

CUDA API examples

2 Malloc @ Device

cudaMalloc((void**) &A_device, n_data * sizeof(float));

❸ Memcpy H→D

cudaMemcpy(A_device, A_host, n_data * sizeof(float), cudaMemcpyHostToDevice);

4 Launch Kernels <<<G,B>>>

vec_add<<<grid_size, block_size>>>(A_device, B_device, C_device, n_data, n_ops);

Image: Second secon

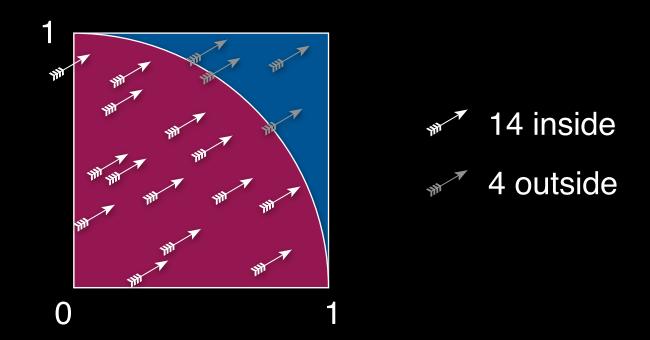
cudaMemcpy(C_host, C_device, n_data * sizeof(float), cudaMemcpyDeviceToHost);

blockDim blockldx threadldx

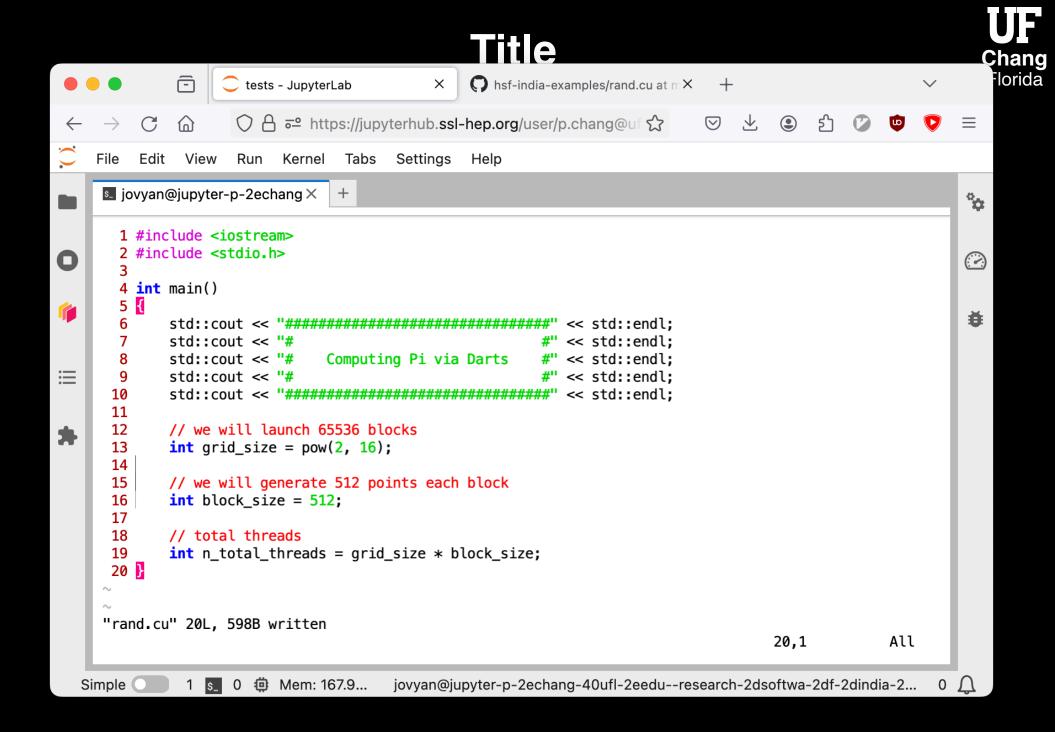

```
__global__ void vec_add(const float* A, const float* B, float* C, unsigned
{
```

```
unsigned long long int i_data = blockDim.x * blockIdx.x + threadIdx.x;
if (i_data < n_data)
{
    for (unsigned i = 0; i < n_ops; ++i)
    {
        C[i_data] = A[i_data] + B[i_data];
    }
}
```

}



Computing π



This time we will try to compute $\boldsymbol{\pi}$

Basic idea of computing π will be via throwing "darts" randomly at a quarter of a unit circle

Since the area of the quarter of a unit circle is $\pi/4$ we can estimate π as $\pi_{est} = 14 / (14+4) \times 4 = 3.11....$

