[+

XRootD

Contributing to XRootD

G. Amadio FTS/XRootD Workshop 2024 9-13 Sep 2024

Overview

» XRootD repository on GitHub

» Development Workflow

» Install XRootD build dependencies

» Configure, build, and run tests locally

» Submit test results and coverage to CDash

» Build and test XRootD on another platform

» Report a bug and/or ask a question (use Discussions)
» Use GitHub Actions to build DEB/RPM packages

XRootD on GitHub

>

New README in Markdown
GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
CTest script
CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

= o xrootd / xrootd

<> Code (® lssues 95

[Files
¥ master <
Q Gotofile

> B
B github

B bindings

B cmake

8 debian

B docker
B docs

8 packaging
M src

B tests

B ups

> I utils

O gitattributes
O gitignore
O .qitlab-ciyml
O .mailmap
O CMakeLists.txt
O coepvinG
[copYING.BSD
O CoPYING.LGPL
[CTestConfig.cmake
O Doxyfile
DO ucense
[MANIFEST.in
| [READMEmd
O VersioN
O cmake_uninstall.cmake.in
O gen-tarballsh
O genversionsh

O pyproject.toml

: setupoy

o
Q Type @to search -1 [+~][e])(n)(]@

3 O Discussions (@ Actions [Projects (@ Security |~ Insights 3 Settings
xrootd / README.md (3
e amadio Update READMEmd @@ cle6Tle - 3weeks ago 'O History

[Preview | Code ' Blame 117 lines (89 100) - 4.37 k8 rw | Q&) (2]~] =

B8 XRootD

XRootD: eXtended ROOT Daemon

The XRootD project provides a high-performance, fault-tolerant, and secure solution for handling massive amounts of data distributed
across multiple storage resources, such as disk servers, tape libraries, and remote sites. It enables efficient data access and movement
in a transparent and uniform manner, regardless of the underlying storage technology or location. It was initially developed by the
High Energy Physics (HEP) community to meet the data storage and access requirements of the BaBar experiment at SLAC and later
extended to meet the needs of experiments at the Large Hadron Collider (LHC) at CERN. XRootD is the core technology powering the
EOS distributed filesystem, which is the storage solution used by LHC experiments and the storage backend for CERNBox. XRootD is
also used as the core technology for global CDN deployments across multiple science domains.

XRootD is based on a scalable architecture that supports multi-protocol communications. XRootD provides a set of plugins and tools
that allows the user to configure it freely to deploy data access clusters of any size, and which can include sophisticated features such
as erasure coded files, various methods of authentication and authorization, as well as integration with other storage systems like
ceph.

Documentation

General documentation such as configuration reference guides, and user manuals can be found on the XRootD website at
http://xrootd.org/docs.html.

Supported Operating Systems

XRootD is officially supported on the following platforms:

* RedHat Enterprise Linux 7 or later and their derivatives
* Debian 11 and Ubuntu 22.04 or later
* macOS 11 (Big Sur) or later

Support for other operating systems is provided on a best-effort basis and by contributions from the community.

Installation Instructions

XRootD is available via official channels in most operating systems. Installation via your system’s package manager should be

https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd
https://my.cdash.org/index.php?project=XRootD

Development Workflow and Release Management

» Current development workflow

e Use devel branch as work in progress for next release
e Release manager applies commits from devel to master,

writes out release notes and tags releases.
» Advantages
e Easy for contributors
e Stability on master branch
e Linear git history on master branch
e No rebase conflicts on release notes file
» Disadvantages
e No automatic closing of GitHub issues
e Rebase on devel confuses GitHub pull requests

\

OO0 000«0

Initial
production
version

J

Next
production
release

)

Next
production
release

Install Dependencies and Build XRootD Packages

AlmaLinux 8 / 9 Debian / Ubuntu

sudo dnf install -y epel-release # not needed on Fedora
sudo dnf install -y dnf-plugins-core rpmdevtools

sudo dnf config-manager --set-enabled powerools # Alma 8
sudo dnf config-manager --set-enabled crb # Alma 9

sudo dnf install -y git

git clone https://github.com/xrootd/xrootd

cd xrootd

sudo apt update

sudo apt install -y build-essential devscripts

sudo apt install -y equivs # only needed on Ubuntu

sudo apt install -y git

git clone https://github.com/xrootd/xrootd

cd xrootd

export V=§(./genversion.sh --sanitize)

sudo dnf builddep -y xrootd.spec dch --create --package xrootd -v ${V} -M "XRootD ${V}"
spectool -g -R xrootd.spec mk-build-deps --install --remove -s sudo debian/control
rpmbuild -bb xrootd.spec $ debuild --no-tgz-check -- binary-arch

