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Requires 
transferHost

Device

➊ Malloc @ Host / init
➋ Malloc @ Device
➌ Memcpy H→D
➍ Launch Kernels <<<G,B>>> 
➎ Memcpy D→H



CUDA API examples
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➋ Malloc @ Device

➌ Memcpy H→D

➍ Launch Kernels <<<G,B>>> 

➎ Memcpy D→H
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Computing π
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This time we will try to compute π

Basic idea of computing π will be via throwing “darts” randomly
at a quarter of a unit circle

14 inside

4 outside

Since the area of the quarter of a unit circle is π/4 we can estimate π as
πest = 14 / (14+4) × 4 = 3.11…..
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Check it compiles

$ nvcc rand.cu -o rand



Random number generation
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We will use the CUDA’s API tool to perform RNG

We will throw n_total_threads worth of “darts” so we setup 
states for those

// pointer to the array of “curandState” on the device

curandState* state_device;


// malloc array of random state

cudaMalloc((void**) &state_device, n_total_threads * sizeof(curandState));

Then we set their states using a GPU kernel defined like:
__global__ void setup_curandState(curandState* state)

{

    int idx = blockDim.x * blockIdx.x + threadIdx.x;

    curand_init(1234, idx, 0, &state[idx]);

}

Then we launch the kernel in a grid

setup_curandState<<<grid_size, block_size>>>(state_device);

#include <curand.h>

#include <curand_kernel.h>
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Check it compiles
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Check it compiles



Now we setup a counter
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A counter in the device will count whether each dart 
thrown fell inside the quarter circle or not



“Inside? or outside?” kernel

15

Chang
Florida

__global__ void throw_dart(curandState* state, int* n_inside)

{

    int idx = blockDim.x * blockIdx.x + threadIdx.x;

    double x = curand_uniform(&state[idx]);

    double y = curand_uniform(&state[idx]);

    double d = sqrt(x * x + y * y);

    if (d <= 1)

    {

        *n_inside += 1;

    }

}


We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx 
of this thread

get two 
random 
numbers

get 
distance

Is this OK??



“Inside? or outside?” kernel
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__global__ void throw_dart(curandState* state, int* n_inside)

{

    int idx = blockDim.x * blockIdx.x + threadIdx.x;

    double x = curand_uniform(&state[idx]);

    double y = curand_uniform(&state[idx]);

    double d = sqrt(x * x + y * y);

    if (d <= 1)

    {

        atomicAdd(n_inside, 1);

    }

}


We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx 
of this thread

get two 
random 
numbers

get 
distance



atomicAdd
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Each thread will try to count up the same memory
This can create a race condition

Race condition is when the result can depend on which thread 
finishes first (or when)

To avoid this we need to “block” the counting so that no two 
process can access the same memory

atomicAdd provides such feature

atomicAdd(n_inside, 1);

multiple threads will try to increase n_inside but now it 
will be properly counted



Other atomic operations
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Retrieving the result
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    // create a counter on host to copy device number to

    int* n_inside_host = new int;


    // copy the result to host

    cudaMemcpy(n_inside_host, n_inside_device, sizeof(int), cudaMemcpyDeviceToHost);


    // estimate pi by counting fraction

    double pi_estimate = (double) *n_inside_host / n_total_threads * 4.;


    // print pi_estimate

    std::cout << " --- Result ---" << std::endl;

    std::cout <<  " pi_estimate: " << pi_estimate <<  std::endl;


Make a memory on host and copy back

Then use the value to compute pi
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More refined version is here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

rand.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu


Result
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Matrix Summation
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This time we will try adding a matrix to another matrix

For simplicity we will declare one matrix of 2048 × 2048 size 
with element of all set to 1



dim3
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This time we will use a different object called “dim3” dim3 is basically 
a three tuple (x, y, z) that can hold three integer

example:
dim3 block_size_ex1(16, 16, 16); 

dim3 block_size_ex2(16, 16, 1); 


