
Philip Chang
University of Florida

GPU Programming
HSF-India HEP Software Workshop

May 21, 2024

1

2

Chang
Florida

2

Chang
Florida

Goal

2

Chang
Florida

Goal

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

Where is it going to shine?

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

Where is it going to shine?

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

Where is it going to shine?

What are the obstacles?

2

Chang
Florida

Goal

Understand the guiding principles of parallel programming

Why do we need parallel programming?

Where is it going to shine?

What are the obstacles?

How to think about parallel programming

Graphics Processing Units

3

Chang
Florida

https://www.pcworld.com/article/416006/the-best-graphics-cards-for-pc-gaming.html

GPU

4

Chang
Florida

https://www.thegamer.com/pc-games-best-intense-graphics/

GPU is more than just gaming

5

Chang
Florida

GPU is more than just gaming

6

Chang
Florida

7

Chang
Florida

8

Chang
Florida

9

Chang
Florida

9

Chang
Florida

So GPUs are important

9

Chang
Florida

So GPUs are important

9

Chang
Florida

So GPUs are important

So how does this fit into our HEP computing?

Title

10

Chang
Florida

https://brittanywashburn.com/2017/08/inside-of-computer-lesson-and-activity/

Title

11

Chang
Florida

https://brittanywashburn.com/2017/08/inside-of-computer-lesson-and-activity/

➊

➋➌

➍ ➎

Which one is likely the GPU?

Computing

12

Chang
Florida

CPU

Memory

➊ Read Data

Disk Storage

Computing

13

Chang
Florida

CPU

Memory

➊ Read Data
➋ Process Data

Disk Storage

Computing

14

Chang
Florida

CPU

Memory

➊ Read Data
➋ Process Data
➌ Store Data

Disk Storage

Computing Challenges

15

Chang
Florida

➊ Read Data
From where do we read? (near? far? network?)
How fast can we read? (network bottleneck? spinning disk?)

➋ Process Data
How do we process? (which algorithm? which workflow?)
Where do we process? (laptop? data center? supercomputing center?)
Which architecture? (CPU? GPU? FPGA? ARM?)
Which software? (Excel?? ROOT? Columnar?)

➌ Store Data
Where do we store? (near? far?)
What format? (Disk? Tape?)
What schema? (Various data tier? split up? object storage?)

Computing Challenges

16

Chang
Florida

➊ Read Data
From where do we read? (near? far? network?)
How fast can we read? (network bottleneck? spinning disk?)

➋ Process Data
How do we process? (which algorithm? which workflow?)
Where do we process? (laptop? data center? supercomputing center?)
Which architecture? (CPU? GPU? FPGA? ARM?)
Which software? (Excel?? ROOT? Columnar?)

➌ Store Data
Where do we store? (near? far?)
What format? (Disk? Tape?)
What schema? (Various data tier? split up? object storage?)

Big picture

17

Chang
Florida

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Big picture

18

Chang
Florida

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

GPUs are expected to
be important but not

included in this estimate!

Big picture

19

Chang
Florida

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

GPUs are expected to
be important but not

included in this estimate!

We need people like you
to work on R&D-ing so

that we can better
benchmark and

understand its impact

Big picture

20

Chang
Florida

Big picture

21

Chang
Florida

Big picture

22

Chang
Florida

CMS Phase-2 Computing Model: Update
Document (CMS-NOTE-2022-008)

23

Chang
Florida

https://cds.cern.ch/record/2815292?ln=en

Read it!

24

Chang
Florida

24

Chang
Florida

So let’s talk about GPUs!

Central Processing Unit (CPU)

25

Chang
Florida

https://www.hp.com/us-en/shop/tech-takes/what-is-cpu

Used in most of our computers
Takes various instructions serially in performing tasks

Central Processing Units (CPUs)

26

Chang
Florida

ALU ALU

ALU ALU

Control
Unit

Registers / Memory

Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

Registers / Memory:
Fast memory for Input and
output of ALUs

Fundamentally, “Get Numbers” and “Calculate”
Memory Logic

Ways to increase performance

27

Chang
Florida

More logic units in same space = more transistors

Faster clocking = higher frequency

(Also need to catch up with how to push in the data)

28

Chang
Florida

https://www.nextplatform.com/2015/08/04/future-systems-pitting-fewer-fat-nodes-against-many-skinny-ones/

Multicore was needed

Transistors

Frequency

cores

Power (W)

29

Chang
Florida

Single core 1 GHz Four cores 1 GHz

CPU
CPU

CPU

CPU

CPU

Power ~ 1W Power ~ 4W

Single core 1 GHz Single core 4 GHz

CPU

Power ~ 1W Power ~ 64W

CPU

Power ~ (freq)3

30

Chang
Florida

Scaling of serial performance have reached its peak

Processors are not getting faster in clock cycle but
getting diverse

Graphics Processing Units (GPUs)

31

Chang
Florida

Registers / Memory

Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

Registers / Memory:
Fast memory for Input and
output of ALUs

GPU devotes more silicons to computing

Central Processing Units (CPUs)

32

Chang
Florida

ALU ALU

ALU ALU

Control
Unit

Registers / Memory

Arithmetic Logic Unit (ALU):
To perform arithmetic and
logic operations

Control Unit:
Directs operation of the
processor; moving
memory, executing ALUs,
etc.

