
Load balancing XRootD
Jyothish Thomas, James Walder, Thomas Byrne

jyothish.thomas@stfc.ac.uk,
james.walder@stfc.ac.uk, tom.byrne@stfc.ac.uk

mailto:jyothish.thomas@stfc.ac.uk
mailto:james.walder@stfc.ac.uk
mailto:thomas.byrne@stfc.ac.uk

The RAL Tier-1 Setup

The RAL tier 1 setup - Q1 2023

• RAL has a large Ceph object store disk pool (Echo)

• Which is accessed through a set of XRootD server gateways

• The gateways access the Ceph storage trough the XrdCeph plugin

3

The RAL tier 1 setup - Q1 2023

• We had 12 external gateways that did write operations from the Worker Nodes,
as well as all external traffic.

• These were managed under a DNS round robin under the alias
xrootd.echo.stfc.ac.uk and webdav.echo.stfc.ac.uk

4

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

The RAL tier 1 setup - Q1 2023

• You may notice that there is one gateway that exclusively belonged to one alias,
but not both

• This was used as a control set in case of issues to detect if it affected a single
protocol or both

5

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

The RAL tier 1 setup - Q1 2023

• The aliases are not directly managed by the Tier-1

• Meaning any change would have to go through a ticketing system to take effect,
and are not as quick as we’d like for addressing immediate operational issues.

6

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

The RAL tier 1 setup - Q1 2023

• For example, if one gateway stops responding or has issues not immediately
solved on restart

• It needs a manual intervention to send a ticket to change the round robin

7

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

The RAL tier 1 setup - Q1 2023

• And if the DNS servers had issues, the short TTL would result in an immediate
impact on the service

8

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

The RAL tier 1 setup - Q1 2023

• If a client caches the alias to a particular host, it bypasses the load balancing and
focuses the load onto particular hosts

9

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw11 gw12….

CMSD setup

10

CMSD

• Seamlessly deal with a
failed gateway or
intervene on individual
gateways.

• Evenly spread the load
between the gateway
hosts and automatically
mitigate the pattern of
‘hotspotting’

• Reduce our dependence
on the DNS provider.

• Allow us to use a much
longer TTL for our Echo
alias, and so make Echo
more resilient against any
DNS issues Initial CMSD setup diagram, by James Walder and Tom Byrne

The RAL tier 1 setup - Redirector

• This made the service much easier to manage, and the XRootD cluster
management load balancing worked well under normal conditions

• Adding and removing hosts can be done by editing the file specified in the
cms.blacklist configuration option

11

xrootd.echo.stfc.ac.uk webdav.echo.stfc.ac.uk

gw1 gw2 gw19 gw20….

manager01 manager02

Data Challenge ‘24

DC24

The WLCG ran a Data Challenge in February ’24 which stress tested the
WLCG infrastructure and helped in identifying bottlenecks.

At the time the challenge started, we had more gateways (26 total) and
were using the redirector setup

13

CMSD setup

14

CMSD

• Seamlessly deal with a
failed gateway or
intervene on individual
gateways.

• Evenly spread the load
between the gateway
hosts and automatically
mitigate the pattern of
‘hotspotting’

• Reduce our dependence
on the DNS provider.

• Allow us to use a much
longer TTL for our Echo
alias, and so make Echo
more resilient against any
DNS issues Initial CMSD setup diagram, by James Walder and Tom Byrne

The XRootD load balancing algorithm

How it’s intended to work:

1. Generate an overall load score based on a weighted sum of the
different load metrics reported (network, cpu load, system load,
memory usage, disk space)

2. Skip unusable nodes (not responding, over the configured max
load, etc..)

3. Assign incoming transfers by round robinin between the least
loaded gateway and other gateways within a set window (fuzz)
around it

15

The XRootD load balancing algorithm

16

Load 25 Load 20 Load 22 Load 40

Manager

Fuzz=5

The XRootD load balancing algorithm

17

Load 30 Load 24 Load 26 Load 20

Manager

Fuzz=5

The XRootD load balancing algorithm

18

Load 10 Load 40 Load 15 Load 30

Manager

Fuzz=5

The XRootD load balancing algorithm

• This works fine under normal conditions as the load fluctuations over
time make balance it out, although resulting in a ‘bouncing’ load
pattern

19

XRootD load balancing under pressure

20

Load keeps capping out and transfers go to whichever gateways go below the maximum load first,
Pushing it back over the load limit

The XRootD load balancing algorithm
How it works[1]:

1. Generate an overall load score based on a weighted sum of the
different load metrics reported (network, cpu load, system load,
memory usage, disk space)

2. Skip unusable nodes (not responding, over the configured max
load, etc..)

3. go through the gateways in order of first appearance in the cluster,
switching the selected gateway to the next one if it’s significantly
less loaded or within the fuzz and had received less transfers than
the currently selected one

21[1] XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

The XRootD load balancing algorithm

22

Load 25 Load 20 Load 22 Load 40

Manager

Fuzz=5

The XRootD load balancing algorithm

23

Load 30 Load 24 Load 26 Load 20

Manager

Fuzz=5
Skipped nodes within the fuzz

The XRootD load balancing algorithm

24

Load 10 Load 40 Load 15 Load 30

Manager

Fuzz=5 Skipped nodes within the fuzz

The XRootD load balancing algorithm

• This is not an issue under normal operations, as focused load results
in increasing load on the underloaded gateways, removing it from the
selection pool the next time round

• But it’s an issue when every gateways is overloaded or close to it.

