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Goal
Understand the guiding principles of parallel programming
Why do we need parallel programming?
Where is it going to shine?

What are the obstacles?

How to think about parallel programming
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https://www.pcworld.com/article/416006/the-best-graphics-cards-for-pc-gaming.html 3



GPU glj;

Florida

The 20 Most Graphically Demanding PC Games

They're gorgeous, but these games have some high-spec GPU requirements. These are the most graphically demanding PC games to
date.

CHARLES BURGAR
UPDATED MAY 12, 2024

https://www.thegamer.com/pc-games-best-intense-graphics/ 4
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Al VIDEO GAME MARKET SIZE 2023 T0 2033 (USD BILLION)

$ 664.96

$ 552.56
$500.04

$ 409.5 $ 452.51

$ 335.35 $ 370.57

$274.63 Silleedl

$ 248.52

2024 | 2025 | 2026 J 2027 | 2028 [ 2020 J 2030 QW 2031 J 2032 J 2033

Source: https://www.precedenceresearch.com/video-game-market




PRECEDENCE|

UF

GPU is more than just gaming Chang

Florida

GRAPHIC PROCESSING UNIT (GPU) MARKET SIZE, 2022 T0 2032 (USD BILLION)

800
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$42.2

$773.07

$ 576.06

$ 429.57
$ 320.58

$ 239.41
$178.93

§ 133.83

$ 100.17
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Source: www.precedenceresearch.com
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Is GPU important for your model?

@& ChatGPT
Sure! GPUs are super important for models like mine. Here’s why:

. Speeding Up Training: Training a model like ChatGPT involves crunching through tons of data and
tweaking billions of parameters. GPUs can handle many tasks at once, making this process way

faster.

. Quick Responses: When you use a model like this, you want quick answers. GPUs help deliver fast

responses because they can process multiple things at the same time.

. Handling Big Models: Models like ChatGPT are huge, and GPUs have the memory and power to

manage these large models efficiently.

. Managing Multiple Requests: GPUs can handle lots of requests simultaneously, which is great for

providing smooth and efficient service, even when many people are using it at once.

. Energy Efficiency: Even though they use a lot of power, GPUs are more efficient than CPUs for the

kind of parallel tasks needed in Al.
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So GPUs are important

So how does this fit into our HEP computing?
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https://brittanywashburn.com/2017/08/inside-of-computer-lesson-and-activity/
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Memory

O Read Data

DJISk Storage
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O Read Data
From where do we read? (near? far? network?)
How fast can we read? (network bottleneck? spinning disk?)

® Process Data

How do we process? (which algorithm? which workflow?)

Where do we process? (laptop? data center? supercomputing center?)
Which architecture? (CPU? GPU? FPGA? ARM?)

Which software? (Excel?? ROOT? Columnar?)

® Store Data

Where do we store? (near? far?)

What format? (Disk? Tape?)

What schema? (Various data tier? split up? object storage?)

15
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U.S. DEPARTMENT OF Offlce Of

ENERGY Science

Computing in the HL-LHC Era
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£ 2020 Computing Model - CPU
© Baseline o
4 Conservative R&D :
v Aggressive R&D
— Sustained budget model
(+10% +20% capacity/year)

i

= Simple extrapolation leads to an unsustainable place

* If the current software and computing approach is applied, costs can quickly
exceed the entire U.S. HEP budget (“$1B problem”)
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4 LHCC common scenario
(Conservative R&D, u=200) el

= Our goal is to match demonstrable experiment needs with a realistic 40
funding profile — we want the science to succeed
* How do the software and computing models evolve?

* much was developed beginning 15 years ago

30
20

Annual CPU Consumption [MHS06 years]
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° they need to function 15 years from now 5012(') ] é0]2é ] 2l0124 ] 2‘0‘2{5 ] é012é ] 20136 . éOlfSé ] é034
apeps Y
* To what extent can we leverage HPC capabilities? o
. . . .
* What is the optimum balance between CPU, disk, and networking? Detector design! Opiimization of

* R&D investments: what activities are being done or planned to address the trigger ratesyercs tools for analysis

HL-LHC software and computing challenges?