Registers / Memory:
Fast memory for Input and
output of ALUs

Fundamentally, “Get Numbers” and “Calculate”
Memory Logic

One of the latest GPUs

33

Chang
Florida

14592 cores

H100

Death of Moore’s Law

34

Chang
Florida

Title

35

Chang
Florida

Jensen
Huang

Title

36

Chang
Florida

Title

37

Chang
Florida

one non-GPU supercomputer

Top 500 list “June” of 2024

38

Chang
Florida

So how does having many cores help?

H100 example

39

Chang
Florida

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

H100 example

40

Chang
Florida

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

H100 example

41

Chang
Florida

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Title

42

Chang
Florida

A [0]

A [1]

A [2]

A [3]

B [0]

B [1]

B [2]

B [3]

C [0]

C [1]

C [2]

C [3]

+ =

+ =

+ =

+ =

Stream Multi-processor (SM)

These are “SIMD” Processor

Single Instruction Multiple Data

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Title

43

Chang
Florida

Stream Multi-processor (SM)

These are “SIMD” Processor

Single Instruction Multiple Data

A [0]

A [1]

A [2]

A [3]

+

B [0]

B [1]

B [2]

B [3]

=

C [0]

C [1]

C [2]

C [3]

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Differences

44

Chang
Florida

Registers / Memory

ALU ALU

ALU ALU

Control
Unit

Registers / Memory

GPUs have less CU ⇒ latency is higher
But GPUs have more “simple” cores ⇒ throughput is higher

GPUs ⇒ maximize throughput of all threads
CPUs ⇒ maximize latency of single thread

Start
CPU end

GPU end

Differences

45

Chang
Florida

Task

time

Differences

46

Chang
Florida

Start CPU endGPU end

Parallelism

47

Chang
Florida

Some problems are worth parallelizing

Some problems may not even be possible to
parallelize (serial only algorithm)

Amdahl’s law

48

Chang
Florida

Amdahl’s law

49

Chang
Florida

70% 30%

Sequential
(not parallelizable) Parallelizable

Start CPU end
GPU end

speedup = 1
(1 - P) + P/S

Amdahl’s law

50

Chang
Florida

70% 30%

Sequential
(not parallelizable) Parallelizable

Start CPU end
GPU end

speedup = 1
(1 - P) + P/S

Watch out when people make

statements like “With GPU we can

make it go orders of magnitude faster”

Moving the goal post

51

Chang
Florida

Traditional

“Fancy”
algorithm
on CPU

“Fancy”
algorithm
on GPU

Overhead

52

Chang
Florida

Requires
transfer

Requires memory
allocation

There can be
additional overhead

to the application

Host

Device

Amdahl’s law

53

Chang
Florida

70% 30%

Sequential
(not parallelizable) Parallelizable

Start CPU end
GPU end

“overhead”

speedup =

Amdahl’s law

54

Chang
Florida

70% 30%

Sequential
(not parallelizable) Parallelizable

Start CPU end
GPU end

“overhead”

speedup =

We’ll come back at then

end of the day how to

reduce this overhead

55

Chang
Florida

Some problems are worth parallelizing

Some problems may not even be possible to
parallelize (serial only algorithm)

Some problems require “new algorithm” and then
accelerating via GPU (prediction of how good this

will be is not easy to predict!)

56

Chang
Florida

GPUs are going to be more and more ubiquitous

But if we don’t create algorithms for GPU we would
not be able to use them at all

(Chance of winning a lottery is 1 / trillion
But if you don’t buy, chance is exactly 0)

Green computing

57

Chang
Florida

58

Chang
Florida

Alright fine! So how do I code?