Check it compiles

\$ nvcc rand.cu -o rand

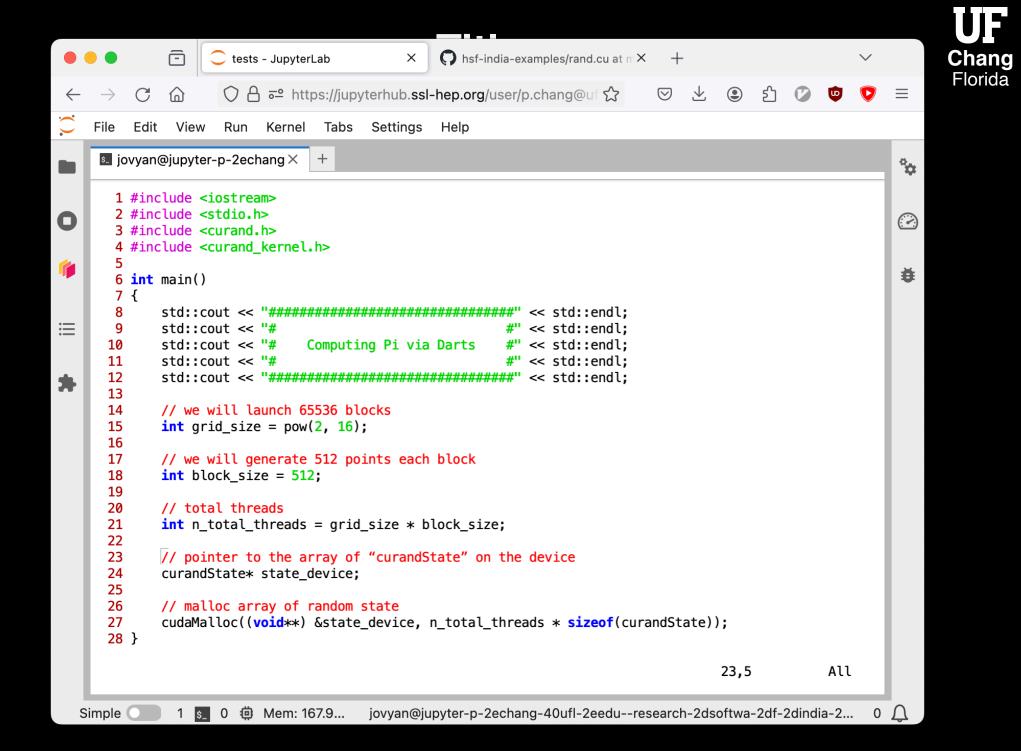
Random number generation

#include <curand.h>
#include <curand_kernel.h>

We will use the CUDA's API tool to perform RNG

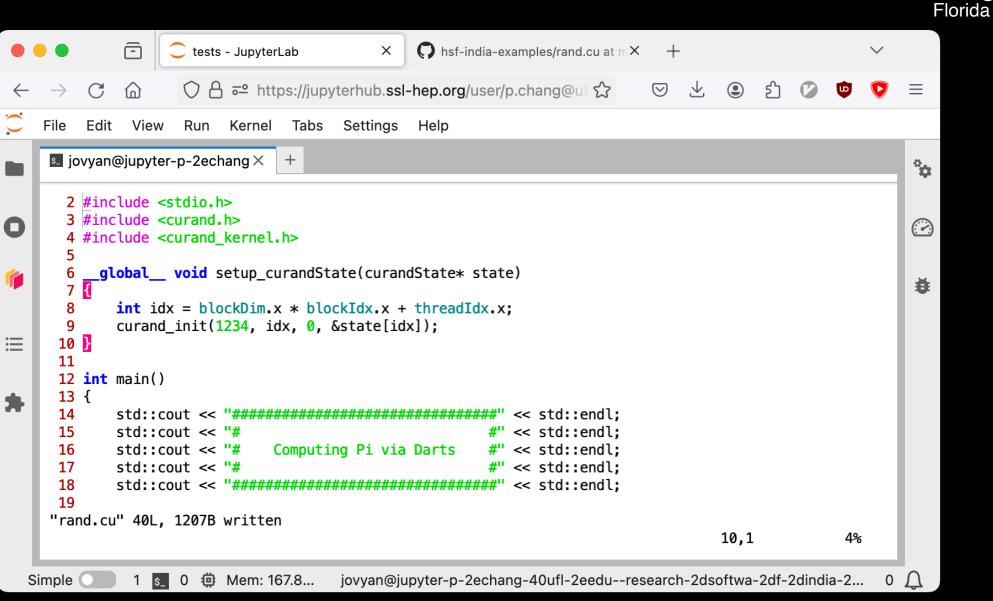
We will throw n_total_threads worth of "darts" so we setup states for those