= What is the optimum balance between people and hardware?

* Goal: assess computing resources and needs early enough to help inform
experiments and funding agencies for successful operations during the HL-LHC era

= For efforts towards a strategic plan, HEP Software Foundation prepared

Community White Paper: https://arxiv.org/pdf/1712.06982.pdf (Dec. 2017) Architecture, memory{etc ,’;’7‘;";”5;’_‘” i
* Additional documentation prepared by the LHC experiments during last few years ’ f:oE Li‘;‘;Ff’ELﬁg&F[g" “}‘ptim-igation of
CPU/disk/network

FY 2022 DOE PI Meeting at Snowmass Seattle
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CMS Phase-2 Computing Model: Update HF;

Document (CMS-NOTE-2022-008)
https://cds.cern.ch/record/28152927In=en

8.3 Generation, simulation and reconstruction on GPUs

The solid architecture and robust implementation of the CMSSW framework, and its future planned developments,
allow us to focus on what work can be offloaded on GPUs in the best possible way. Algorithms do not simply need
to be ported, but rather re-invented to run on GPUs, taking advantage of both traditional and Machine Learning
approaches. In the following we present a selection of the most prominent ongoing efforts in CMS, anticipating that

Read it!
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Used in most of our computers
Takes various instructions serially in performing tasks

https://www.hp.com/us-en/shop/tech-takes/what-is-cpu
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Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Registers / Memory:
Fast memory for Input and
output of ALUs

Registers / Memory

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

Fundamentally, “Get Numbers” and “Calculate”
Memory Logic 26
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More logic units in same space = more transistors
Faster clocking = higher frequency

(Also need to catch up with how to push in the data)

27



# Transistors

Single-thread
Performance
(SpecINT)

| Frequency

1975 1980 1983 1990 1995 2000 2005 2010 2015

Orginal data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Ballen
Dotled line extrapolations by C. Moore

Multicore was needed

https://www.nextplatform.com/2015/08/04/future-systems-pitting-fewer-fat-nodes-against-many-skinny-ones/
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CPU > CPU
Power ~ 1W

Power ~ (freq)3

Single core 1 GHz Four cores 1 GHz

Power ~ 1W Power ~ 4W

29
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Scaling of serial performance have reached its peak

Processors are not getting faster in clock cycle but
getting diverse

30



Graphics Processing Units (GPUs)

Registers / Memory

UF

Chang

Florida

Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Registers / Memory:
Fast memory for Input and
output of ALUs

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

GPU devotes more silicons to computing

31



Central Processing Units (CPUs) HF;

Florida

Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Registers / Memory:
Fast memory for Input and
output of ALUs

Registers / Memory

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

Fundamentally, “Get Numbers” and “Calculate”
Memory Logic -
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GPU-Computing perf
X per year

1000X
in 10 years
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Huang's law %A 3languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

Huang's law is an observation in computer science and engineering that advancements in graphics processing
units (GPUs) are growing at a rate much faster than with traditional central processing units (CPUs). The
observation is in contrast to Moore's law that predicted the number of transistors in a dense integrated circuit (IC)
doubles about every two years.!/|Huang's law states that the performance of GPUs will more than double every two

years.?! The hypothesis is subject to questions about its validity.

History |edit]

The observation was made by Jensen Huang, the chief
executive officer of Nvidia, at its 2018 GPU Technology

Conference (GTC) held in San Jose, California.l3! He observed » '
that Nvidia's GPUs were "25 times faster than five years ago" 1
whereas Moore's law would have expected only a ten-fold R SA0RE

increase.?! As microchip components become smaller, it _ |
became harder for chip advancement to meet the speed of R

' [4]
Moore's law. An RTX 4090, the most recent flagship card in
Nvidia's GeForce series, with 82.58 TFLOPS at




Rmax Rpeak Power
Rank  System Cores (PFlop/s) (PFlop/s)

