Machine Learning
Day 1 Exercises

C. Tunnell (Rice) G. Watts (University of Washington/Seattle)

Start your binder!!!

(linked from the agenda)

The Famous H — WW Discovery Plot

H—->ZZ"— 4l
13 TeV, 139 fb ™'

@® Data
Higgs (125 GeV)
Nz
XX, VVV
B Z+jets, 1t
77, Uncertainty

Events/2.5 GeV

80

60

40

20

7 20
80 90 100 110 120 130 140 150 160 170

m, [GeV]

H->WW - 2f2v

Large Backgrounds

What are the differences?

Final states

HWW: 2f2v
tt: WbWb — 2€2v + 2b
WW:2€2v

Exercise...

1. Load the data
2. Look at the data
3. Build a network

4. Train
5. Adjust the network to improve the training...

The same binder/Jupyter server instance can be used for all today’s work
No GPU required!

What kind of network should we create?

Simple multi-layer network (similar to earlier today)...

These are always good starting points...

This Layer...

import jax

import jax.numpy as jnp

import jax.nn

import haiku as hk

from optax import adam, apply updates

def net_fn(x):
mlp = hk.Sequential([
hk.Linear(12), jax.nn.relu,
hk.Linear(60), jax.nn.relu,
hk.Linear(32), jax.nn.relu,
hk.Linear(1l), jax.nn.sigmoid

1

return mlp(x)

net = hk.transform(net fn)

What is an optimizer in JAX?

Ht = ge X A
Uses “momentum” to help adjust the
parameters u;. “The scaling used for

We are using the optax library

each parameter is computed from

Parameters
estimates of first and second-order
moments of the gradients (using
suitable exponential moving
averages).”
Optimizer

Gradient

Let's use the Adam optimizer, with a

Updated Parameters
learning rate of 0.0005

https://optax.readthedocs.io/en/latest/
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.adam

Adam

optimizer = optax.adam(©.0005)

Loss Functions

Optax also has a huge number of loss functions to help us get started

ntxent (embeddings, labels[, temperature])

Normalized temperature scaled cross entropy loss (NT-Xent).

safe_softmax_cross_entropy (logits, labels)

Computes the softmax cross entropy between sets of logits and

labels.

sigmoid_binary_cross_entropy (logits, labels)

Computes element-wise sigmoid cross entropy given logits and

labels.

sigmoid_focal_loss (logits, labels], alpha, ...])

Sigmoid focal loss.

smooth_labels (labels, alpha)

Apply label smoothing.

softmax_cross_entropy (logits, labels)

Computes the softmax cross entropy between sets of logits and

labels.

softmax_cross entropy with integer labels |(...)

Computes softmax cross entropy between sets of logits and integer

labels.

squared_error (predictions|, targets])

Back to top

Calculates the squared error for a set of predictions.

https://optax.readthedocs.io/en/latest/api/losses.html

Loss Function

This is a classification problem — binary cross entropy!

But which one? Take a look and a guess before we go on...

Loss Function

optax.losses.sigmoid_binary_cross_entropy(Llogits, Labels) [source]

Computes element-wise sigmoid cross entropy given logits and labels.

This function can be used for binary or multiclass classification (where each class is an independent binary prediction

and different classes are not mutually exclusive e.g. predicting that an image contains both a cat and a dog.)

Because this function is overloaded, please ensure your logits and labels are compatible with each other. If you're
passing in binary labels (values in {0, 1}), ensure your logits correspond to class 1 only. If you're passing in per-class
target probabilities or one-hot labels, please ensure your logits are also multiclass. Be particularly careful if you're

relying on implicit broadcasting to reshape logits or labels.

References

[Goodfellow et al, 2016](http://www.deeplearningbook.org/contents/prob.html)

Parameters:
¢ logits — Each element is the unnormalized log probability of a binary prediction. See note about compatibility
with labels above.
¢ labels - Binary labels whose values are {0,1} or multi-class target probabilities. See note about compatibility
with logits above.
Returns:

cross entropy for each binary prediction, same shape as logits.

Loss Function

from optax import sigmoid binary cross_entropy

@jax.jit

def loss_fn(params, x, y):
preds = net.apply(params, rng, Xx)
This next line provides a x10 speed up.
preds = preds.reshape(-1)

sm_array = sigmoid binary cross_entropy(preds, y)
return jnp.mean(sm_array)

Training Step

@jax.jit
def train_step(params, opt state, x, y):
grads = jax.grad(loss_fn)(params, x, y)
updates, opt state = optimizer.update(grads, opt state)
new_params = apply updates(params, updates)
return new_params, opt_state

Training Loop
starting time = time.time()
print("starting training...")

if len(losses _training) ==
Prime the loss arrays.
losses _training.append(loss_fn(params, X train[:n_loss], y _train[:n_loss]))
losses test.append(loss fn(params, X test[:n _loss], y test[:n_loss]))

for epoch in tqdm(range(1000)):
params, opt state = train_step(params, opt state, X train, y train)
losses _training.append(loss_fn(params, X train[:n_loss], y train[:n_loss]))
losses _test.append(loss fn(params, X test[:n _loss], y test[:n_loss]))

print("done training...")

training time = time.time() - starting time
print("Training time:", training time)

Challenge!!

1. Get the lowest loss training you can!
2. Tomorrow (Friday), as lunch starts, I'll release the https location of
independent data file on Slack.
3. You run your pre-trained NN against that file and see who gets the lowest
loss!
1. Post your loss number of Slack
4. We'll want to see your code and a demonstration of your training!
1. No training on the new file tomorrow morning!

Completely done tutorial...

Final Version of the data

https://github.com/gordonwatts/hsf-india-ml-tutorial-2024-05/blob/pr_answers/01-tutorial-bdt-example.ipynb