59

Chang
Florida

Computer Unified Device Architecture (CUDA)

We use CUDA

CUDA enabled GPUs

60

Chang
Florida

https://developer.nvidia.com/cuda-gpus

Introduction of CUDA programming

61

Chang
Florida

What you write:
It is an extension of C/C++ programming
Very minimal difference from C/C++ programming

What you do:
Most of the time the steps are very similar
➊ Copy input data to GPU from the host
➋ Execute the code on GPU
➌ Retrieve the output data from GPU back to host

First let’s try to do the vector addition

62

Chang
Florida

A [0]

A [1]

A [2]

A [3]

+

B [0]

B [1]

B [2]

B [3]

=

C [0]

C [1]

C [2]

C [3]

First let’s try to do the vector addition

63

Chang
Florida

A [0]

A [1]

A [2]

A [3]

+

B [0]

B [1]

B [2]

B [3]

=

C [0]

C [1]

C [2]

C [3]

First let’s try to do the vector addition

64

Chang
Florida

A [0]

A [1]

A [2]

A [3]

+

B [0]

B [1]

B [2]

B [3]

=

C [0]

C [1]

C [2]

C [3]

Repeat many times

Our approach today

65

Chang
Florida

We will first approach the CPU example and then GPU

Focusing on the bottomline i.e. speed up

Computing setup

66

Chang
Florida

67

Chang
Florida

nvidia-smi

68

Chang
Florida

nvidia-smi: NVIDIA System Management Interface program
● Command line utility
● Aids in the management and monitoring of NVIDIA GPU devices

nvcc / .cu file

69

Chang
Florida

Compiling a CUDA program is similar to compiling a C/C++ program.  

Cuda code should be typically stored in a file with extension .cu  

NVIDIA provides a CUDA compiler called nvcc  

nvcc is called for CUDA parts 

gcc is called for c++ parts 

nvcc converts .cu files into C++ for the host system and  

CUDA assembly or binary instructions for the device

Our first program will be….

70

Chang
Florida

We will take a vector of size 10 million!
and add them

And we will just repeat this 1000 times
(for no good reason)

Vim

71

Chang
Florida

I use Vim extensively so I am going to start with installing Vim

$ conda create -n env

$ conda activate env

$ conda install vim

Set up vim basic settings

$ vim ~/.vimrc

ipress to edit

:imap jk <Esc>

syntax on

set tabstop=8

set softtabstop=4

set shiftwidth=4

set expandtab

set cmdheight=2

set ruler

set hlsearch

set wildmenu

set number

set scrolloff=40

set nocursorcolumn

set nowrap

set list

set listchars=tab:>-

colorscheme delek

escpress to quit edit

:wqtype to quit editor

Create workdir

72

Chang
Florida

$ mkdir workdir

$ cd workdir

First we will create an empty main function

73

Chang
Florida

#include <iostream>

int main()

{

 // banner

 std::cout << "#########################" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "# Vector Addition Prog. #" << std::endl;

 std::cout << "# (CPU) #" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "#########################" << std::endl;

 return 0;

}

$ vim vadd_host.cu

:wq

i

esc

Save and compile the program

74

Chang
Florida

$ nvcc vadd_host.cu -o vadd_host

Save to vadd_host.cu

Compile via

Execute via

$./vadd

We will first try the following coding

75

Chang
Florida

Initialize two size-N vectors in host (Allocate and Set)

float* A_host = new float[n_data];

float* B_host = new float[n_data];

float* C_host = new float[n_data];

for (int i = 0; i < n_data; ++i)

{

 A_host[i] = i;

 B_host[i] = i * pow(-1, i);

}

For loop and sum them to compute the sum of two vectors

for (int i_data = 0; i_data < n_data; ++i_data)

{

 C_host[i_data] = A_host[i_data] + B_host[i_data];

}

We will first try the following coding

76

Chang
Florida

Initialize two size-N vectors in host (Allocate and Set)

float* A_host = new float[n_data];

float* B_host = new float[n_data];

float* C_host = new float[n_data];

for (int i = 0; i < n_data; ++i)

{

 A_host[i] = i;

 B_host[i] = i * pow(-1, i);

}

For loop and sum them to compute the sum of two vectors

for (int i_data = 0; i_data < n_data; ++i_data)

{

 for (int iop = 0; iop < n_ops; ++iop)

 C_host[i_data] = A_host[i_data] + B_host[i_data];

}

Some tools

77

Chang
Florida

C++ based timing tool

#include <chrono>

using namespace std::chrono;

…

auto start = high_resolution_clock::now();

…

auto end = high_resolution_clock::now();

…

float time = duration_cast<microseconds>(end - start).count() / 1000.;

measures time between

Some tools

78

Chang
Florida

CUDA based Timing tool

// create event

cudaEvent_t startEvent, stopEvent;

cudaEventCreate(&startEvent);

cudaEventCreate(&stopEvent);

// float to read out time

float ms;

// before start

cudaEventRecord(startEvent, 0);