1 8,699,904 1,206.00 1,7144
HPE

Rank System

United States

2 9,264,128 1,012.00 1,980.(

Intel 1

United States

3 2,073,600 561.20 846.¢

: Microsoft Azure H P E

United States

4 s 7,630,848 442.01 537.1 U n |ted Sta t es

Japan

5 2,752,704

531.51

Finland

6 1,305,600 270.00 353.75

Switzerland

7 1,824,768 241.20 306.31 7,494
I EVIDEN
Italy
8 663,040 175.30 24944 4,159
{VIDIA HT00 456
EVIDEN
Spain T i 111 u 7
op 500 list “‘June” of 2024
9 2,414,592 148.60 200.79 10,096
{NViDiA Vot Gi0o]

IBM
United States
10 : 485,888 121.40 188.65
Nvidia

United States



So how does having many cores help?
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Stream Multi-processor (SM)
These are “SIMD” Processor
Single Instruction Multiple Data
A T
g [ || A[0] + BIO] C [O]

A[1l] + B[1] C [1]

Al2] + B|[2] C [2]

Sressswsiw |ssresvswm | A[S] + B3] = CI3]




| ]| |
| ] l
| [ |

) LD D/ L[ [ |
[ mr ST T T ST T I

|
|
|

l | A[€0]

A1]

A[2]

Gewwssse w||seaasawy wm| A3

| | | |

B [0]
B [1]
B [2]

B [3]
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Stream Multi-processor (SM)

These are “SIMD” Processor

Single Instruction Multiple Data

C [0]
C 1]
C[2]

C [3]




Differences HF;

GPUs have less CU = latency is higher e
But GPUs have more “simple” cores = throughput is higher

ENEEEEEEEEENEEEEEER

ANEEEEEEEEEEEEEEEER

AEEEEEEEEEEEEEEEEEN

Control ANNEEEEEEEENENEEEER
Unit ANEEEEEEEEENENEEEER
ANEEEEEEEEENEEEEEER

ANEEEEEEEEEEEEEEEER

AEEEEEEEEEENEEEEEER

ANNEENEEEEENENEEEER

ANNEEEEEEEENENEEEER

Registers / Memory
Registers / Memory

GPUs = maximize throughput of all threads

CPUs = maximize latency of single thread
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Differences
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time
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Differences
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Start GPU end

CPU end
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Parallelism

Some problems are worth parallelizing

Some problems may not even be possible to
parallelize (serial only algorithm)
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Amdahl’s law

UF

Chang
Florida

48



Amdahl’s law HF;

Sequen’FiaI 5 | hang
(not parallelizable) Parallelizable

speedup = 1

(1-P)+P/S

s >
. CPU end
GPU end 49

Start



Amdahl’s law Clh{lj'

Sequential | Flonda
(not parallelizable) Parallelizable

’
(1-P)L+P/S

speedup =

s >
. CPU end
GPU end 50

Start



Traditional

“Fancy”
algorithm
on CPU

“Fancy”
algorithm
on GPU

Moving the goal post

ii

UF
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Overhead Hal:;

Florida

Device

.............

nnnn

Requires memory

allocation
Requires

transfer

There can be
additional overhead
to the application
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Amdahl’s law HF

Sequential | Flonda
(not parallelizable) Parallelizable

“overhead”

CPU'enéI

Start :
GPU end
53
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Sequential |
(not parallelizable) Paralle

CPU end

Start :
GPU end
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Some problems are worth parallelizing

Some problems may not even be possible to
parallelize (serial only algorithm)

Some problems require “new algorithm” and then

accelerating via GPU (prediction of how good this
will be is not easy to predict!)
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GPUs are going to be more and more ubiquitous

But if we don’t create algorithms for GPU we would
not be able to use them at all

(Chance of winning a lottery is 1 / trillion
But if you don’t buy, chance is exactly 0)

56



Green computing HF;

Florida

Green500 Rank Top Median Bottom

Frontier
(Instinct)
MN-3

........................ Srdpaig e NS,
Tsusameso  (PEZY-SC2)  MN-3 . @
Shoubu (P100) NI NVIDIA DGX

(PEZY-SCnp) — A64FX  SuperPOD
Prototype

50000 e s s s s e st e e e s s eseseEsEessesesEEeEeesetes s Rsenes R e REA .