• Some load patterns are particularly problematic (shown later)

25

The 5 phases of XRootD load balancing

1. Bargain

2. Explore

3. Nostalgia

4. Vintage

5. Innovate

26

Phase 1 – Bargain

Tune the existing load balancing to distribute load very evenly

• 80/20 split of system load/cpu, with fuzz 3 provided the best load
balancing we could get

• Generally ok but performance degrades under heavy load

27

28

Switch to 80/20
heuristics

Following the heuristic switch, load has been balanced better between the gateways

Phase 2 – Exploration

Explore the space for better alternatives under heavy load

• 50/50 split of system network/cpu
• no significant difference. Some improvement in performance for newer

hardware at the expense of the older ones

• Non-standard metrics
• Number of active connections, heartbeat time

• Not very consistent and hard to tune equally among gateways under heavy
load

29

Phase 3 - Nostalgia

Simulate Round Robin

• All gateways report the same loads artificially (passive load balancing)

• A lot more stable, low error rate and better throughput even under
heavy load

• If an individual gateway starts to get loaded, it will keep getting
loaded until it breaks

30

XRootD load based balancing vs Round Robin

31

XRootD load balancing to RR (bytes received)

RR to XRootD load balancing based on nonstandard loads

Phase 4 – Vintage

Gateways report the same load unless it’s nearing problematic levels
(80% system load) at which point the reported load is set higher to
remove it from the Round Robin

• Similar benefits to Round Robin approach, but would usually keep
gateways from getting overloaded

• It’s easier to fall into the pitfalls of the existing algorithm (seen later)
and some states cannot be gotten out of without manual intervention

32

Bytes Received

Phase 5 – Innovate

We decided to make our own load balancing algorithm

• Variant of weighted random load balancing

• More likely to send transfers to less loaded gateways

• A gateway will only be excluded when it goes over the allowed maximum load or
is unreachable

33

How the new algorithm works

The basic principle of this algorithm is a random weighted selection. An easy way to
picture it is as follows:

Imagine a spinning wheel divided in slices. The less loaded gateways will have a
larger slice of the pie. Now throw a dart at the board. Whichever slice the dart
landed on is going to be selected for the transfer.

34

How the new algorithm works

35

How the new algorithm works

• If a node is unavailable or has issues, it has an effective slice size of 0,
meaning it will never be selected.

• A fuzz value provides a baseline for each slice size, providing some
tuning adjustments for a more even distribution. e.g. a fuzz of 20 on
the same values above will result in this wheel:

• Thanks to Guilherme Amadio for helping optimize this section of the
algorithm!

36

How the new algorithm works

37

How the new algorithm works
• How resilient is it?

• Due to each transfer adding load unto a gateway until the transfer is
complete, each selection results in reducing the size of the slice if it’s selected
consecutively

• 10M simulated repetitions resulted in a maximum consecutive selection of
the same node = 10

• How to switch to using it?
• Available since XRootD 5.7.0

• cms.sched affinity randomized

• cms.sched cpu 50 io 50 mem 0 pag 0 runq 0 space 0 fuzz N

• N>0

38

Transfer throughput over DC24

39

Phase 1 Net
tuning

Further
Net tuning

Phase 2/3 Phase 4

Deletion efficiency default vs new algorithm

40

Problematic load patterns - Ascending/descending order of load

41

Load

Transfers

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

Problematic pattern- Ascending/descending order of load -
new algorithm

42
XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

Problematic load patterns- Artificial hotspotting

43

Load Transfers

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

Problematic load patterns- Artificial
hotspotting – new algorithm

44

Other problematic patterns

45

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

Other problematic patterns – new algorithm

46

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024

Thank you

Randomized Algorithm - detail

Variables used

• sp - selected node

• np - current node

• np->load - load reported by the node

• TotWeight - the current sum of inverse load, adjusted with a fuzz factor for
tuning

• NodeWeight - array of total weights at the current node

48

Randomized Algorithm - detail

Initialization

1. TotWeight is set to 0

2. NodeWeight for the current node is set to 0

3. sp is set to the first valid node

49

Randomized Algorithm - detail

Looping on each node (including the first sp)

1. TotWeight is incremented by fuzz + (100 - np->load)
1. fuzz prevents inverse load being 0 for a gateway at 100 load. this provides even load

balancing in cases where every node is at 100 load

2. higher fuzz values reduce the importance assigned to the load, helping to tune the
algorithm.

2. NodeWeight for the current node is set to the current TotWeight.

50

Randomized Algorithm - detail

51

Randomized Algorithm - detail

52

Randomized Algorithm - detail

After the loop has gone through all available nodes

1. Generate a random number from 1 to the final TotWeight

2. Select the first node where the value in NodeWeight is greater than the
random number

53