// pointer to the array of "curandState" on the device
curandState* state_device;

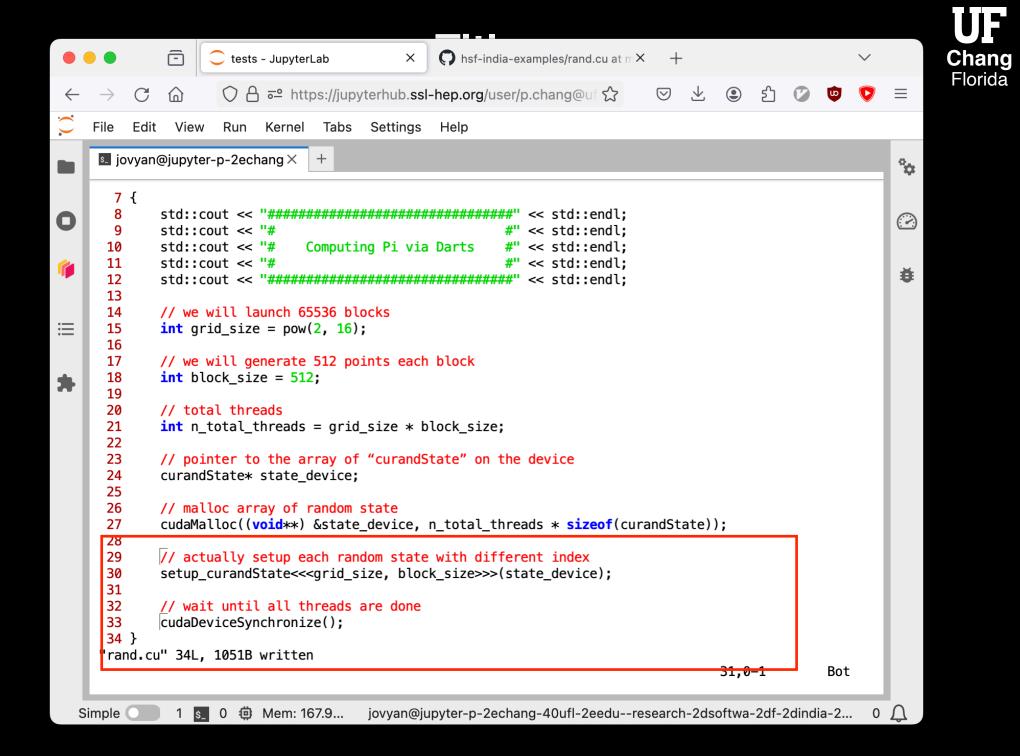

// malloc array of random state
cudaMalloc((void**) &state_device, n_total_threads * sizeof(curandState));

Then we set their states using a GPU kernel defined like:

```
__global__ void setup_curandState(curandState* state)
{
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    curand_init(1234, idx, 0, &state[idx]);
}
```


Then we launch the kernel in a grid

setup_curandState<<<grid_size, block_size>>>(state_device);