WU

$
$
$
$
$
$
$
$
$
$

Fedora Linux Installing:

sudo dnf install -y dnf-plugins-core rpmdevtools S sudo apt install ../*.deb
sudo dnf install -y git
git clone https://github.com/xrootd/xrootd
cd xrootd
sudo dnf builddep -y xrootd.spec
spectool -g -R xrootd.spec
$ rpmbuild -bb xrootd.spec

Installing:

$ dnf install -y ~/rpmbuild/RPMS/*/* . rpm

https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd

Building XRootD Python bindings

Create Python Source Distribution for PyPI Build Python Bindings Against Pre-Installed XRootD

S git clone https://github.com/xrootd/xrootd S cd bindings/python
$ cd xrootd $ python3 -m pip wheel .
$ python3 -m build --sdist
Build Python Bindings and Install without Wheel
Alternatively,
S python3 -m pip install --use-pep517 .
$ python3 setup.py sdist
Build Python Bindings with CMake
Building XRootD Client as Python Package
S cmake -S xrootd -B build -DINSTALL_PYTHON_BINDINGS=1
$ python3 -m pip wheel . $ cmake --build build
Processing /home/amadio/src/xrootd $ cmake --install build
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Building wheels for collected packages: xrootd
Building wheel for xrootd (pyproject.toml) ... done Notes:
Created wheel for xrootd:
filename=xrootd-5.7.1-cp312-cp312-1linux_x86_64.whl - Cannot distribute binary wheels because of OpenSSL
$1ze=69675785 - Not quite willing to statically link due to security
Stored in directory:
/tmp/pip-ephem-wheel-cache-mbo6n6q2/wheels/cf/67/3c/514b21ddc
8aaad94bc31ed5e1d94210de6c78816039640aa90
Successfully built xrootd

https://github.com/xrootd/xrootd

XRootD on GitHub

>

New README in Markdown
GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
CTest script
CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[D Files

P master -

Q Go to file

> B
> BB github
> [bindings
> M cmake
> B debian
> BB docker
v @ docs
> B8 man
D CMakeLists.txt
[CONTRIBUTING.md
D INSTALLmd
[README_IPVA_To_IPV6
[ReleaseNotes.txt
[TESTING.md
> I packaging
> I src
> I tests
> BB ups
> I utils
.gitattributes
.gitignore
gitlab-ciyml
mailmap
CMakeLists.txt
COPYING

COPYING.BSD

CTestConfig.cmake
Doxyfile

LICENSE
MANIFEST.in
README.md
VERSION

D
B
D
D
D
D
(k]
[COPYING.LGPL
(k]
D
B
D
B
D
[}

cmake_uninstall.cmake.in

[Preview | Code = Blame 360 Lines (305 1oc) - 16.5 k& Raw O & 2 -

Configuring and Running XRootD tests with CTest

XRootD tests are divided into two main categories: unit and integration tests that can be run directly with CTest, and containerized
tests that are required to be run from within a container built with docker or podman. This document describes how to run the former,
that is, the tests that are run just with CTest. This document assumes you are already familiar with how to build XRootD from source. If
you need instructions on how to do that, please see the INSTALL.md file. There you will also find a full list of optional features and
which dependencies are required to enable them.