…

…

…

// end start

cudaEventRecord(stopEvent, 0);

cudaEventSynchronize(stopEvent);

// get the time

cudaEventElapsedTime(&ms, startEvent, stopEvent);

vadd_host.cu

79

Chang
Florida

#include <iostream>

#include <chrono>

using namespace std::chrono;

int main()

{

 // banner

 std::cout << "#########################" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "# Vector Addition Prog. #" << std::endl;

 std::cout << "# (CPU) #" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "#########################" << std::endl;

 int n_data = 10000000;

 int n_ops = 1000;

 auto start = high_resolution_clock::now();

 float* A_host = new float[n_data];

 float* B_host = new float[n_data];

 float* C_host = new float[n_data];

 for (unsigned int i = 0; i < n_data; ++i)

 {

 A_host[i] = i;

 B_host[i] = i * pow(-1, i);

 }

 for (int i_data = 0; i_data < n_data; ++i_data)

 {

 for (int iop = 0; iop < n_ops; ++iop)

 C_host[i_data] = A_host[i_data] + B_host[i_data];

 }

 auto end = high_resolution_clock::now();

 float time = duration_cast<microseconds>(end - start).count() / 1000.;

 std::cout << "time: " << time << std::endl;

 return 0;

}

Title

80

Chang
Florida

More refined version here:

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/
vadd_host.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd_host.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd_host.cu

Result

81

Chang
Florida

We are adding a vector of size 10M

We are performing addition 1000 times
(but we take final result of adding once)

it is an unrealistic
situation…

Time it took to create 10M length vectors

Time it took to perform addition 1000 times

82

Chang
Florida

OK let’s do the same thing on GPU

First let’s try to do the vector addition

83

Chang
Florida

Requires
transferHost

Device

Step 1: Initialize input
on Host Memory
(Allocate and set)

First let’s try to do the vector addition

84

Chang
Florida

Requires
transferHost

Device

Step 2: Allocate
memory for input on

device

First let’s try to do the vector addition

85

Chang
Florida

Requires
transferHost

Device

Step 3: Copy input on
host to device

First let’s try to do the vector addition

86

Chang
Florida

Requires
transferHost

Device

Step 4: Execute
computation on device

First let’s try to do the vector addition

87

Chang
Florida

Requires
transferHost

Device

Step 5: Send
computation result

back to Host

We will start with the same file but add

88

Chang
Florida

#include <iostream>

#include <chrono>

using namespace std::chrono;

int main()

{

 // banner

 std::cout << "#########################" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "# Vector Addition Prog. #" << std::endl;

 std::cout << "# (CPU) #" << std::endl;

 std::cout << "# #" << std::endl;

 std::cout << "#########################" << std::endl;

 int n_data = 10000000;

 int n_ops = 1000;

 auto start = high_resolution_clock::now();

 float* A_host = new float[n_data];

 float* B_host = new float[n_data];

 float* C_host = new float[n_data];

 for (unsigned int i = 0; i < n_data; ++i)

 {

 A_host[i] = i;

 B_host[i] = i * pow(-1, i);

 }

 for (int i_data = 0; i_data < n_data; ++i_data)

 {

 for (int iop = 0; iop < n_ops; ++iop)

 C_host[i_data] = A_host[i_data] + B_host[i_data];

 }

 auto end = high_resolution_clock::now();

 float time = duration_cast<microseconds>(end - start).count() / 1000.;

 std::cout << "time: " << time << std::endl;

 return 0;

}

I will add below the
same thing but in

GPU version

Allocating memory in GPU

89

Chang
Florida

Create pointers to the memory on device GPU

float* A_device;

float* B_device;

float* C_device;

Allocate memory on device GPU (the pointer points to GPU memory)
cudaMalloc((void**) &A_device, n_data * sizeof(float));

cudaMalloc((void**) &B_device, n_data * sizeof(float));

cudaMalloc((void**) &C_device, n_data * sizeof(float));

This is to pass it
as generic pointer

Define the
details

Above looks confusing but it’s nothing more than following in GPU

“ float* A_device = new float[N_data] ”

Title

90

Chang
Florida

91

Chang
Florida

Check whether it compiles

Now we set the memory

92

Chang
Florida

As any other memory once you create them we need to use it

Normally, we’d do:

*A_device[0] = 1.0;

*A_device[1] = 2.0;

…

…

*A_device[N] = var;

But we do not have a way to access them from the host directly
So we use following CUDA API to set the memory via copying content
from host to device

cudaMemcpy(A_device, A_host, n_data * sizeof(float), cudaMemcpyHostToDevice);

Above looks confusing but it’s “kind of like” the following
“ A_device = A_host; “ (not quite but something like that)

set

93

Chang
Florida

Copy the inputs to GPU

Title

94

Chang
Florida

Title

95

Chang
Florida

Check whether it compiles

Telling GPU to execute some tasks

96

Chang
Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)
__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

Telling GPU to execute some tasks

97

Chang
Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)
__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

What is this…??