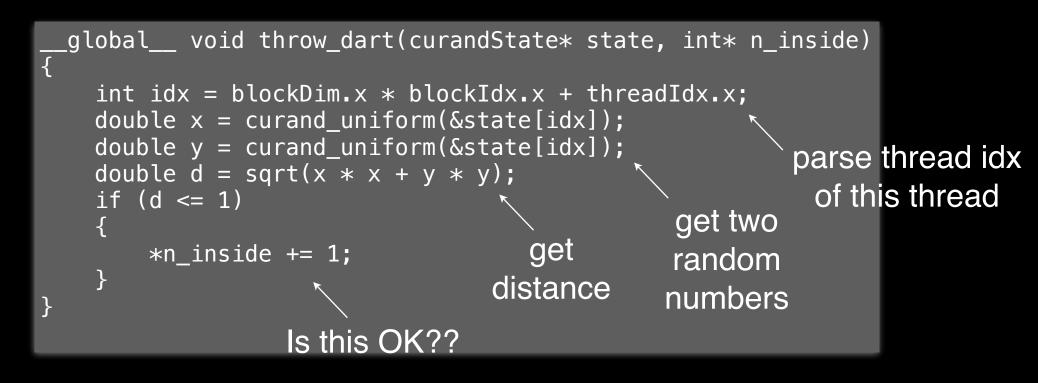
Check it compiles

Chang

Check it compiles

Now we setup a counter

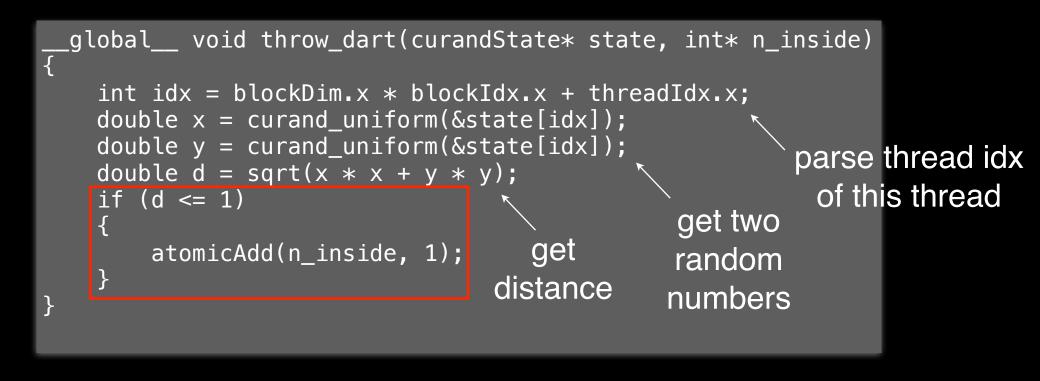
A counter in the device will count whether each dart thrown fell inside the quarter circle or not


		-	C tests	s - JupyterL	.ab	×	G	hsf-india-ex	amples/ra	and.cu at m×	+	-					\sim	
\leftarrow	\rightarrow C		O E	} ₀ ≏ http	s://jupy	terhub.ss	sl-he	ep.org/user/p	o.chang	@uf ☆	\bigtriangledown	\checkmark	۲	பி		D		\equiv
().	File Ed	it Vie	w Run	Kernel	Tabs	Settings	Н	Help										
	s_ jovya	n@jupy	ter-p-2ec	hang ×	+													°¢
	30 31	curar	dState*	state_d	evice;													
0	32 33			ray of ra void**) a			n_t	total_threa	ads * s	izeof(cur	andSt	ate));					(\mathcal{D})
1	<pre>34 35 // actually setup each random state with different index 36 setup_curandState<<<grid_size, block_size="">>>(state_device);</grid_size,></pre>									ŧ								
≣	38 39	<pre>39 cudaDeviceSynchronize();</pre>																
*	40 41 42 43		e <mark>tup a c</mark> o n_insido	<mark>ounter</mark> e_device	;													
	43 44 45 46		l <mark>ocate</mark> I lalloc((&n_insi	de_devi	ce,	sizeof(int	:));									
	47 }	:u" 47L	., 1338B	written									16 F	2		Po+		
	imple 🔿	1	<u>م</u>	Mem: 16	70	iowanei	upyt	rter-p-2echar		l 200du - ro	coarol	h 2da	45,5	-	Odina	Bot	_	\cap

14

"Inside? or outside?" kernel

We define a "dart throwing" function like the following


Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

"Inside? or outside?" kernel

We define a "dart throwing" function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

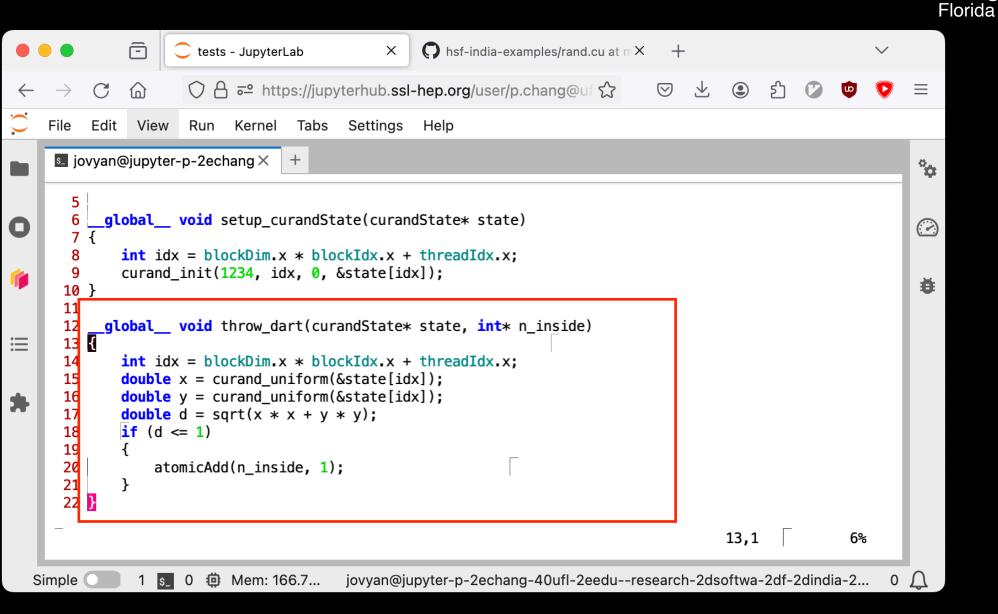
atomicAdd

Each thread will try to count up the same memory This can create a race condition

