cooled

New septum material: Tungsten vs. Tantalum

Bigger thickness: 0.3 vs. 0.15 mm

⇒ extraction efficiency 63% vs. 50%

¹³C⁴⁺ @ 45 AMeV (EXCYT primary beam)

Pacc = 237 watt

Pextr = 150 watt I=1020 enA= 255 pnA

ε **= 63%**

Pdiss = 87 watt

FRIBs (In Flight Radioactive Ion Beams)

Intermediate Energy RIBs @ LNS

LNS - Layout

FRIBS@LNS experimental setup

Successfully tested in March 2011 with 36Ar and 18O primary beams at 42 and 55 MeV/A respectively.

The beam transport was greatly improved due to the availability of the new EXCYT beam diagnostic system, distributed along all the beam line in 13 points, all equipped with a plastic scintillator for beam counting and a silicon position sensitive detector for the measurement of the beam profile and in the future also for identification pourposes.

FRIB@LNS yields

preliminary results data analysis going								
			intensity					
			with old	intensity	foreseen yield			
150	50	140.00	FRIBS	(kHz/100W)	(kHz/100W)			
beam	primary beam	setting	(kHz/100W)	March 2011	END 2011			
16C	180 55MeV/A	11Be	9	59	>120			
17C	180 55MeV/A	11Be		6	>12			
13B	180 55MeV/A	11Be	4.5	37	>80			
11Be	180 55MeV/A	11Be	2	11	>20			
10Be	180 55MeV/A	11Be		31	>60			
8Li	180 55MeV/A	11Be	3	9	>20			
14B	180 55MeV/A	12Be		1.2	>3			
12Be	180 55MeV/A	12Be		2	>5			
9Li	180 55MeV/A	12Be		2.7	>6			
6He	180 55MeV/A	12Be		4.7	>12			
11be	13C 55 MeV	11Be	10	2	>50			
12B	13C 55 MeV	11Be	20		>100			
37K	36Ar 42 MeV	34Ar		50	>100			
35Ar	36Ar 42 MeV	34Ar		35	>70			
36Ar	36Ar 42 MeV	34Ar		50	>100			
37Ar	36Ar 42 MeV	34Ar		12	>25			
33CI	36Ar 42 MeV	34Ar		6	>10			
34CI	36Ar 42 MeV	34Ar		25	>50			
35CI	36Ar 42 MeV	34Ar		26	>50			
18Ne	20Ne 35 MeV	18Ne	9		>50			
17F	20Ne 35 MeV	18Ne	3		>20			
21Na	20Ne 35 MeV	18Ne	20		>100			

Thanks for your attention