Telling GPU to execute some tasks

98

Chang
Florida

Now we can’t directly access the memory content on device from host
So how do we execute and perform tasks using them?

We use __global__ function.

When we write a function with preamble __global__ the function is
now a function that is to be executed on the GPU device. We call these
“GPU Kernels”

Following is how it would look like: (if adding only once)
__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

What is this…??

No for loop…?

How multi-threading works in GPU

99

Chang
Florida

CUDA launches parallel SIMD jobs in multiple threads

“Threads” are grouped into “Blocks” or “Thread Blocks”

“Thread Blocks” are grouped into a “Grid”

How multi-threading works in GPU

100

Chang
Florida

CUDA launches parallel SIMD jobs in multiple threads

“Threads” are grouped into “Blocks” or “Thread Blocks”

“Thread Blocks” are grouped into a “Grid”

Huh?

How multi-threading works in GPU

101

Chang
Florida

thread

In our case, a thread would be one addition of elements

A [0]

A [1]

A [2]

A [3]

+

B [0]

B [1]

B [2]

B [3]

=

C [0]

C [1]

C [2]

C [3]

How do we know?

__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

How multi-threading works in GPU

102

Chang
Florida

Because each kernel is 1 single thread

In a single thread, one sum is done between elements

How multi-threading works in GPU

103

Chang
Florida

Each thread block contains multiple threads

A [0]

A [1]

A [N]

+

B [0]

B [1]

B [N]

=

C [0]

C [1]

C [N]

… … …

Thread Block

usually can be up to 1024
threads per block max but

depends on the GPU

Question

104

Chang
Florida

So if we have a vector of size 500 being added with another vector
of size 500 what would be the total number of threads we need?

If we group each 200 threads as one thread block how
many thread blocks do we need?

How multi-threading works in GPU

105

Chang
Florida

Set of thread block is called a “Grid”

A [0]

A [1]

A [N]

+

B [0]

B [1]

B [N]

=

C [0]

C [1]

C [N]

… … …

Thread Block

Grid

How multi-threading works in GPU

106

Chang
Florida

A [0]

A [1]

A [N]

+

B [0]

B [1]

B [N]

=

C [0]

C [1]

C [N]

… … …

If we have N = 100000 size vector

We need total of 100000 threads

If we group them by 256 threads

We need int((100000-0.5)/256+1) blocks

= 391 blocks

Then, we’d say our grid has 391 blocks

__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

Thread indexing

107

Chang
Florida

We use the following to specify which thread we want to work
on and define what to do for a given thread

blockDim blockIdx threadIdx

So if there are so many threads, how does each thread
know which one elements to add?

blockIdx.x / blockIdx.y / blockIdx.z

108

Chang
Florida

blockIdx.x

blockIdx.y

blockIdx.z

blockDim.x / blockDim.y / blockDim.z

109

Chang
Florida

blockDim.y

blockDim.x

blockDim.z

Number of threads in each dimension of each block

blockDim.x / blockDim.y / blockDim.z

110

Chang
Florida

threadIdx.x

threadIdx.y

threadIdx.z

In our example

111

Chang
Florida

… … ……

It’s a 1 dimensional vector addition

So we will keep it simple and use 1 dimension only
(In a later example we will use more dimension)

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = N blocks

threadIdx.x = 0

threadIdx.x = 1

threadIdx.x = 2

threadIdx.x = N_thread_per_block

blockDim.x

blockDim.x * blockIdx.x + threadIdx.x

__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

How multi-threading works in GPU

112

Chang
Florida

But 391 × 256 = 100096. What’s going on with extra 96?

If we have N = 100000 size vector

We need total of 100000 threads

If we group them by 256 threads

We need int((100000-0.5)/256+1) blocks

= 391 blocks

Then, we’d say our grid has 391 blocks

A [0]

A [1]

A [N]

+

B [0]

B [1]

B [N]

=

C [0]

C [1]

C [N]

… … …

__global__ void vec_add(const float* A, const float* B, float* C, int n_data)

{

 int i_data = blockDim.x * blockIdx.x + threadIdx.x;

 if (i_data < n_data)

 {

 C[i_data] = A[i_data] + B[i_data];

 }

 return;

}

Coming back to our example

113

Chang
Florida

That’s why we have a check here

i_data may go up to 100096 but N_data = 100000
Then these threads do nothing (thread divergence)

