
Recap

1

Chang
Florida

Requires
transferHost

Device

➊ Malloc @ Host / init
➋ Malloc @ Device
➌ Memcpy H→D
➍ Launch Kernels <<<G,B>>>
➎ Memcpy D→H

CUDA API examples

2

Chang
Florida

➋ Malloc @ Device

➌ Memcpy H→D

➍ Launch Kernels <<<G,B>>>

➎ Memcpy D→H

blockDim blockIdx threadIdx

3

Chang
Florida

4

Chang
Florida

Computing π

5

Chang
Florida

This time we will try to compute π

Basic idea of computing π will be via throwing “darts” randomly
at a quarter of a unit circle

14 inside

4 outside

Since the area of the quarter of a unit circle is π/4 we can estimate π as
πest = 14 / (14+4) × 4 = 3.11…..

10

1

Title

6

Chang
Florida

7

Chang
Florida

Check it compiles

$ nvcc rand.cu -o rand

Random number generation

8

Chang
Florida

We will use the CUDA’s API tool to perform RNG

We will throw n_total_threads worth of “darts” so we setup
states for those

// pointer to the array of “curandState” on the device

curandState* state_device;

// malloc array of random state

cudaMalloc((void**) &state_device, n_total_threads * sizeof(curandState));

Then we set their states using a GPU kernel defined like:
__global__ void setup_curandState(curandState* state)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 curand_init(1234, idx, 0, &state[idx]);

}

Then we launch the kernel in a grid

setup_curandState<<<grid_size, block_size>>>(state_device);

#include <curand.h>

#include <curand_kernel.h>

Title

9

Chang
Florida

Title

10

Chang
Florida

Check it compiles

Title

11

Chang
Florida

Title

12

Chang
Florida

Title

13

Chang
Florida

Check it compiles

Now we setup a counter

14

Chang
Florida

A counter in the device will count whether each dart
thrown fell inside the quarter circle or not

“Inside? or outside?” kernel

15

Chang
Florida

__global__ void throw_dart(curandState* state, int* n_inside)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 double x = curand_uniform(&state[idx]);

 double y = curand_uniform(&state[idx]);

 double d = sqrt(x * x + y * y);

 if (d <= 1)

 {

 *n_inside += 1;

 }

}

We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx
of this thread

get two
random
numbers

get
distance

Is this OK??

“Inside? or outside?” kernel

16

Chang
Florida

__global__ void throw_dart(curandState* state, int* n_inside)

{

 int idx = blockDim.x * blockIdx.x + threadIdx.x;

 double x = curand_uniform(&state[idx]);

 double y = curand_uniform(&state[idx]);

 double d = sqrt(x * x + y * y);

 if (d <= 1)

 {

 atomicAdd(n_inside, 1);

 }

}

We define a “dart throwing” function like the following

Now we throw darts like the following

throw_dart<<<grid_size, block_size>>>(state_device, n_inside_device);

parse thread idx
of this thread

get two
random
numbers

get
distance

atomicAdd

17

Chang
Florida

Each thread will try to count up the same memory
This can create a race condition

Race condition is when the result can depend on which thread
finishes first (or when)

To avoid this we need to “block” the counting so that no two
process can access the same memory

atomicAdd provides such feature

atomicAdd(n_inside, 1);

multiple threads will try to increase n_inside but now it
will be properly counted

Other atomic operations

18

Chang
Florida

Title

19

Chang
Florida

Title

20

Chang
Florida

Retrieving the result

21

Chang
Florida

 // create a counter on host to copy device number to

 int* n_inside_host = new int;

 // copy the result to host

 cudaMemcpy(n_inside_host, n_inside_device, sizeof(int), cudaMemcpyDeviceToHost);

 // estimate pi by counting fraction

 double pi_estimate = (double) *n_inside_host / n_total_threads * 4.;

 // print pi_estimate

 std::cout << " --- Result ---" << std::endl;

 std::cout << " pi_estimate: " << pi_estimate << std::endl;

Make a memory on host and copy back

Then use the value to compute pi

Title

22

Chang
Florida

Title

23

Chang
Florida

More refined version is here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

rand.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/rand.cu

Result

24

Chang
Florida

Title

25

Chang
Florida

Matrix Summation

26

Chang
Florida

This time we will try adding a matrix to another matrix

For simplicity we will declare one matrix of 2048 × 2048 size
with element of all set to 1

dim3

27

Chang
Florida

This time we will use a different object called “dim3” dim3 is basically
a three tuple (x, y, z) that can hold three integer

example:
dim3 block_size_ex1(16, 16, 16);

dim3 block_size_ex2(16, 16, 1);