TSUBAME KFC 9
(K20x) ® % "¢ DGXSaturnV
P100
Xeon Phi b . ? L-CSC ( )

Al S ch Aurora  (FirePro S9150)

wr (K20c)
BlueGene/Q

BlueGene

=
2
o
@)
5
L
=
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Alright fine! So how do | code? gl:;

Florida

<A NVIDIA.

CUDA.

Computer Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is a proprietaryl'! parallel computing platform and
application programming interface (API) that allows software to use certain types of graphics processing

units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing
on GPUs (GPGPU). CUDA API and its runtime: The CUDA API is an extension of the C programming

We use CUDA

59



CUDA enabled GPUs HF;

Florida

CUDA-Enabled Datacenter Products

Tesla Workstation Products NVIDIA Data Center Products

GPU Compute Capability GPU Compute Capability
Tesla K80 37 NVIDIA H100 9.0
Tesla K40 35 NVIDIA L4 89
Tesla K20 s NVIDIA L40 89
Tesla C2075 2.0 NVIDIA A100 8.0
Tesla C2050/C2070 2.0 NVIDIA A40 8.6
NVIDIA A30 8.0
NVIDIA A10 8.6
NVIDIA A16 8.6
NVIDIA A2 8.6
NVIDIA T4 7.5
NVIDIA V100 7.0
Tesla P100 6.0
Tesla P40 6.1
Tesla P4 6.1
Tesla M60 52
Tesla M40 5.2
Tesla K80 37
Tesla K40 35
Tesla K20 S5

Tesla K10 3.0

https://developer.nvidia.com/cuda-gpus



Introduction of CUDA programming HF;

Florida

What you write:
It is an extension of C/C++ programming
Very minimal difference from C/C++ programming

What you do:
Most of the time the steps are very similar
O Copy input data to GPU from the host
® Execute the code on GPU
©® Retrieve the output data from GPU back to host
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First let’s try to do the vector addition

A [0]
Al1]
A[2]

A[3]

B [0]
B [1]
B [2]

B [3]

C [O]
C[1]
C [2]

C [3]

UF
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A 0]
Al1]
Al2]

A[3]

B [0]
B [1]
B [2]

B [3]

raddition

C [0]
C [1]
C [2]

C [3]

UF
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Repeat many times

raddition

A [0]
A[1]

A[2]

A[3]

B [0]
B [1]
B [2]

B [3]

C [O]
C[1]
C[2]

C [3]

UF
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Our approach today

We will first approach the CPU example and then GPU

Focusing on the bottomline i.e. speed up
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Computing setup

binder

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an
executable environment, making your code immediately reproducible by anyone, anywhere.

New to Binder? Get started with a Zero-to-Binder tutorial in Julia, Python, or R.

Build and launch a repository
GitHub repository name or URL

GitHub ~ https://github.com/davidlange6/courses-hsf-india-december2023

Git ref (branch, tag, or commit) Path to a notebook file (optional)

gpu

Advanced setting - sites and resource customizations ¥

Take me to Jupyterhub

Copy the URL below and share your Binder with others:

https://binderhub.ss1-hep.org/v2/gh/davidlange6/courses-hsf-india-december2023/gpu

Expand to see the text below, paste it into your README to show a binder badge: b

Alreadyomic)

Launching)

UF

Chang
Florida
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nVidia'Sml Chang

Florida

nvidia-smi: NVIDIA System Management Interface program
e Command line utility

e Aids in the management and monitoring of NVIDIA GPU devices

3 B jovyan@jupyter-p-2echang X  +

‘:’ NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4

4
T

GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.

| | MIG M.

+ +
© NVIDIA GeForce GTX 1080 Ti Off | ©0000000:DB:00.0 Off | N/A
28% 30C P8 8W / 250w | OMiB / 11264MiB | Default

| | N/A

Processes:
GPU GI (I PID Type Process name GPU Memory
ID 1ID Usage

No running processes found

:~$ []

1 E 0 {88 Mem:156.00 .. jovyan@jupyter-p-2echang-40ufl-2eedu--research-2dsoftwa-2df-2dindi... 0 Q




nvcc / .cu file gl:;

Florida

Compiling a CUDA program is similar to compiling a C/C++ program.
Cuda code should be typically stored in a file with extension .cu
NVIDIA provides a CUDA compiler called nvcc

nvcc is called for CUDA parts

gcc is called for c++ parts

nvcc converts .cu files into C++ for the host system and

CUDA assembly or binary instructions for the device

69



Our first program will be....