How to call the __global__ function

114

Chang
Florida

vec_add<<<grid_size, block_size>>>(A_device, B_device, C_device, N_data);

It uses a special <<<, >>> notation

First argument:
number of thread blocks

Second argument:
the size of the thread block or number of thread per block

This then launches a grid of blocks of threads

Dimension example

115

Chang
Florida

Imagine I have 9 x 15 threads to be done
(perhaps it’s a matrix multiplication to produce 9 x 15 matrix)

Dimension example

116

Chang
Florida

First with some domain knowledge you decide that
“OK I think having 9 thread per thread block is reasonable”

Dimension example

117

Chang
Florida

Then, we would have a grid of size = 15 blocks

Dimension example

118

Chang
Florida

grid size = 15 blocks block size = 9 threads

Thread blocks and SM

119

Chang
Florida

…

…

…

…

…

SM

256 threads

5 blocks

e.g.
vec_add<<<5, 256>>>(…);

Thread blocks and SM

120

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…
If there are more

resources available it
will pack more jobs

Thread blocks and SM

121

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…

Thread blocks and SM

122

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

Thread blocks and SM

123

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

Thread blocks and SM

124

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

In what order do the
threads get executed?

Thread blocks and SM

125

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

A “Warp” of 32 threads are
executed at the same time

Thread blocks and SM

126

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

A “Warp” of 32 threads are
executed at the same time

Warp schedulers will
orchestrate which

warps to run

Thread blocks and SM

127

Chang
Florida

Warp scheduler decides what runs in what order
(Not something we can really control)

SM
…

…

…

…

…done

➊

➋

➌

➍

➊
…

➌
…

🅝
…

➍
…

…

O
rd

er
 o

f e
xe

cu
tio

n

Warp Scheduler 1

➋
…

➎
…

🅝
…

➏
…

…

O
rd

er
 o

f e
xe

cu
tio

n

Warp Scheduler 2

Synchronization

128

Chang
Florida

…

…

…

…

…

__global__ MyFirstTask(…)
__global__ MySecondTask2(…)

MyFirstTask<<<3, 256>>>(…)

MySecondTask<<<2, 128>>>(…)

Suppose we have two tasks

We launch a grid for First Task and Second Task

256 threads

3 blocks

2 blocks

128 threads

Synchronization

129

Chang
Florida

…

…

…

…

…

__global__ MyFirstTask(…)
__global__ MySecondTask2(…)

MyFirstTask<<<3, 256>>>(…)

MySecondTask<<<2, 128>>>(…)

Suppose we have two tasks

We launch a grid for First Task and Second Task

256 threads

3 blocks

2 blocks

128 threads
What if a MySecondTask’s

Warp starts before the last warp
in MyFirstTask finishes…?

Synchronization

130

Chang
Florida

…

…

…

…

…

__global__ MyFirstTask(…)
__global__ MySecondTask2(…)

MyFirstTask<<<3, 256>>>(…)

MySecondTask<<<2, 128>>>(…)

Suppose we have two tasks

We launch a grid for First Task and Second Task

256 threads

3 blocks

2 blocks

128 threads
What if a MySecondTask’s

Warp starts before the last warp
in MyFirstTask finishes…?

We need a way to “divide” the
line (“synchronize”)

Synchronization

131

Chang
Florida

…

…

…

…

…

__global__ MyFirstTask(…)
__global__ MySecondTask2(…)

MyFirstTask<<<3, 256>>>(…)

cudaDeviceSynchronize();

MySecondTask<<<2, 128>>>(…)

Suppose we have two tasks

We launch a grid for First Task and Second Task

256 threads

3 blocks

2 blocks

128 threads

Thread blocks and SM

132

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

…

…

…

…

…

SM

Thread blocks and SM

133

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…
If there are more

resources available it
will pack more jobs

Thread blocks and SM

134

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…

Thread blocks and SM

135

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

Thread blocks and SM

136

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

A “Warp” of 32 threads are
executed at the same time

Thread blocks and SM

137

Chang
Florida

What is physically happening is that each thread block
gets matched to a SM

SM
…

…

…

…

…done

A “Warp” of 32 threads are
executed at the same time

Warp schedulers will
orchestrate which

warps to run

Thread blocks and SM

138

Chang
Florida

Warp scheduler decides what runs in what order
(Not something we can really control)