We can use this to launch 3d grid / 3d blocks

dim3

28

Chang
Florida

In our case we want to launch a 1 grid of 16 x 16 block
So we define them like the following

And we can use it like the following
kernel<<<grid_size, block_size>>>(…)

// we will perform each element as one thread

int block_len = 16;

// then the block dimensions are defined

dim3 block_size(block_len, block_len, 1);

// compute number of blocks in each dimension

int grid_len = int(m_dim - 0.5) / block_len + 1;

// then for grid size needs to be computed to cover the entire elements

dim3 grid_size(grid_len, grid_len, 1);

cudaMallocHost

29

Chang
Florida

float* A_host = new float[n_data];

float* B_host = new float[n_data];

float* C_host = new float[n_data];

Previously we have done something like this

But one could have instead done this

float* A_host;

float* B_host;

float* C_host;

cudaMallocHost((void**) &A_host, n_data * sizeof(float))

cudaMallocHost((void**) &B_host, n_data * sizeof(float))

cudaMallocHost((void**) &C_host, n_data * sizeof(float))

Why…..??

Copying data WHILE processing

30

Chang
Florida

One of the biggest power of GPU is that it can process data
while copying stuff in the background!

This can help eliminate or reduce overhead!

For example consider the normal case

cudaMemcpy(…, cudaMemcpyHostToDevice);

kernel<<<…,…>>>(…);

cudaMemcpy(…, cudaMemcpyDeviceToHost);

This will process

H→D Kernel D→H

If you repeatedly process this

31

Chang
Florida

H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?

If you repeatedly process this

32

Chang
Florida

H→D K D→H H→D K D→H H→D K D→H

Things will all happen in sequence

What if you could stagger?

H→D K D→H

H→D K D→H

H→D K D→H

You would win!

cudaStream

33

Chang
Florida

in order to stagger and schedule the cuda API or kernel calls,
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault
lane

cudaStream

34

Chang
Florida

in order to stagger and schedule the cuda API or kernel calls,
once has to define “lanes” or “streams”

Previously when nothing was specificed they were all running
on the so-called “default lane”

H→D K D→H H→D K D→H H→D K D→Hdefault
lane

Instead one can define different streams and schedule them

stream1

stream2

stream3

H→D K D→H

H→D K D→H

H→D K D→H

Creating cudaStream

35

Chang
Florida

// create cuda streams

cudaStream_t stream[n_repeat];

for (int i = 0; i < n_repeat; ++i)

{

 cudaStreamCreate(&stream[i]);

}

Simply create cudaStream_t objects

How do I schedule different cudaAPI/kernel to
different streams?

36

Chang
Florida

For memory copy, we use

cudaMemcpyAsync

Assuming we have stream[0], stream[1], … created, we would do

cudaMemcpyAsync(a_device,

 a_host,

 ntot*sizeof(float),

 cudaMemcpyHostToDevice,

 stream[1])

For Kernel calls

37

Chang
Florida

For kernel calls we add it to the fourth arguments

kernel<<<grid_size, block_size, 0, stream[1]>>>

(The third argument is not discussed today, it has to do with shared
memory, but I have not particularly found good use of it, so I set it to 0
the default value)

38

Chang
Florida

Finish coding up

39

Chang
Florida

Refined example here:
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/

madd.cu

https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu
https://raw.githubusercontent.com/sgnoohc/hsf-india-examples/main/madd.cu

Title

40

Chang
Florida

Profiler

41

Chang
Florida

There are several profilers in Nvidia toolkit

Today I will use Nvidia Visual Profiler (nvvp) to show how
the staggering of the data copy call vs. kernel calls look like

Once the program is compiled

42

Chang
Florida

nvvp ./madd

Non-staggered example

43

Chang
Florida

Staggered example

44

Chang
Florida

Title

45

Chang
Florida

Take away messages

46

Chang
Florida

Future includes many core approach ⇒ We must be prepared
(GPU: good growth in processing / energy)

GPU cannot be the solution for all
(carefully need to approach heterogeneous future computing)

We discussed basic examples in CUDA
(CUDA is one example there are more)

There are many optimizations “tricks”
(e.g. optimizing data transfer)

Some tools

47

Chang
Florida

Parsing command line for large number
#include <cstdlib>

int main(int argc, charg** argv)

{

 unsigned long long int N_data = strtoull(argv[1], nullptr, 10);

}

Printing out information and putting requirements on input arguments
#include <iostream>

if (argc < 2)

{

 std::cout << "Usage:" << std::endl;

 std::cout << std::endl;

 std::cout << " " << argv[0] << " N_data" << std::endl;

 std::cout << std::endl;

 std::cout << std::endl;

 return 1;

}