Race condition is when the result can depend on which thread finishes first (or when)

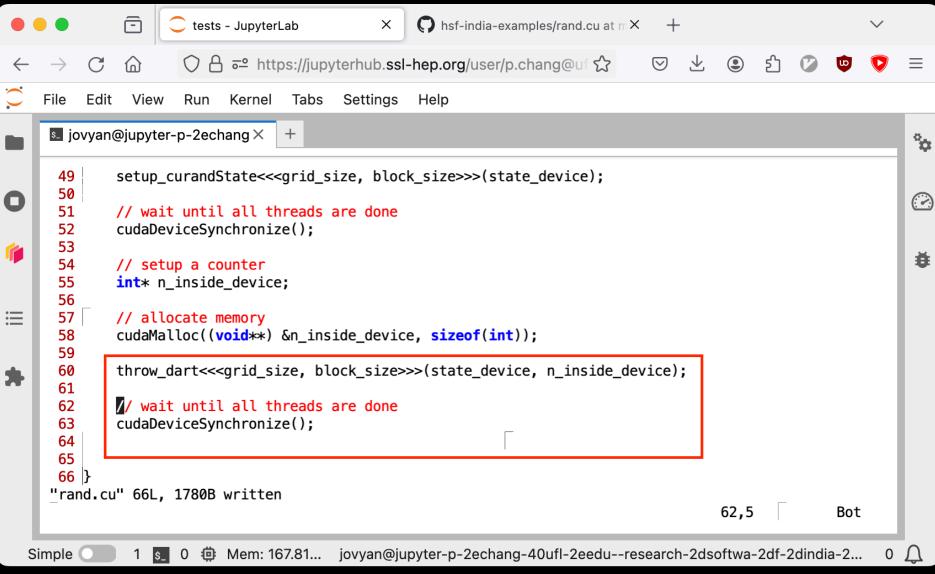
To avoid this we need to "block" the counting so that no two process can access the same memory

atomicAdd provides such feature


atomicAdd(n_inside, 1);

multiple threads will try to increase n_inside but now it will be properly counted

Other atomic operations



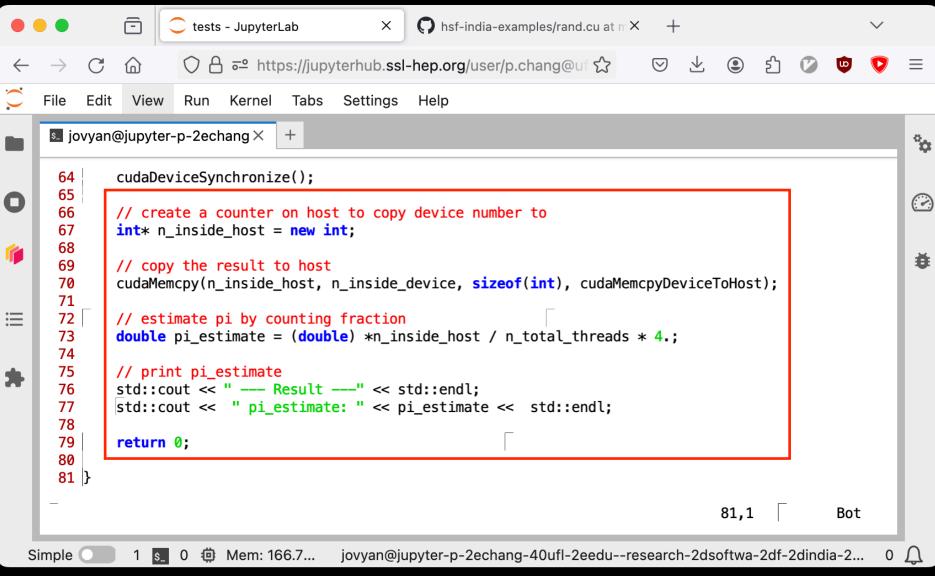
7.14. Atomic Functions	
7.14.1. Arithmetic Functions	
7.14.1.1. atomicAdd()	
7.14.1.2. atomicSub()	
7.14.1.3. atomicExch()	
7.14.1.4. atomicMin()	
7.14.1.5. atomicMax()	
7.14.1.6. atomicInc()	
7.14.1.7. atomicDec()	
7.14.1.8. atomicCAS()	