Enabling tests during CMake configuration

XRootD unit and integration tests are enabled via the CMake configuration option -DENABLE_TESTS=ON . Unit and integration tests may
depend on CppUnit or GoogleTest (a migration from CppUnit to GoogleTest is ongoing). Therefore, the development packages for
CppUnit and GoogleTest (i.e. cppunit-devel and gtest-devel on RPM-based distributions) are needed in order to enable all
available tests. Here we discuss how to use the test.cmake CTest script to run all steps to configure and build the project, then run all
tests using CTest. The script test.cmake can be generically called from the top directory of the repository as shown below

xrootd § ctest test. cmake @
- Using CMake cache file config.cmake
Run dashboard with model Experimental
Source directory: xrootd
Build directory: xrootd/build
Reading ctest configuration file: xrootd/CTestConfig.cmake
Site: example.cern.ch (Linux - x86_64)
Build name: Linux GCC 12.3.1 RelWithDebInfo
Use Experimental tag: 20230622-8712
Updating the repository: xrootd
Use GIT repository type
0ld revision of repository is: 6fce4s6asf 2502 13103
New revision of repository is: 6fced466a5fob369f45ef2592c2ae246de1f13103
Gathering version information (one . per revision):

Configure project
Each . represents 1624 bytes of output

Size of output: 4K

8uild project
Each symbol represents 1024 bytes of output.
1' represents an error and '' a warning.

Size: 49K

. size of output: 52K
@ Conpiler errors

@ Compiler warnings
Test project xrootd/build
Start 1: XrdCl::URLTest.LocalURLs
1/23 Test #1:
Start 2:
2/23 Test #2:
Start 3: XrdCl::URLTest.InvalidURLs

Passed ©.81 sec

Passed ©.12 sec

3/23 Test #3: XrdCl::URLTest.InvalidURLS «.....eeeneneennnns Passed ©.81 sec
Start 4: XrdHttpTests.checksumHandlerTests

4/23 Test #4: XrdHttpTests.checksumHandlerTests Passed ©.81 sec
Start 5: XrdHttpTests.checksumHandlerSelectionTest

5/23 Test #5: XrdttpTests.checksumHandlerSelectionTest Passed ©.81 sec

Start 6: XrdCl::Poller

6/23 Test #6: Passed 5.81 sec

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub

>

New README in Markdown
GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
CTest script
CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[Files

¥ master -

Q Gotofile

> B
> @ github
> [bindings
> I cmake
> Il debian
> I docker
v @ docs
> I man
O CMakelists.txt
() CONTRIBUTING.md
O INSTALLmd
[README_IPV4_To_IPV6
[ReleaseNotes.txt
| [TESTING.md
> B packaging
> I src
> I tests
> B ups
> BB utils

]

.gitattributes
.gitignore
gitlab-ciyml
.mailmap
CMakeLists.txt
COPYING
COPYING.BSD
COPYING.LGPL
CTestConfig.cmake
Doxyfile
LICENSE
MANIFEST.in
README.md

VERSION

ODODODDDODDDDODDODDODDDDOD

cmake_uninstall.cmake.n

Q

xrootd / docs / TESTING.md T Top

| Preview | Code | Blame 360 lines (305 1oc) - 16.8 k8 Rw B & 2 ~

Customizing the Build

Selecting a build type, compile flags, optional features, etc

Since the script is targeted for usage with continuous integration, it tries to load a configuration file from the .ci subdirectory in the
source directory. The default configuration is in the config.cmake file. This file is used to pre-load the CMake cache. If found, it is
passed to CMake during configuration via the -c option. This file is a CMake script that should only contain CMake set()
commands using the CACHE option to populate the cache. Some effort is made to detect and use a more specific configuration file
than the generic config.cmake that is used by default. For example, on Ubunty, a file named ubuntu.cmake will be used if present.
The script also tries to detect the version of the OS and use a more specific file if found for that version. For example, on Alma Linux 8,
one could use almalinuxs.cmake which would have higher precedence than almalinux.cmake . The default config.cmake file will
enable as many options as possible without failing if the dependencies are not installed, so it should be sufficient in most cases.

