
Machine Learning
Day 1 Exercises

C. Tunnell (Rice) G. Watts (University of Washington/Seattle)

Start your binder!!!
(linked from the agenda)

The Famous 𝐻 → 𝑊𝑊 Discovery Plot

𝐻 → 𝑊𝑊 → 2ℓ2𝜈

Large Backgrounds

What are the differences?

Final states

HWW: 2ℓ2𝜈
𝑡 ҧ𝑡: 𝑊𝑏𝑊𝑏 → 2ℓ2𝜈 + 2𝑏
𝑊𝑊: 2ℓ2𝜈

Exercise…

1. Load the data
2. Look at the data
3. Build a network
4. Train
5. Adjust the network to improve the training…

The same binder/Jupyter server instance can be used for all today’s work
No GPU required!

Pair Up!

What kind of network should we create?

Simple multi-layer network (similar to earlier today)…

These are always good starting points…

This Layer…

import jax
import jax.numpy as jnp
import jax.nn
import haiku as hk
from optax import adam, apply_updates

def net_fn(x):
mlp = hk.Sequential([

hk.Linear(12), jax.nn.relu,
hk.Linear(60), jax.nn.relu,
hk.Linear(32), jax.nn.relu,
hk.Linear(1), jax.nn.sigmoid

])
return mlp(x)

net = hk.transform(net_fn)

What is an optimizer in JAX?

We are using the optax library

Parameters

Updated Parameters

Gradient

Optimizer

Stocastic Gradient Descent 𝜇𝑡 = 𝑔𝑡 × 𝛼

Adam Optimizer Uses “momentum” to help adjust the
parameters 𝜇𝑡. “The scaling used for
each parameter is computed from
estimates of first and second-order
moments of the gradients (using
suitable exponential moving
averages).”

Let's use the Adam optimizer, with a
learning rate of 0.0005

https://optax.readthedocs.io/en/latest/
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.adam

Adam

optimizer = optax.adam(0.0005)

Loss Functions
Optax also has a huge number of loss functions to help us get started

https://optax.readthedocs.io/en/latest/api/losses.html

Loss Function

This is a classification problem – binary cross entropy!

But which one? Take a look and a guess before we go on…

Loss Function

Loss Function

from optax import sigmoid_binary_cross_entropy

@jax.jit
def loss_fn(params, x, y):

preds = net.apply(params, rng, x)
This next line provides a x10 speed up.
preds = preds.reshape(-1)
sm_array = sigmoid_binary_cross_entropy(preds, y)
return jnp.mean(sm_array)

Training Step

@jax.jit
def train_step(params, opt_state, x, y):

grads = jax.grad(loss_fn)(params, x, y)
updates, opt_state = optimizer.update(grads, opt_state)
new_params = apply_updates(params, updates)
return new_params, opt_state

Training Loop
starting_time = time.time()

print("starting training...")

if len(losses_training) == 0:
Prime the loss arrays.
losses_training.append(loss_fn(params, X_train[:n_loss], y_train[:n_loss]))
losses_test.append(loss_fn(params, X_test[:n_loss], y_test[:n_loss]))

for epoch in tqdm(range(1000)):
params, opt_state = train_step(params, opt_state, X_train, y_train)
losses_training.append(loss_fn(params, X_train[:n_loss], y_train[:n_loss]))
losses_test.append(loss_fn(params, X_test[:n_loss], y_test[:n_loss]))

print("done training...")

training_time = time.time() - starting_time
print("Training time:", training_time)

Challenge!!

1. Get the lowest loss training you can!
2. Tomorrow (Friday), as lunch starts, I’ll release the https location of

independent data file on Slack.
3. You run your pre-trained NN against that file and see who gets the lowest

loss!
1. Post your loss number of Slack

4. We’ll want to see your code and a demonstration of your training!
1. No training on the new file tomorrow morning!

Completely done tutorial…

Final Version of the data

https://github.com/gordonwatts/hsf-india-ml-tutorial-2024-05/blob/pr_answers/01-tutorial-bdt-example.ipynb