Chang

Retrieving the result

Make a memory on host and copy back

```
// create a counter on host to copy device number to
int* n_inside_host = new int;
```


// copy the result to host
cudaMemcpy(n_inside_host, n_inside_device, sizeof(int), cudaMemcpyDeviceToHost);

Then use the value to compute pi

```
// estimate pi by counting fraction
double pi_estimate = (double) *n_inside_host / n_total_threads * 4.;
```

```
// print pi_estimate
std::cout << " --- Result ---" << std::endl;
std::cout << " pi_estimate: " << pi_estimate << std::endl;</pre>
```


More refined version is here: https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/ rand.cu

Result

and

UF Chang Florida

Matrix Summation

This time we will try adding a matrix to another matrix

For simplicity we will declare one matrix of 2048×2048 size with element of all set to 1

dim3

This time we will use a different object called "dim3" dim3 is basically a three tuple (x, y, z) that can hold three integer

```
example:
dim3 block_size_ex1(16, 16, 16);
dim3 block_size_ex2(16, 16, 1);
```

We can use this to launch 3d grid / 3d blocks

dim3

In our case we want to launch a 1 grid of 16 x 16 block So we define them like the following

```
// we will perform each element as one thread
int block_len = 16;
```

// then the block dimensions are defined
dim3 block_size(block_len, block_len, 1);

```
// compute number of blocks in each dimension
int grid_len = int(m_dim - 0.5) / block_len + 1;
```

// then for grid size needs to be computed to cover the entire elements
dim3 grid_size(grid_len, grid_len, 1);

And we can use it like the following kernel<<<grid_size, block_size>>>(...)

cudaMallocHost

Previously we have done something like this

float* A_host = new float[n_data];
float* B_host = new float[n_data];
float* C_host = new float[n_data];

But one could have instead done this

```
float* A_host;
float* B_host;
float* C_host;
cudaMallocHost((void**) &A_host, n_data * sizeof(float))
cudaMallocHost((void**) &B_host, n_data * sizeof(float))
cudaMallocHost((void**) &C_host, n_data * sizeof(float))
```

Why.....??

Copying data WHILE processing

One of the biggest power of GPU is that it can process data while copying stuff in the background!

This can help eliminate or reduce overhead!

For example consider the normal case

cudaMemcpy(..., cudaMemcpyHostToDevice); kernel<<<...,..>>>(...); cudaMemcpy(..., cudaMemcpyDeviceToHost);

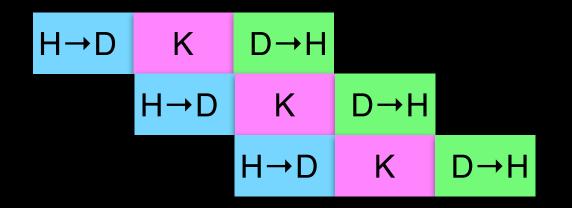
This will process

If you repeatedly process this

Things will all happen in sequence

$$H \rightarrow D$$
 K $D \rightarrow H$ $H \rightarrow D$ K $D \rightarrow H$ $H \rightarrow D$ K $D \rightarrow H$

What if you could stagger?


If you repeatedly process this

Things will all happen in sequence

$$H \rightarrow D \quad K \quad D \rightarrow H \quad H \rightarrow D \quad K \quad D \rightarrow H \quad H \rightarrow D \quad K \quad D \rightarrow H$$

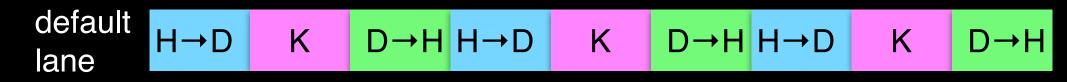
What if you could stagger?

You would win!

cudaStream

in order to stagger and schedule the cuda API or kernel calls, once has to define "lanes" or "streams"

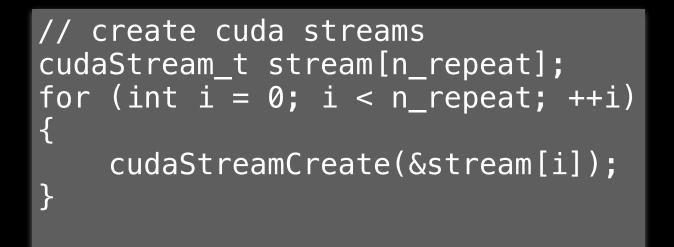
Previously when nothing was specificed they were all running on the so-called "default lane"


default
lane
$$H \rightarrow D$$
K $D \rightarrow H$ $H \rightarrow D$ K $D \rightarrow H$ $H \rightarrow D$ K $D \rightarrow H$

cudaStream

in order to stagger and schedule the cuda API or kernel calls, once has to define "lanes" or "streams"

Previously when nothing was specificed they were all running on the so-called "default lane"



Instead one can define different streams and schedule them

stream1
$$H \rightarrow D$$
 K $D \rightarrow H$ stream2 $H \rightarrow D$ K $D \rightarrow H$ stream3 \cdots $H \rightarrow D$ K $D \rightarrow H$

Creating cudaStream

Simply create cudaStream_t objects

How do I schedule different cudaAPI/kernel to UF different streams?