The behavior of the test.cmake script can also be influenced by environment variables like €C, CXX, CXXFLAGS, CMAKE_ARGS ,
CMAKE_GENERATOR , CMAKE_BUILD_PARALLEL_LEVEL , CTEST_PARALLEL_LEVEL ,and CTEST_CONFIGURATION_TYPE . These are mostly self-
explanatory and can be used to override the provided defaults. For example, to build with clang and use ninja as CMake generator,
one can run:

xrootd $ env CC=clang CXX=clang++ CMAKE_GENERATOR=Ninja ctest -V -S test.cmake @
For performance analysis and profiling with perf , we recommend building with
xrootd $ CXXFLAGS='-fno-omit-frame-pointer’ ctest -V -C RelWithDebInfo -S test.cmake @

For enabling link-time optimizations (LTO), we recommend using

CXXFLAGS="-flto - =odr -Werror=1to-type-mismatch - =strict-aliasing’ @

This turns some important warnings into errors to avoid potential runtime issues with LTO. Please see GCC's manual page for
descriptions of each of the warnings above. XRootD also support using address and thread sanitizers, via the options -
DENABLE_ASAN=ON and -DENABLE_TSAN=ON , respectively. These should be enabled using cMaAKE_ARGS , as shown below

$ env CMAKE_ARGS="-DENABLE_TSAN=1" ctest -V -S test.cmake 18]

Note that options passed by setting cmaKe_ares in the environment have higher precedence than what is in the pre-loaded cache file,
50 this method can be used to override the defaults without having to edit the pre-loaded cache file.
Enabling coverage, memory checking, and static analysis
The test.cmake has are several options that allow the developer to customize the build being tested. The main options are shown in
the table below:
Option Description
-DCOVERAGE=ON

Enables test coverage analysis with gcov

-DMEMCHECK=0ON Enables memory checking with valgrind

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

How to use test.cmake to run the XRootD test suite

~/src/xrootd § ctest -V -S test.cmake
-- Using CMake cache file gentoo.cmake
Run dashboard with model Experimental
Source directory: /home/amadio/src/xrootd
_S test. Cmake Build directory: /home/amadio/src/xrootd/build
Group: Experimental
Reading ctest configuration file: /home/amadio/src/xrootd/CTestConfig.cmake
Site: gentoo.cern.ch
Build name: Gentoo Linux GCC 14.2.1 RelWithDebInfo
_C Debug _S test. Cmake Use Experimental tag: 20248904-1451
Updating the repository: /home/amadio/src/xrootd
Use GIT repository type
01d revision of repository is: 237681febbda92020883249a2def24e88a664b28
New revision of repository is: 237681febbda92020883249a2def24e88a664b28

_DSTATIC—ANALYSIS=1 _S test . Cmake Gathering version information (one . per revision):

Configure project
Each . represents 1024 bytes of output
Size of output: 4K
Build project
—DMEMCHECK=1 —S test. Cmake Each symbol represents 1024 bytes of output.
Size: 49K
. . Size of output: 57K
0 Compiler errors
0 Compiler warnings
-VV —C Debug —DCOVERAGE=1 —S test. Cmake Test project /home/amadio/src/xrootd/build
Start 115: :start
Start 3 RLTest.LocalURLs
Start 8 RLTest.RemoteURLs
Start 3 RLTest.InvalidURLs
env CC=clang CXX=clang++ ctest -VV -S test.cmake Siere 48 IS UTEEITIEE
Start 3 ocketTest.TransferTest
Start : tilsTest.AnyTest
Start : tilsTest.TaskManagerTest
Start B tilsTest.SIDManagerTest
_ _ _ — _ Start : XrdCl::UtilsTest.PropertylListTest
ctest VV C Release DCDASH_1 S teSt'Cmake Start 75: XrdHttpTests.checksumHandlerTests
1/120 Test #115: XRootD::start Passed
2/120 Test #1: XrdCl::URLTest.LocalURLs . 0 0 o o 5600 Passed
3/120 Test #3: XrdCl::URLTest.InvalidURLs Passed
" " ... (many more lines)
S env CMAKE_ARGS="-DENABLE_TESTS=0" ctest -VV -S test.cmake 119/128 Test #98: XrdCl::Uti Passed
Start 120: XRoot
120/120 Test #1208: XRootD:: Passed

Please see docs/TESTING.md on GitHub for more information. :
100% tests passed, @ tests failed out of 120

Total Test time (real) = 143.62 sec

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md

XRootD on GitHub
» New README in Markdown
» GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
» CTest script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

