

SCRF Activities at IPN Orsay

Sébastien Bousson On behalf of the SCRF group

Eurisol Net Meeting – CERN, 28th June 2011

Outlook

- R&D on spoke cavities (Eurisol TSR)
- TIARA (WP 9)
- SPL related activities & EUCARD R&D Program
- Cavity developments for Spiral-2
- Developments for MYRRHA
- ESS

The EURISOL Accelerator layout

R&D on spoke cavities (Eurisol TSR)

One example : optimization of the spoke bar shape

Elliptical shape

Racetrack shape

The triple spoke prototype fabrication is completed. The cavity will be prepared (chemical etching and high pressure rinsing). **First cryogenic test in September**

TIARA-PP (FP7) : WP 9 (Eurisol)

Creation of a coordinated panEuropean multi-purpose distributed Test Infrastructure

Monitoring and coordinating the use and the development of the European test infrastructures for accelerator R&D

Monitoring accesses, including industry involvement

Identifying weaknesses and needed upgrades/investments and assessing their costs

Making recommendations and contributing to upgrade and/or construction of new R&D Infrastructures as well as their corresponding R&D programs

TIARA-PP (FP7) : WP 9 (Eurisol)

The objective of this WP is to coordinate the definition and the engineering design of two test benches:

- an irradiation test facility for the high power target developments
- a test cryostat for testing fully equipped low beta
 superconducting cavities.
- Specifications
 - Adapted for various geometries; QWR, HWR,
 Spoke (single gap, multigap)...
 - Various configuration of power couplers and cold tuning systems
 - Could integrate a SC solenoid to test influence on the cavity performances
 - Operation at 4K and 2K

Special contribution of France to CERN : SLHC

<u>Framework</u>: Replacing the focusing triplets close to Atlas and CMS: study and construction of a prototype cryostat (Ø914mm lg 8m) and associated asssembly tooling for the new Nb-Ti magnets.

Special contribution of France to CERN : SPL

<u>Framework</u>: Study and fabrication of one short cryomodule and its associated tooling for the test of 4 elliptical 700 Mz superconducting

<u>Framework</u>: Design, fabricate and test one prototype of a 700 MHz beta 0.65 elliptical (5-cells) superconducting cavity

EUCARD (FP7) European program : WP 10.4 : Thin Films

TEST CELL for SRF Thin Films

Measure fundamental parameters of new SRF thin films

S. Bousson – SCRF Activities at IPNO – Eurisol Net Meeting – CERN, 28th June 2011

-11-

- 16 Quarter-Wave Resonatosr, 88.05 MHz, beta 0.12 (made by RI)
- Bulk Niobium RRR>250 (Tokyodenkai)
 - Body: 4.2 mm
 - Stem: 2.7 mm
 - Ports and beam tubes: 3.2 mm
- Cavity flanges: CF 316LN Stainless Steel
- Helium vessel made of Titanium (4 mm)
 - Flanges CF16 → Ti
 - Flanges CF40 → Ti
 - Flanges CF100 → SS
- No bellows
- No dismountable bottom flange

SPIRAL2 specs: Eacc = 6.5 MV/m and Pcav < 10W</p>

High beta cavity cold tuning system

Top port diameter: 36 mm Top port length: 100 mm Plunger diameter: from 20 to 30 mm Plunger penetration length: up to 50 mm

2 ports on the top of the cavity:a) One static plunger (optional)b) One moving plunger

 \Rightarrow Sensitivity ~1 kHz/mm with Ø 30 mm plunger

```
Introducing one plunger(Ø 30 mm, L<sub>introduced</sub> = 50 mm).
```

First "coarse" tuning: + 50 kHz

then fine tuning: +/- 4 kHz

S. Bousson – SCRF Activities at IPNO – Eurisol Net Meeting – CERN, 28th June 2011

- 15 -

MB01: Gilia **MB02:** Erentrude MB03: Verena **MB04:** Colette **MB05: Sylvana MB06:** Richardine **MB07:** Pezenne MB08: Ursula MB09: Thelma MB10: Praxède MB11: Daniela **MB12:** Ghislie **MB13: Sybille MB14: Bienvenue** MB15: Maeva **MB16: Bédachonne**

Rocco Tokyo Cabot

Strategy: One protoype – 2 pre-series – 16 series cavities

Results of all high beta series cavities

S. Bousson – SCRF Activities at IPNO – Eurisol Net Meeting – CERN, 28th June 2011

- 17 -

High beta cavity baking in clean room

- After 72h drying → 48 h baking @ 120°C
- "Forced" air flow inside the helium vessel + heater on the cavity bottom
- Cavity wrapped in a foil blanket

Heater (not shown) glued onto the copper cap

High beta cavity baking in clean room

Results after baking

	Cavity	Losses @ 6.5 MV/m [W] No baking	Losses @ 6.5 MV/m [W] With baking
	MB01	8.5	3.7 (-56%)
Eacc (MV/m)	MB02	6.9	4.1 (-41%)
1 2 3 4 5 6 7 8 9	MB03	7.0	4.4 (-47%)
	MB04	8.4	3.6 (-58%)
	MB05	7.2	3.5 (-51%)
	MB06	7.5	4.8 (-36%)
	MB07	6.9	3.4 (-51%)
Lossos dividad by ~2	MB08	Х	4.0
@ Eacc=6.5 MV/m	MB09	8.9	3.9 (-56%)
	MB10	7.1	3.5 (-51%)
	MB11	Х	3.1
	MB12	Х	3.8
	MB13	Х	3.0
	MB14	Х	4.0
	MB15	Х	3.1
S. Bousson – SCRF Activities a	MB16	Х	3.9
		= 0	

MAX (FP7): Accelerator R&D for MYRRHA

<u>Framework</u>: Intensive cryogenic tests at nominal RF power (performances, reliability, fault-tolerancy concept) of a short prototype700 MHz elliptical cryomodule.

Design, fabrication & test of an elliptical module at nominal power & T

- β =0.47 prototype constructed and tested
- Vessel & valve box installed and operational
- CW RF power coupler to be conditioned
- 700 MHz RF 80 kW power source received and operational

INFN

S. Bousson – SCRF Activities at IPNO – Eurisol N

MAX (FP7): Accelerator R&D for MYRRHA

Collaboration with INFN Milano

ESS: the European Spallation Source

<u>Framework:</u> IN2P3/IPN Orsay is in charge of the spoke section of the superconducting linac (design, prototyping work up to the test of a full scale spoke cryomodule)

Main specifications:

5 MW source (upgrade 7.5 MW) Pulse long (~2.86 ms), 14 Hz rep. rate. Proton beam 2.5 GeV High reliability (>95%), low losses