For memory copy, we use

cudaMemcpyAsync

Assuming we have stream[0], stream[1], ... created, we would do

For Kernel calls

For kernel calls we add it to the fourth arguments

kernel<<<grid_size, block_size, 0, stream[1]>>>

(The third argument is not discussed today, it has to do with shared memory, but I have not particularly found good use of it, so I set it to 0 the default value)

Finish coding up

Refined example here: https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/ madd.cu

jovyan@jupyter-p-2echang-40ufl-2eeduresearch-2dsoftwa-2df-2dindia-2d:~\$./ ####################################									
#	#								
# Matrix Sum	#								
<pre># (Overlap Transfer)</pre>	#								
#	#								
#######################################	###								
Sequential Run									
Time total (ms): 17.308865									
Overlapping Run Time total (ms): 9.332256									

Profiler

There are several profilers in Nvidia toolkit

Today I will use Nvidia Visual Profiler (nvvp) to show how the staggering of the data copy call vs. kernel calls look like

Once the program is compiled

nvvp ./madd

Non-staggered example

e e e 🖻 💼 Turbol	/NC: c0308a-s33.ufhpc:2	× +						\sim
\leftarrow \rightarrow C \textcircled{a}	○ 合 == htt	ps://ood.rc.ufl.edu/pun/sys/dashb	oard/noVNC-1.1.0/vnc.html?utf8=	≪&autoconnect=true&path=rnd	ode%2Fc0308a-s33.ufhpc%2F456	5%2Fweb 公	> ⊻ ೨ ੯	> 👳 👽 =
Applications 🔍 NVIDIA Visi	ual Profiler 🚬 T	erminal - p.chang@c03					Mon 20 May, 2	1:52 Philip Chang
6			NVIDIA	Visual Profiler				^ _ B X
File View Window Bun He	lp							
🗂 🔜 🖳 🛶 🛶 • (स्	QQIEIF	K 🔏 🚊 🖾 I 🛆 •						
•NewSession1 23								- 0
	0.15 s	0.1525 s	0.155 s	0.1575 s	0.16 s	0.1625 s	0.165 s	0
Process "madd" (476842)					1			
Thread 1614176256								
Runtime API	emcpy c	udaDeviceSyn: cudaMemcpy	cudaMemopy cudaDeviceSy	n cudaMemcpy cudaMen	ncpy cudaDeviceSyn cudaMe	mcpy cudaMemcpy cu	laDeviceSyn cudaMemc	ру
L Driver API								
Profiling Overhead								
[0] NVIDIA GeForce RTX 208								
Context 1 (CUDA)								
🕒 🔽 MemCpy (HtoD)	Memopy HtoD		Memcpy HtoD	Memopy H	ttoD	Memcpy HtoD		
MemCpy (DtoH)		Memcpy Dto		Memcpy Dto	Memcpy	Dto	Memopy Dt	0
Compute		add(ficat*, flo	madd(float*, fl	o	madd(floats, flo	ma	dd(float*, flo	
└ 🍸 100.0% madd(flo	1	sadd(float*, flo	madd(float*, fl	lo	madd(floats, flo	ma	dd(float*, flo	
Streams								
L Default	Memopy HtoD m	add(floate, flo Memcpy Dto	Memopy HtoD madd(float*, fl	o Memcpy Dto Memcpy F	ttoD maddificatt, flo Memopy	Dto Memcpy HtoD ma	ddifloat , flo Memcpy Dt	o
Stream 13								
Stream 14								
Stream 15								
L Stream 16								
	•							Þ
		8 12 PA 12	N 1227 N 143					
🗇 Analysis 🎗 📄 GPU Details		Details 🗇 OpenACC Details 📑	OpenMP Details 🖾 Console 🖺	Settings	<u>N</u>	T 🗆 Properties 🛿		- 0
E 😚 👘 🛋	Res	ults				Compute		
To onable kernel analysis stag	es select a	Low Kernel / Memcpy Efficie	ncy [13.07731 ms / 13.44895 m	is = 0.972]		✓ Duration		
	To enable kernel analysis stages select a host-launched kernel instance in the mount of time performing compute is low relative to the amount of time required for memcpy.							290.38364 ms
timeline.	ā	Low Kernel Concurrency [24	.096 µs / 7.31991 ms = 0.3%]			Session Kernels		13.1014 ms (1
Application		e percentage of time when two	And the second	rallel is low.	1	Aore Compute Utiliz	ation	4.5%
Data Movemoncurrency	i 🥝 🗕					Kernel Invocat		9
Dependency Analysis						Renter invocat		
	_					4		