'&A XRootD < PREV Dashboard Calendar Project
) 4
Continuous 16 buids [view timeline]
Update Configure Bui Test
site Build Name Revision Eor Wam Error :::. Fail Pass Time Start Time ¥
GitHub Actions {) Fedora Linux 39 GCC 13.2.1 RelWithDebinfo Ninja (devel)
22 hours ago
(xrootd)
CHHUD petions A CentOS Linux 7 GCC 7.3.1 RelWithDebinfo (devel) [] 22 hours ago
(xrootd)
f"”"b) ctons A AimaLinux 8.9 GCC 8.5.0 RelWithDebinfo (devel)] 22 hours ago
GitHub Actions macOS 12.7.3 AppleClang 14.0.0.14000029 RelWithDebinfo 22 hours ago
(xrootd) (devel)
D
el)Ac“o"s A Amalinux 9.3 GCC 11.4.1 RelWithDebinfo (devel) [LLHEIEED
:3"”":)"“”"5 A Ubuntu 22.04.4 LTS GCC 11.4.0 RelWithDebinfo (devel) [22 hours ago
(G)::ol::) A Alpine Linux v3.19 GCC 13.2.1 RelWithDeblnfo (devel) | 22 hours ago
GitHub Actions A Ubuntu 22.04.4 LTS Clang 14.0.0 RelWithDeblinfo (devel) —
(xrootd)
GitHub Actions A Fedora Linux 39 GCC 13.2.1 RelWithDebinfo Ninja (devel) Mar 13, 2024 - 01:54
(xrootd) w uTC
GRitD Actions A CentOS Linux 7 GCC 7.3.1 RelWithDebinfo (devel) [Mari3, 201 01iod
(xrootd)
f""“b) it A AimaLinux 8.9 GCC 8.5.0 RelWithDebinfo (devel)] Mart, 5‘;204 013
GitHub Actions A AimaLinux 9.3 GCC 11.4.1 RelWithDebinfo (devel)] Mar13, 2024 - D55
(xrootd)
GitHub Actions A Ubuntu 22.04.4 LTS Clang 14.0.0 RelWithDebinfo (devel) Mar 13, 2024 - 0153
(xrootd) utc
GitHub Actions Mar 13, 2024 - 0153
e A Ubuntu 22.04.4 LTS GCC 11.4.0 RelWithDebinfo (devel) [] e
GitHub Actions macos 12.7.3 AppleClang 14.0.0.14000029 RelWithDebinfo Mar 13, 2024 - 01:53
(xrootd) (devel) utc
GitHub Actions B Mar 13, 2024 - 01:53
(xrootd) A Alpine Linux v3.19 GCC 13.2.1 RelWithDeblnfo (devel) | uTe
Items per page | Al
CDash v3.3.0-102-6-0a0750c230 © Kitware | Report problems | View as JSON | 0.06s (0.055)

_' CDASN curentTestng Day 2024-03-14 | Startod ot 0700 UTC

10

https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD

@ XRootD - Coverage Settings Dashboard

° Coverage started on Tuesday, September 10 2024
XRootD on GitHub overage Summary _

Total Coverage 4195 Satisfactory coverage
Tested lines 36295 3
. Untested lines 50227 Dangerously low coverage
» New README in Markdown
Files Satisfactorily Covered 373
Files Unsatisfactorily Covered 392
> GitH ub Actions il Show coverage over time
Directories (33) | No Executable Code (0) | Zero (230) | Low (102) | Medium (123) | Satisfactory (206) | Complete (104) | All (765) Show Filters
o o
Show |25 v|entries
e Continuous Integration EX
. Lines not .
a a A pri a A
Directory 4 Status 4 Percentage cverea. Y Priority 4 Author §
{ 7 9630% 127 None
. R P M / D E B Pa C kag es src/XrdTpe Satisfactory ¥
tests/XrdEc satisfacory "0 94.47% 25/452 None
tests/XrdCl Safisfactory. |/ G776 136/1738 None
Y Pyt h o n W h ee I S tests/common satisfactory 00 7831% 54/249 None
src/XrdSecunix satisfacory C——— T3 78.00% 11/50 None
src/XrdEc Satisfactory C) 76.52% 231/984 None
e QEMU cros s-p|atform srofxrdcl Saisfaciory TS 6421% 701319594 None
src/XrdSecsss Medium 58.48% None
. src/XrdZip Medium 56.71% None
» CTeSt S c rl pt src/XrdSys Medium [— 1Y 17 None
src/XrdSec Medium EETTT 4821% None
sre/XrdXml Medium T 45.89% None
> c D as h Das h boa rd src/Xrdofs Medium S 43.68% None
src/XrdCms Medium T 39.94% None
https:/my.cdash.org/index.php?project=XRootD siexm Medium 38:63% None
src/XrdCks Medium (TS 38.51% None
src/XrdXrootd Medium) 38.05% None