We will take a vector of size 10 million!
and add them

And we will just repeat this 1000 times
(for no good reason)

UF
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Vim clr’.'al:;

Florida

| use Vim extensively so | am going to start with installing Vim

Set up vim basic settings

press . to edit
press - to quit edit
type - to quit editor
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Create workdir
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First we will create an empty main function
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Save and compile the program

Save to wvadd_host.cu

Compile via

$ nvcc vadd_host.cu -o vadd _host

Execute via

$ ./vadd

™ jovyan@jupyter-p-2echang X | +

(env)

HHHHARAHH R B R BB HHAAAHHHHY
# #
# Vector Addition Prog. #
# (CPU) #
# #
HHHHAHAHHAABRHHHHHAA A AR
(env)

UF

Chang
Florida

$ ./vadd_host
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We will first try the following coding y.al:;

Florida

Initialize two size-N vectors in host (Allocate and Set)

For loop and sum them to compute the sum of two vectors

75



We will first try the following coding y.al:;

Florida

Initialize two size-N vectors in host (Allocate and Set)

For loop and sum them to compute the sum of two vectors
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Some tools HF;

Florida

C++ based timing tool

#include <chrono>
using namespace std::chrono;

auto start = high_resolution_clock::now();

A

measures time between

<

auto end = high_resolution_clock::now(); ‘

float time = duration_cast<microseconds>(end - start).count() / 1000.;
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Some tools HF;

Florida

CUDA based Timing tool

// create event

cudaEvent_t startEvent, stopEvent;
cudaEventCreate(&startEvent);
cudaEventCreate(&stopEvent);

// float to read out time
float ms;

// before start
cudaEventRecord(startEvent, 0);

// end start
cudaEventRecord(stopEvent, 0);
cudaEventSynchronize(stopEvent);

// get the time
cudaEventElapsedTime(&ms, startEvent, stopEvent);

78



vadd host.cu
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Title gl:;

Florida

More refined version here:

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

vadd host.cu

80


https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd_host.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd_host.cu

& jovyan@jupyter-p--researc X +

(myenv) : $ ./vadd_host
TR R AR e s iy
# #
# Vector Addition Program #
7 (CPU) #
# #

###################W We are adding a vector of size 10M
——— Input data —-

n_data = 10000000

nops = 1000 We are performing addition 1000 times
—-—— Sanity Check ——

Printing last 10 result I i
oy Rl o (but we take final result of adding once)
9999991 C_host[i]: @ it is an unrealistic
9999992 C_host[i]: 2e+07 situation...
9999993 C_host[i]: ©

9999994 C_host[i]: 2e+07

9999995 C_host[i]: ©

9999996 C_host[i]: 2e+07 : :

9999997 Chost[il: 8 Time it took to create 10M length vectors
9999998 C_host[i]: 2e+07

9999999 C_host[i]: ©

e e e il ol el =

——— Timing information ——

time inititalizing : 148.694 ms
time executing on CPU : 15461 ms <« | IMe It took to perform addition 1000 times
time total ; 15609.7 ms

speedup_ceiling: 104.978




OK let’s do the same thing on GPU
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First let’s try to do the vector addition Hl:;

Florida

Device

m
ww

..............

nnnnn

Requires

transfer T
Step 1: Initialize input

on Host Memory
(Allocate and set)
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First let’s try to do the vector addition Hl:;

Florida

Device

llllllllllllllllllllllll

Requires

transfer
Step 2: Allocate

memory for input on
device
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First let’s try to do the vector addition Hl:;

Florida

Device

llllllllllllllllllllllll

Requires

transfer

Step 3: Copy input on
host to device
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First let’s try to do the vector addition Hl:;

Florida

Device

llllllllllllllllllllllll

Requires
transfer

Step 4: Execute
computation on device

86



First let’s try to do the vector addition Hl:;

