
XCache: The new
Resource Monitoring & Purging

XRootD Workshop @ STFC UK, Abingdon

September 12, 2024 Alja & Matevž Tadel, UCSD

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Overview
● Introduction: 3-slide overview

○ For history, review of features & config options → see XRootd@JSI 2023 talk
● Review of some relevant stuff: threads & monitoring collection
● Recent developments → planned to go into 5.8

○ Old-style (well, current) implementation of cache purge and directory statistics
○ Resource Monitor & Cache Heartbeat
○ Detailed collection of directory usages and access statistics
○ Purge plugin with a directory quota based minimal implementation

■ Used also by LotMan – the cache space manager for Pelican

● Possible enhancements of the above
● Things that could be worked on

2

https://indico.cern.ch/event/875381/contributions/5305954/attachments/2621176/4531838/XCache-DevsAndPlans-Ljubljana-2023.pdf

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Introduction
XCache – brand name for XRoot disk-based file proxy cache

In code referred to as PFC – proxy-file-cache
● All classes & structs are in namespace XrdPfc

○ files are in src/XrdPfc/
○ file-names are prefixed by XrdPfc, e.g., File is in src/XrdPfc/XrdPfcFile.hh/cc

● Configuration options prefixed by pfc, e.g. pfc.blocksize

3

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

To Cache … or not to Cache?
● Benefits of caching

a. You know you will (or hope to) reuse the data → reduce network use, pressure on data origins
b. Reduce latency and improve IO efficiency for jobs – especially with prefetching
c. A way for just-in-time data placement into unmanaged (or semi managed) storage

■ less worry about data/disk loss – if it happens it will get restored with little intervention
● How does this work in real life?

a. OSG StashCache has some great results for LIGO, Fermilab neutrino experiments, bio-stuff
■ Jobs with varying parameters that all reuse the same input

b. E.g. US CMS SoCal AOD data cache; all data available at Fermilab
■ caching cluster split between Caltech and UCSD (2ms RTT, 100 Gbps)
■ reasonable data reuse → ballance cached namespace against cache cluster volume

● Cache in the world of data lakes, swamps and deserts
a. Medium-size compute sites subscribe to a portion of possible data namespace
b. Schedule jobs based on input requirements →caches to pull in data as needed

■ For large VOs this runs into conflicts with the desire to have tight control over data placement
c. Pelican: somewhat automatically managed staging space

4

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

XCache in one slide
● Serve data to local clients:

○ Origin - remote data source
(usually data federation)

■ Data read in "blocks"
■ Optional prefetching

○ Store data on local disk via
write queue

○ Rely on VFS to help
○ Purge old files as disks get full

● XCache server is a "normal" XRootd server:
○ Authentication / authorization controls
○ LVM / multi-disk support
○ Tracing and monitoring
○ Clustering - Caching Cluster
○ Can use http(s) on both ends

5

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

On origins, data sources, squids, and uniqueness
● Two modes of getting to the remote data

a. direct mode: specify data origin / redirector, assume all data will be available from there
■ this was original mode of ATLAS (FAX) / CMS (AAA) data federations

b. forwarding mode: source is specified with each request
■ e.g.: root://cache.cluster.here//root://server.to.talk.to//data/silly-user/joe/button.png
■ this is how ATLAS is using XCache now

c. combined mode: forwarding if requested, otherwise use direct mode as default

● Squid / browser-cache is always in mode b.
a. Further, the host name is part of the caching-object ID, i.e.

http://foo.org//a_file is different than http://bar.com//a_file

● In (XRootd) data federations, and also in XCache, we assume host does not
matter – path uniquely identifies a file and its contents.
a. Data versioning in HEP: directory postfixes (_v2), intermediaries (/Summer2019/) and GUIDs

■ so … at namespace-level
b. Projects that work around that: StashCache (XCache + cvmfs namespace), XCacheH (?)

6

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Review of relevant stuff

7

8

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Threads in XRootd & XCache
- Thinly wrapped POSIX threads, see XrdSysPthread.h/.cc

- mutexes, condition-variables, semaphores (in XrdCl)
- limited number of atomics, mostly without strict ordering

- Main threads in core XRootd
- accept ("forking"), buffer-reshaper, scheduler for detached tasks, can be delayed (XrdJob)
- pollers, OssAio, OssCache-scanner, OfsEventFlush, OfsEvRecv

- Threads in XrdCl
- polling / event handling threads – pss.setopt ParallelEvtLoop 10
- worker threads, max number – pss.setopt WorkerThreads 64

- Threadpfc.flushs in XCache:
- Purge, Prefetch, DiskWriters (4 by default)
- Data-flow through cache is completely asynchronous, both ways:

- in-between Ofs/Pss/Posix and XrdCl (via IO objects)
- XrdJob - file sync. when conditions are met, see

9

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Current per-file statistics & purge implementation
- Per file access statistics, XrdPfc::Stats – collected for each open file

- { N_ios, duration, N_bytes hit/missed/bypassed/written, N_cksum_errors }
- summary put into .cinfo file as an access record (with timestamps)
- if so configured, also sent out at close time via the pfc g-stream

- Purge thread
- if (purge_needed) { scan_namespace(); purge(); } else { coffee_break(); }

- Purge decision – initiate purge?:
- low / high water mark – based on total disk usage (potentially other users of the space)
- file usage limits (total N_bytes written accumulated to avoid re-scanning)

- Purge scan, purge execution
- prepare an ordered map (by last access time in cinfo) of candidates
- loop over this … but skip files that are now open or had purge protection set upon them

10

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

pfc.diskusage
pfc.diskusage lowWatermark[k|m|g|t] highWatermark[k|m|g|t] # can also be fractions of available
space
 [files base[k|m|g|t] nom[k|m|g|t] max[k|m|g|t]]
 [{purgeinterval | sleep} purgeitvl[h|m|s]]
 [purgecoldfiles age{d|h|m|s} period]

● Watermarks {0.9 0.95} specify window in which total disk usage will be kept
● files allows setting of actual data file usage limits

○ relevant and useful when disk is shared with another service or for client-side caching
■ max & nom: when max is reached, files are purged down to nom
■ purging below nom is done if required by total usage > highWatermark
■ base: minimum / guaranteed space, files will not be purged below this

● purgeinterval {5m} how often to check the disk usage
○ Total usage is checked, estimation of file usage is done by adding up # of bytes written

■ actual cache scan is only done if needed

● purgecoldfiles {disabled} remove files that have not been accessed in age
○ disk scan for cold files is forced every period purge cycles

11

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Directory statistics, recent history
- There was the desire for per-directory monitoring & quotas around for a while

- OSG with multi-tenant caches; runaway usage by a VO or even a single user
- but never strong enough push to actually implement it

- Proto directory statistics from summer 2019 – collected during purge scan
- DirStats constructed from the file statistics of files that were closed since the previous purge
- Aimed to include per directory quota, initial idea of Heart-Beat and continuous DirStats

- Turned out to be a rather hard problem – fast incoming changes, slow processing
- Nobody pushed for quotas / configurable purge again until Kingfisher in early 2023

- LotMan (Lot Manager) component that takes over cache monitoring & management
- a plugin + local daemon + a management service

- Then, with Pelican starting ~ a year ago, this all became rather urgent …

12

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

The new Resource Monitoring & Purging

13

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Recap of issues / complexity involved
- Requirements / Goals:

- Provide sufficiently detailed and accurate snapshots of XCache state and usage
- Optimize information collection and storage – reduce number of required cache namespace

traversals
- Design a good-enough purge-plugin API, provide a directory quota based prototype

- Directory state
- changes come on per-file basis … from a super-multi-threaded environment

- and, esp. for Reads(), this comes from critical sections of XCache
- ⇒ avoid too aggressive / frequent collection, provide a simple way for data to "come out"

- aggregation over child directories → how to avoid redoing this too often
- creation of new (sub-)directories & their removal
- How to best avoid parsing file-names and traversing the cached namespace
- The collection / reporting needs to be implemented so that it makes sense from both:

- file / low-level / high-frequency event handling side; and
- top-level consumer, like purge plugin or monitoring information reporter

14

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Solution overview – XrdPfc::ResourceMonitor
- Owns and manages data structures representing:

- filesystem usage
- per directory usage & "traffic"

- Runs a dedicated heart_beat() thread
- Collects changes from other threads in a couple of queues
- Directory state: Usages vs. Stats (changes / deltas)

- Usages get updated from DirStats periodically (last open/close timestamps are current)

- Tree representation for continuous updates
- Export snapshots in vector form for reporting and for purge
- Reduce reliance on cinfo information – use stat!

- Measure sizes in stat-blocks, 512 bytes – more accurate anyway (holes in files)
- get it for free from stat, the old way was calculating it from cinfo block bit-vector.