We can use this to launch 3d grid / 3d blocks



dim3
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In our case we want to launch a 1 grid of 16 x 16 block
So we define them like the following

And we can use it like the following
kernel<<<grid_size, block_size>>>(…)


// we will perform each element as one thread

int block_len = 16;


// then the block dimensions are defined

dim3 block_size(block_len, block_len, 1);


// compute number of blocks in each dimension

int grid_len = int(m_dim - 0.5) / block_len + 1;


// then for grid size needs to be computed to cover the entire elements

dim3 grid_size(grid_len, grid_len, 1);




cudaMallocHost
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float* A_host = new float[n_data];

float* B_host = new float[n_data];

float* C_host = new float[n_data];

Previously we have done something like this

But one could have instead done this

float* A_host;

float* B_host;

float* C_host;

cudaMallocHost((void**) &A_host, n_data * sizeof(float))

cudaMallocHost((void**) &B_host, n_data * sizeof(float))

cudaMallocHost((void**) &C_host, n_data * sizeof(float))

Why…..??



Copying data WHILE processing
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One of the biggest power of GPU is that it can process data 
while copying stuff in the background!

This can help eliminate or reduce overhead!

For example consider the normal case

cudaMemcpy(…, cudaMemcpyHostToDevice);

kernel<<<…,…>>>(…);

cudaMemcpy(…, cudaMemcpyDeviceToHost);

This will process

H→D Kernel D→H



If you repeatedly process this
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H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?



If you repeatedly process this
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H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?

H→D K D→H

H→D K D→H

H→D K D→H

You would win!



cudaStream
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in order to stagger and schedule the cuda API or kernel calls, 
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running 
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault 
lane



cudaStream
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in order to stagger and schedule the cuda API or kernel calls, 
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running 
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault 
lane

Instead one can define different streams and schedule them

stream1

stream2

stream3

H→D K D→H

H→D K D→H

H→D K D→H



Creating cudaStream
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// create cuda streams

cudaStream_t stream[n_repeat];

for (int i = 0; i < n_repeat; ++i)

{

    cudaStreamCreate(&stream[i]);

}


Simply create cudaStream_t objects



How do I schedule different cudaAPI/kernel to 
different streams?
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For memory copy, we use

cudaMemcpyAsync

Assuming we have stream[0], stream[1], … created, we would do

cudaMemcpyAsync(a_device,

                a_host,

                ntot*sizeof(float),

                cudaMemcpyHostToDevice,

                stream[1])



For Kernel calls
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For kernel calls we add it to the fourth arguments

kernel<<<grid_size, block_size, 0, stream[1]>>>

(The third argument is not discussed today, it has to do with shared 
memory, but I have not particularly found good use of it, so I set it to 0 
the default value)
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Finish coding up
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Refined example here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

madd.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu
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Profiler
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There are several profilers in Nvidia toolkit

Today I will use Nvidia Visual Profiler (nvvp) to show how 
the staggering of the data copy call vs. kernel calls look like



Once the program is compiled
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nvvp ./madd



Non-staggered example
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Staggered example
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Take away messages
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Future includes many core approach ⇒ We must be prepared
(GPU: good growth in processing / energy)

GPU cannot be the solution for all
(carefully need to approach heterogeneous future computing)

We discussed basic examples in CUDA
(CUDA is one example there are more)

There are many optimizations “tricks”
(e.g. optimizing data transfer)



Some tools
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Parsing command line for large number
#include <cstdlib>


int main(int argc, charg** argv)

{

    unsigned long long int N_data = strtoull(argv[1], nullptr, 10);

}


Printing out information and putting requirements on input arguments
#include <iostream>


if (argc < 2)

{

    std::cout << "Usage:" << std::endl;

    std::cout << std::endl;

    std::cout << "    " << argv[0] << " N_data" << std::endl;

    std::cout << std::endl;

    std::cout << std::endl;

    return 1;

}