SM
…

…

…

…

…done

➊

➋

➌

➍

➊
…

➌
…

🅝
…

➍
…

…

O
rd

er
 o

f e
xe

cu
tio

n

Warp Scheduler 1

➋
…

➎
…

🅝
…

➏
…

…

O
rd

er
 o

f e
xe

cu
tio

n

Warp Scheduler 2

Synchronization

139

Chang
Florida

…

…

…

…

…

__global__ MyFirstTask(…)
__global__ MySecondTask2(…)

__global__ MyFirstTask(…)

Suppose we have two tasks

We launch a grid for First Task and Second Task

140

Chang
Florida

Finish coding up

141

Chang
Florida

DIFFERENT

142

Chang
Florida

143

Chang
Florida

More refined version is here:

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/
vadd.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/vadd.cu

Result

144

Chang
Florida

We are adding a vector of size 10M

We are performing addition 1000 times
(but we take final result of adding once)

it is an unrealistic
situation…

Time it took to create 10M length vectors

Time it took to perform addition 1000 times

Time it took to allocate memory on GPU
Time it took to send data to GPU

Time it took to retrieve data from GPU

Comparison

145

Chang
Florida

Initializati
on

Allocation Send Execution Retrieval Total
141.9 130.0 6.4 104.6 5.7 388.7

Initializati
on

Allocation Send Execution Retrieval Total
149 - - 15,461 - 15,610

150x

Overhead
added

40x

Comparison

146

Chang
Florida

Initializati
on

Allocation Send Execution Retrieval Total
142.0 182.1 14.2 1.5 5.4 345.1

Initializati
on

Allocation Send Execution Retrieval Total
149 - - 173 - 323

Overhead
added

If we had run with addition repeated only 10 time

115x 0.93x slower!

147

Chang
Florida

Computing π

148

Chang
Florida

This time we will try to compute π

Basic idea of computing π will be via throwing “darts” randomly
at a quarter of a unit circle

14 inside

4 outside

Since the area of the quarter of a unit circle is π/4 we can estimate π as
πest = 14 / (14+4) × 4 = 3.11…..

10

1

Title

149

Chang
Florida

150

Chang
Florida

Check it compiles

$ nvcc rand.cu -o rand

Random number generation

151

Chang
Florida

We will use the CUDA’s API tool to perform RNG

We will throw n_total_threads worth of “darts” so we setup
states for those

// pointer to the array of “curandState” on the device

curandState* state_device;

// malloc array of random state

cudaMalloc((void**) &state_device, n_total_threads * sizeof(curandState));

Then we set their states using a GPU kernel defined like:
__global__ void setup_curandState(curandState* state)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 curand_init(1234, idx, 0, &state[idx]);

}

Then we launch the kernel in a grid

setup_curandState<<<grid_size, block_size>>>(state_device);

#include <curand.h>

#include <curand_kernel.h>

Title

152

Chang
Florida

Title

153

Chang
Florida

Check it compiles

Title

154

Chang
Florida

Title

155

Chang
Florida

Title

156

Chang
Florida

Check it compiles

Now we setup a counter

157

Chang
Florida

A counter in the device will count whether each dart
thrown fell inside the quarter circle or not

“Inside? or outside?” kernel

158

Chang
Florida

__global__ void throw_dart(curandState* state, int* n_inside)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 double x = curand_uniform(&state[idx]);

 double y = curand_uniform(&state[idx]);

 double d = sqrt(x * x + y * y);

 if (d <= 1)

 {

 *n_inside += 1;

 }

}

We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx
of this thread

get two
random
numbers

get
distance

Is this OK??

“Inside? or outside?” kernel

159

Chang
Florida

__global__ void throw_dart(curandState* state, int* n_inside)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 double x = curand_uniform(&state[idx]);

 double y = curand_uniform(&state[idx]);

 double d = sqrt(x * x + y * y);

 if (d <= 1)

 {

 atomicAdd(n_inside, 1);

 }

}

We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx
of this thread

get two
random
numbers

get
distance

atomicAdd

160

Chang
Florida

Each thread will try to count up the same memory
This can create a race condition

Race condition is when the result can depend on which thread
finishes first (or when)

To avoid this we need to “block” the counting so that no two
process can access the same memory

atomicAdd provides such feature

atomicAdd(n_inside, 1);

multiple threads will try to increase n_inside but now it
will be properly counted

Other atomic operations

161

Chang
Florida

Title

162

Chang
Florida

Title

163

Chang
Florida

Retrieving the result

164

Chang
Florida

 // create a counter on host to copy device number to

 int* n_inside_host = new int;

 // copy the result to host

 cudaMemcpy(n_inside_host, n_inside_device, sizeof(int), cudaMemcpyDeviceToHost);

 // estimate pi by counting fraction

 double pi_estimate = (double) *n_inside_host / n_total_threads * 4.;

 // print pi_estimate

 std::cout << " --- Result ---" << std::endl;

 std::cout << " pi_estimate: " << pi_estimate << std::endl;