- Use mtime of cinfo file to determine last usage time, "touch" on open

15

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Data types for usages and stats
● struct Stats

○ { N_ios, duration, N_bytes hit/missed/bypassed/written, N_cksum_errors }

● struct DirStats : public Stats
○ { StBlocksRemoved, NFilesOpened/Closed/Created/Removed, NDirectoriesCreated/Removed}

● struct DirUsage
○ { LastOpen/CloseTime, StBlocks, NFilesOpen, NFiles, NDirectories }

● struct DirState
○ { DirStats here_stats, recursive_subdir_stats;

 DirUsage here_usage, recursive_subdir_usage;
 DirState *parent;
 std::map<dir-name, DirState*> subdirs; }

16

Structs in C++-form
class Stats
{
 int m_NumIos = 0; //!< number of IO objects attached during this access
 int m_Duration = 0; //!< total duration of all IOs attached
 long long m_BytesHit = 0; //!< number of bytes served from disk
 long long m_BytesMissed = 0; //!< number of bytes served from remote and cached
 long long m_BytesBypassed = 0; //!< number of bytes served directly through XrdCl
 long long m_BytesWritten = 0; //!< number of bytes written to disk
 long long m_StBlocksAdded = 0; //!< number of 512-byte blocks the file has grown by
 int m_NCksumErrors = 0; //!< number of checksum errors while getting remote data
 …
};

class DirStats : public Stats
{
 long long m_StBlocksRemoved = 0; // number of 512-byte blocks removed from the directory
 int m_NFilesOpened = 0;
 int m_NFilesClosed = 0;
 int m_NFilesCreated = 0;
 int m_NFilesRemoved = 0; // purged or otherwise (error, direct requests)
 int m_NDirectoriesCreated = 0;
 int m_NDirectoriesRemoved = 0;
 …
};

struct DirUsage
{
 time_t m_LastOpenTime = 0;
 time_t m_LastCloseTime = 0;
 long long m_StBlocks = 0;
 int m_NFilesOpen = 0;
 int m_NFiles = 0;
 int m_NDirectories = 0;
 …
};

DirStateBase
{
 std::string m_dir_name;

 DirStateBase() {}
 DirStateBase(const std::string &dname) : m_dir_name(dname) {}
};

struct DirState : public DirStateBase
{
 typedef std::map<std::string, DirState> DsMap_t;
 typedef DsMap_t::iterator DsMap_i;

 DirStats m_here_stats;
 DirStats m_recursive_subdir_stats;

 DirUsage m_here_usage;
 DirUsage m_recursive_subdir_usage;

 DirState *m_parent = nullptr;
 DsMap_t m_subdirs;
 int m_depth;
 …
};

struct DataFsStateBase
{
 time_t m_usage_update_time = 0;
 time_t m_stats_reset_time = 0;

 long long m_disk_total = 0; // In bytes, from Oss::StatVS() on space data
 long long m_disk_used = 0; // ""
 long long m_file_usage = 0; // Calculate usage by data files in the cache
 long long m_meta_total = 0; // In bytes, from Oss::StatVS() on space meta
 long long m_meta_used = 0; // ""
};

struct DataFsState : public DataFsStateBase
{
 DirState m_root;
 …
};

17

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Event queues for file events
The queues:
 Queue<int, OpenRecord> m_file_open_q;

 Queue<int, Stats> m_file_update_stats_q;

 Queue<int, CloseRecord> m_file_close_q;

Registration functions:
 int register_file_open(const std::string& filename, time_t open_timestamp, bool existing_file);

 void register_file_update_stats(int token_id, const Stats& stats);

 void register_file_close(int token_id, time_t close_timestamp, const Stats& full_stats);

- open → returns int token_id – allows quick lookup of the DirState* later on
- update →register delta-Stats, multiple calls for the same token_id get added

up together
- All queues have separate write / read buffers – periodically swapped.
- The heart_beat() thread is the owner of the DirState stuff → no locks

18

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Event queues for purging
Queues for file removal events (can come from evict / Cache::UnlinkFile()):
 Queue<DirState*, PurgeRecord> m_file_purge_q1;

 Queue<std::string, PurgeRecord> m_file_purge_q2;

 Queue<std::string, long long> m_file_purge_q3;

Registration functions:
 void register_file_purge(DirState* target, long long size_in_st_blocks);

 void register_multi_file_purge(DirState* target, long long size_in_st_blocks, int n_files);

 void register_multi_file_purge(const std::string& target, long long size_in_st_blocks, int n_files);

 void register_file_purge(const std::string& filename, long long size_in_st_blocks);

- Funcs with DirState* argument used when known – avoid tokenization.
- In evict case this simply can not be known.

- Optimization for purging of multiple files.

19

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

ResourceMonitor::main_thread_funciton()
- perform_initial_scan()

- populate the basic usages
- some trickery needed to facilitate opening of files during the traversal

- heart_beat() loop
- Every 10 s: Apply events from the queues. Order: open / update / close / purge
- Every NN s: [NN = 60, to be increased & made a little configurable]

1. Apply Stats to Usages, upward propagate stats & usages
2. If needed, prepare DataFsSnapshot – (limited-depth) vector-form of DirState tree.