Staggered example

🗧 🗧 💼 Turb	ooVNC: c0308a-s33.ufhpc:2×	: +					~
\leftarrow \rightarrow C \textcircled{a}	◯ A == https	s://ood.rc.ufl.edu/pun/sys/dashboard/noVN	IC-1.1.0/vnc.html?utf8=√&autoconnect	t=true&path=rnode%2Fc0308a-s3	3.ufhpc%2F4565%2Fweb	☆ ♡ ⊻ © £	ጋ 🕝 🤨 🎔 🗏
🚆 Applications 🗄 👠 NVIDIA Vi	isual Profiler 💽 Ter	rminal - p.chang@c03	NVIDIA Visual Profiler	· · · · · · · · · · · · · · · · · · ·		Mon 20 Ma	ay, 21:53 Philip Chang
File View Window Bun F	(ata)		ternore router to the				
File View Window Knu F							
NewSession1 13							
	0.25	575 s 0.26 s	0.2625 s	0.265 s	0.2675 s	0.27 s	0.2725 s
Process "madd" (476842)							
🖃 Thread 1614176256							
Runtime API			cudaEventSynchronize		cudaFreeHost	cudaFreeHost cud	dafree
L Driver API							
Profiling Overhead							
[0] NVIDIA GeForce RTX 208.							
Context 1 (CUDA)							
🗏 🍸 MemCpy (HtoD)		Memcpy HtoD Memcpy HtoD Mem	ncpy HtoD [Memcpy HtoD [
MemCpy (DtoH)		Mer	mcpy DtoH [Memcpy DtoH [Mer	mcpy Dto Memcpy Dto			
Compute		madd(float*, fl	madd(float*, fl madd(float*, fl	dd(float*, fl			
∟ ▼ 100.0% madd(flo.		madd(float+ ifl	madd(float*, fl madd(float*, fl	dd(float*, fl			
Streams							
L Default							
L Stream 13		Memopy HtoD madd(float: fl Mer	mcpy DtoH [
L Stream 14		Memopy HtoD mad	dd(float*, fl Memcpy DtoH [
L Stream 15			Memcpy HtoD [ma	ddifloat*, fl Memcpy Dto			
L Stream 16		Men	ncpy HtoD [madd(float*, fl Mer	mcpy Dto			
	 ■						
🕞 Analysis 🕱 📄 GPU Detail	ls (Summary) 📰 CPU De	ietails 👕 OpenACC Details 🗔 OpenMP D	ietails 🖾 Console 🔄 Settings		S D I	III Properties 🖾	- 0
	Result	its				madd(float*, float*, int, int)	
		b Low Kernel / Memcpy Efficiency [13.07731 ms / 13.44895 ms = 0.972]			✓ Duration		
To enable kernel analysis sta host-launched kernel instanc		amount of time performing compute is lo	More	Session	290.38364 ms		
timeline.		Low Kernel Concurrency [24.096 µs / 7.	31001 ms = 0.3% 1			13.1014 ms (1	
Application	~	percentage of time when two kernels are			More	Kernel	
Data Movemoncurrenc		percentage of ante inten the left	being executed in parametric term			Invocations	9
CALSES TAKANG AND ADD ADD ADD						Importance	100%
Dependency Analysis	<u>iii</u> 🚳						
					Ī	4	Þ

UF Chang Florida

Take away messages

Future includes many core approach \Rightarrow We must be prepared (GPU: good growth in processing / energy)

GPU cannot be the solution for all (carefully need to approach heterogeneous future computing)

We discussed basic examples in CUDA (CUDA is one example there are more)

There are many optimizations "tricks" (e.g. optimizing data transfer)

Some tools

Parsing command line for large number

```
#include <cstdlib>
int main(int argc, charg** argv)
{
    unsigned long long int N_data = strtoull(argv[1], nullptr, 10);
}
```

Printing out information and putting requirements on input arguments

```
#include <iostream>
if (argc < 2)
{
    std::cout << "Usage:" << std::endl;
    std::cout << std::endl;
    std::cout << " " " << argv[0] << " N_data" << std::endl;
    std::cout << std::endl;
    std::cout << std::endl;
    std::cout << std::endl;
    return 1;
}</pre>
```