Make a memory on host and copy back

Then use the value to compute pi

Title

165

Chang
Florida

Title

166

Chang
Florida

More refined version is here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

rand.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu

Result

167

Chang
Florida

Title

168

Chang
Florida

Matrix Summation

169

Chang
Florida

This time we will try adding a matrix to another matrix

For simplicity we will declare one matrix of 2048 × 2048 size
with element of all set to 1

dim3

170

Chang
Florida

This time we will use a different object called “dim3” dim3 is basically
a three tuple (x, y, z) that can hold three integer

example:
dim3 block_size_ex1(16, 16, 16);

dim3 block_size_ex2(16, 16, 1);

We can use this to launch 3d grid / 3d blocks

dim3

171

Chang
Florida

In our case we want to launch a 1 grid of 16 x 16 block
So we define them like the following

And we can use it like the following
kernel<<<grid_size, block_size>>>(…)

// we will perform each element as one thread

int block_len = 16;

// then the block dimensions are defined

dim3 block_size(block_len, block_len, 1);

// compute number of blocks in each dimension

int grid_len = int(m_dim - 0.5) / block_len + 1;

// then for grid size needs to be computed to cover the entire elements

dim3 grid_size(grid_len, grid_len, 1);

cudaMallocHost

172

Chang
Florida

float* A_host = new float[n_data];

float* B_host = new float[n_data];

float* C_host = new float[n_data];

Previously we have done something like this

But one could have instead done this

float* A_host;

float* B_host;

float* C_host;

cudaMallocHost((void**) &A_host, n_data * sizeof(float))

cudaMallocHost((void**) &B_host, n_data * sizeof(float))

cudaMallocHost((void**) &C_host, n_data * sizeof(float))

Why…..??

Copying data WHILE processing

173

Chang
Florida

One of the biggest power of GPU is that it can process data
while copying stuff in the background!

This can help eliminate or reduce overhead!

For example consider the normal case

cudaMemcpy(…, cudaMemcpyHostToDevice);

kernel<<<…,…>>>(…);

cudaMemcpy(…, cudaMemcpyDeviceToHost);

This will process

H→D Kernel D→H

If you repeatedly process this

174

Chang
Florida

H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?

If you repeatedly process this

175

Chang
Florida

H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?

H→D K D→H

H→D K D→H

H→D K D→H

You would win!

cudaStream

176

Chang
Florida

in order to stagger and schedule the cuda API or kernel calls,
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault
lane

cudaStream

177

Chang
Florida

in order to stagger and schedule the cuda API or kernel calls,
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault
lane

Instead one can define different streams and schedule them

stream1

stream2

stream3

H→D K D→H

H→D K D→H

H→D K D→H

Creating cudaStream

178

Chang
Florida

// create cuda streams

cudaStream_t stream[n_repeat];

for (int i = 0; i < n_repeat; ++i)

{

 cudaStreamCreate(&stream[i]);

}

Simply create cudaStream_t objects

How do I schedule different cudaAPI/kernel to
different streams?

179

Chang
Florida

For memory copy, we use

cudaMemcpyAsync

Assuming we have stream[0], stream[1], … created, we would do

cudaMemcpyAsync(a_device,

 a_host,

 ntot*sizeof(float),

 cudaMemcpyHostToDevice,

 stream[1])

For Kernel calls

180

Chang
Florida

For kernel calls we add it to the fourth arguments

kernel<<<grid_size, block_size, 0, stream[1]>>>

(The third argument is not discussed today, it has to do with shared
memory, but I have not particularly found good use of it, so I set it to 0
the default value)

181

Chang
Florida

Finish coding up

182

Chang
Florida

Refined example here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

madd.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu

Title

183

Chang
Florida

Profiler

184

Chang
Florida

There are several profilers in Nvidia toolkit

Today I will use Nvidia Visual Profiler (nvvp) to show how
the staggering of the data copy call vs. kernel calls look like

Once the program is compiled

185

Chang
Florida

nvvp ./madd

Non-staggered example

186

Chang
Florida

Staggered example

187

Chang
Florida

Title

188

Chang
Florida

Some tools

189

Chang
Florida

Parsing command line for large number
#include <cstdlib>

int main(int argc, charg** argv)

{

 unsigned long long int N_data = strtoull(argv[1], nullptr, 10);

}

Printing out information and putting requirements on input arguments
#include <iostream>

if (argc < 2)

{

 std::cout << "Usage:" << std::endl;

 std::cout << std::endl;

 std::cout << " " << argv[0] << " N_data" << std::endl;

 std::cout << std::endl;

 std::cout << std::endl;

 return 1;

}