- Export to file-system as binary blob or JSON
- [Potentially pass it to purge plugin, in a dedicated task / thread.

3. Clear-out DirStats – reset to zero.
 Remove leaf empty directories (unless purge is currently in progress).

- Every MM s: [MM = 120,
Perform purge check. If needed, prepare DataFsPurgeShot → pass it to purge thread task.
[PurgeShot is limited-depth vector-form export of DirUsages only.]

- 20

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Purge & Purge plugin API – Preliminary
- When purge is needed, purge plugin is contacted first

- It can return a list of PurgePin::DirInfo { dir-path; bytes-to-remove } structs
- For each entry, the sub-tree is traversed and files are collected in the LRU order, to satisfy the

requested removal volume.
- The plugin can request removal beyond the volume actually required by the configuration.

- If data still needs to rbe emoved to satisfy the configured space constraints,
the regular purge-scan and remove is ran to complete the purge cycle.

Internal reference implementation XrdPfcPurgeQuota : public XrdPfc::PurgePin
pfc.purgelib libXrdPfcPurgeQuota /etc/xrootd/quota.cfg

/store/group/visualization 500G
/store/user/* 100G DOES NOT WORK (YET)
/atlas 0

To be released like this in 5.8 – and potentially extended for 6.0
21

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Development plans

22

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Final testing & Release of the above
- Release as:

- a) keep a branch synchronized on top of master + OSG build; or
- b) dedicated 5.8 with just these changes

- Limited scope, detailed testing at UCSD caches + Pelican
- I'd be nervous to unleash this upon the world

- If interested in testing – please do get in touch
- this could influence mode of the release

- We've just started the a) option …

23

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

To explore: Building upon usage snapshots
● Right now, we don't do anything (well, write the latest stats on disk as json)
● Note – what heart_beat() produces is a change over the last (fixed) period

○ It is not easy to:
■ aggregate beyond that (collection stats cleared); or
■ average over arbitrary time intervals (requires floating point representation of DirStats)

● However – Cache can dump every Snapshot on disk → usage-<time>.bin
○ Summing those up is mostly trivial (+-, directories can be created and removed)
○ pfc-usage-last.bin →add them up into usage-15min.json, usage-60min.json, usage-180.json
○ How to configure this?

● Monitoring collection – via xrootd itself – export them through /pfc-stats/
○ shortcut XrdPfc::File to serve the file wo/ cinfo (or create a dummy .cinfo, or use http handler)
○ special purge

● No shovelers and collectors – monitoring sinks/consumers pull monitoring data
○ auth – allow access to specific roles / uids

24

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Possible Purge plugin extensions
- The new infrastructure is able to support a more general purge algorithm

- Purge of specific, individual files.
- Execution of sub-tree traversal, along the PurgeShot vector, from within the plugin.

- Can perform additional checks / calculations.
- The traversal & directory scanning code is general enough and easily reusable.

- Already used in the initial-scan and for purge sub-tree traversal.
- All that is needed is that purge event gets reported back to ResourceMonitor queues.

- Might need to provide UnlinkAt.

25

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Getting in touch with the XCache crew
● XRootd developers + community of main users:

○ Weekly xcache-devops meeting (Thursday 11am Pacific)
■ OSG, Pelican, ATLAS, CMS + others, as needed – or desired
■ xcache@opensciencegrid.org
■ slack OSG#xcache

○ Advise, improve existing features, develop extensions
○ Help with debugging, analysing issues

● General user / developer support
○ Ask questions: xrootd-l <xrootd-l@slac.stanford.edu>
○ Report problems: https://github.com/xrootd/xrootd/issues

26

mailto:xrootd-l@slac.stanford.edu
https://github.com/xrootd/xrootd/issues

A. & M. Tadel, XCache: The new Resource Monitoring & Purging, XRootD @ SFTC UK, Abingdon, September 2024

Should improve prefetching
● Current (well, 10-years old) algorithm is rather stupid, just reads the missing

blocks in order.
○ This is fine for in-order access … or for slow-reading clients.
○ Also, results in a full file eventually showing up in the cache.

● A better algorithm would allow one to:
○ specify heuristic: on open, read N-bytes from the head, M-bytes from the tail (ROOT)
○ let the incoming reads drive the actual prefetching … read ahead of the last reads

■ tricky for vector-reads without knowing the branch/basket layout
○ specify how far ahead to read → do not read & cache a full file unless required

■ This is particularly important if / when we move to (extremely) large files.
○ Provide preRead(v) in XrdOucCacheIO interface – an ABI change → not before v6

■ preread vector can be sent as a part of the kXR_read request – send zero size read
● the interface would need to be added in user code, too, TXNextGenFile & similar

● Use the new resource monitor + heart_beat() to drive / influence prefetch.

27