Florida

Device

llllllllllllllllllllllll

X “@Lﬂﬁ‘

Requires

transf
ranster Step 5: Send

computation result

m back to Host

87



We will start with the same file but add

| will add below the
same thing but in
GPU version
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Allocating memory in GPU clr’.":;

Florida

Create pointers to the memory on device GPU

Allocate memory on device GPU (the pointer points to GPU memory)

This is to pass it Define the
as generic pointer details

Above looks confusing but it’s nothing more than following in GPU

“ floatx A_device = new float[N_data] ”

89



UF

=] tests - JupyterLab X raw.githubusercontent.com/sgnoc Chan

C O O B =2 https://jupyterhub.ssl-hep.org/user/p.chang@ ks Q Florlda

File Edit View Run Kernel Tabs Settings Help

C ™ jovyan®@jupyter-p-2echang X | +

26 |
27 A_host[i] = i;
B/ tests / 28 B_host[i] = i * pow(-1, i);
29 }
Name - Last Modified 30
31 for (int i_data = 0; i_data < n_data; ++i_data)
[ cudnn_tes... 2 days ago 32 {
™ hello.cu 2 days ago 33 for (int iop = 0; iop < n_ops; ++iop)
34 C_host[i_datal = A_host[i_datal + B_host[i_data]l;
[ run_tests.sh 2 days ago 35 }
36
37 auto end = high_resolution_clock: :now();
38
39 float time = duration_cast<microseconds>(end - start).count
40
41 std::cout << "time: " << time << std::endl;
42
43 [ /] ~kesksksknsknsknsknsknsksknskaskasknsksksknskaskaskaskskskaskask
44 //
45 [ [ ~kessknskaskasskaskasknskaskasknskaskasknskaskasknskaskasknskaskasknskask
46
47 // GPU VERSION
48
49 // First declare some pointers
50 floatx A_device;
51 floatx B_device;
52 floatx C_device;
53
54 cudaMalloc( (voidkx) &A_device, n_data x sizeof(float));
55 cudaMalloc((void+x) &B_device, n_data x sizeof(float));
56 cudaMalloc( (void*x) &C_device, n_data x sizeof(float));
57
58 return 0;

59 i}

[ vadd.cu 2 days ago

59,1 Bot

(s Y {8t Mem: 166.40... jovyan®@jupyter-p-2echang-40ufl-2eedu--research-2dsoftwa-2df-2dindia-2d... 0 Q




Check whether it compiles
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Now we set the memory cl.:":;

Florida

As any other memory once you create them we need to use it

But we do not have a way to access them from the host directly
So we use following CUDA API to set the memory via copying content
from host to device

set

Above looks confusing but it’s “kind of like” the following

“ A_device = A_host; “ (not quite but something like that)
92



Copy the inputs to GPU
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=] tests - JupyterLab X raw.githubusercontent.com/sgnoc

C © O B =2 https:/[jupyterhub.ssl-hep.org/user/p.chang@u ¥

File Edit View Run Kernel Tabs Settings Help

jovyan@jupyter-p-2echang X = +

44 //
45 / [ ~knsskaskaskasskaskasknsknskaskasknskaskasksknskaskasknskaskaskasknskask

46

47 // GPU VERSION

48

49 // First declare some pointers

50 floatx A_device;

51 floatx B_device;

52 floatx C_device;

53

54 cudaMalloc((voidxk) &A_device, n_data * sizeof(float));

55 cudaMalloc((voidxkx) &B_device, n_data * sizeof(float));

56 cudaMalloc((voidxx) &C_device, n_data * sizeof(float));

57

58 cudaMemcpy(A_device, A_host, n_data x sizeof(float), cudaMemcpyHostToDevice);
59 cudaMemcpy (B_device, E_host, n_data x sizeof(float), cudaMemcpyHostToDevice);
60

61 return 0;

62 }
"vadd_host.cu" 62L, 1776B written

59,26 Bot

1 B 0 {8 Mem:166.7... jovyan@jupyter-p-2echang-40ufl-2eedu--research-2dsoftwa-2df-2dindia-2... 0 Q




Title

Check whether it compiles

UF

Chang
Florida

95



Telling GPU to execute some tasks cl.:'al:;

Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)




Telling GPU to execute some tasks cl.:'al:;

Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)




Telling GPU to execute some tasks cl.:'al:;

Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)




How multi-threading works in GPU

CUDA launches parallel SIMD jobs in multiple threads
“Threads” are grouped into “Blocks” or “Thread Blocks”

“Thread Blocks” are grouped into a “Grid”
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How multi-threading works in GPU gl:;

Florida

CUDA launches parallel SIMD jobs in multiple threads
“Threads” are grouped into “Blocks” or “Thread Blocks”

“Thread Blocks” are grouped into a “Grid”

Huh?

100



How multi-threading works in GPU gl:;

Florida

In our case, a thread would be one addition of elements

A [0] B [0] C [0]
~ T~ thread Al1] B [1] C[1]
Al2] " B [2] e [2]
A[3] B [3] C [3]

How do we know?

101



How multi-threading works in GPU gl:;

Florida

Because each kernel is 1 single thread

In a single thread, one sum is done between elements

102



How multi-threading works in GPU gl:;

Florida

Each thread block contains multiple threads

Thread Block

A [O] B [0] C [0]
——
N
= — A B e
/\/
= =3 AIN]  BIN]  CIN]

usually can be up to 1024
threads per block max but
depends on the GPU

103



Question gl:;

Florida

So if we have a vector of size 500 being added with another vector
of size 500 what would be the total number of threads we need?

If we group each 200 threads as one thread block how
many thread blocks do we need?

104



How multi-threading works in GPU yml:;

Florida

Set of thread block is called a “Grid”

Grid

A [0] B [0] o)

A1] B [1] C[1]

A[N] B [N] C [N]

105



How multi-threading works in GPU

If we have N = 100000 size vector

We need total of 100000 threads

If we group them by 256 threads

We need int((100000-0.5)/256+1) blocks
= 391 blocks

Then, we’d say our grid has 391 blocks

A [O]

Al1]

A[N]

B [O]

B [1]

B [N]

C [0]

C[1]

C [N]

UF
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Thread indexing clr’.'al:;

Florida

So if there are so many threads, how does each thread
know which one elements to add?

We use the following to specify which thread we want to work
on and define what to do for a given thread

blockDim blockIdx threadIdx

107



blockldx.x / blockldx.y / blockldx.z (gl:;

Florida

blockldx.z
blockldx.y
blockldx.x ' ] i
i

e 108



blockDim.x / blockDim.y / blockDim.z Halj;

Florida

— blockDim.z

blockDim.y

blockDim.x

Number of threads in each dimension of each block

109



blockDim.x / blockDim.y / blockDim.z (gf;

Florida

el
A A )=
A A 72
threadldx.z 4 2
o threadldx.y

e

threadldx.x

110



In our example y.al:;

Florida
threadldx.x = N_thread_per_block

threadldx.x = 2 blockDim.x * blockIdx.x + threadIdx.x
threadldx.x = 1
threadldx.x =0 blockDim.x
|

blockldx.x =0 blockldx.x = 1 blockldx.x = N blocks

It’'s a 1 dimensional vector addition

So we will keep it simple and use 1 dimension only
(In a later example we will use more dimension)

111



How multi-threading works in GPU
If we have N = 100000 size vector
A [O] B [O] C [O]
We need total of 100000 threads
If we group them by 256 threads A[1] B [1] C [1]
I —
We need int((100000-0.5)/256+1) blocks
= 391 blocks
A [N] B [N] C [N]

Then, we’d say our grid has 391 blocks

But 391 x 256 = 100096. What's going on with extra 967

UF
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Coming back to our example Hal:;

Florida

That’s why we have a check here

1_data may go up to 100096 but N_data = 100000
Then these threads do nothing (thread divergence)

113



How to call the _ global__ function HF;

Florida

vec_add<<<grid_size, block_size>>>(A_device, B_device, C_device, N_data);

It uses a special <<<, >>> notation
First argument:

number of thread blocks

Second argument:
the size of the thread block or number of thread per block

This th