https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub
» New README in Markdown
» GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
» CTest script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

N
a
o
@

{

// if the MsgHandler is already being used to process another request
// (kXR_oksofar) we need to wait

[7--
if(pOksofarAsAnswer)

BRRREEEER

XrdSysCondVarHelper 1ck(pCV);
while(pResponse) pCV.Wait();

N
BN e a
N W N =
NS @

¥
else
{
BEYE 2440 if(pResponse)
|_123] {
124 0 Log *log = DefaultEnv::Getlog();

|

log->Warning(ExDbgMsg, "[%s] MsgHandler is examining a response although "

| 126 "it already owns a response: Ox%x (message: %s).",
128 0 | pRequest ->GetObfuscatedDescription().c_str());

| 129} | }

130} | ¥

| 131) |

BEEH 2560 | if(msg->GetSize() < 8)

EED |

BEES 2560 | ServerResponse *rsp = (ServerResponse *)msg->GetBuffer();

BEED 2560 | ClientRequest *req = (ClientRequest *)pRequest->GetBuffer();

KL 2560 | uint16_t status = 0;

EEL] 2560 | uint32_t dlen = 0;

XD |

[~ 140} 1 P

| 141] | // We only care about async responses, but those are extracted now

| 142 | // in the SocketHandler.

BE | Jf mmm e e e e e

BEEXLL] 2560 | if(rsp->hdr.status == kXR_attn)

| 145} | {
146 0 | return Ignore;

| 147] | ¥

[148] | B B e e e e e e e ns

| 149] // We got a sync message - check if it belongs to us

[150} | S/ =wmmmmmm e eese e e s meseseemesemteseessessmmee e

| 151] | else

152} | {

BETE 20560 if(rsp->hdr.streamidi@] != reg->header, streamidl0] ||

12

https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub

>

New README in Markdown
GitHub Actions
e Continuous Integration
e RPM/DEB Packages
e Python wheels
e QEMU cross-platform
CTest script
CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[Files

¥ master -

Q Go to file

> M
> B github
> @ bindings
> I cmake
> BB debian
> I docker
v @ docs
> M@ man
) CMakeLists.xt
[CONTRIBUTING.md
[INSTALLmd
[README_IPV4_To_IPV6
[ReleaseNotes.txt
[TESTING.md
> W packaging
> I src
> B tests
> B ups
> BB utils
O gitattributes
O gitignore
O gitlab-ciyml
O mailmap
O CMakeLists.txt
[copviNG
[copvING.BSD
[coPvING.LGPL
[CTestConfig.cmake
Doxyfile
LICENSE
MANIFEST.in
README.md
VERSION

D
D
D
D
[}
D

cmake_uninstall.cmake.in

4

Q

Preview | Code | Blame 360 lines (305 loc) - 16.8 k8 raw | &) [2] =

xrootd / docs / TESTING.md T Top

Running XRootD Tests on other platforms with Docker and/or Podman

If you would like to run XRootD tests on other platforms, you can use the xrd-docker script and associated Dockerfile s in the
docker/ subdirectory. The steps needed are described below.

Create an XRootD tarball to build in the container

The first thing that needs to be done is packaging a tarball with the version of XRootD to be used to build in the container image. The
command xrd-docker package by default creates a tarball named xrootd.tar.gz in the current directory using the Heap of the
currently checked branch. We recommend changing directory to the docker/ directory in the XRootD git repository in order to run
these commands. Suppose we would like to run the tests for release v5.6.4. Then, we would run

$ xrd-docker package v5.6.4 [l

to create the tarball that will be used to build the container image. The tarball created by this command is a standard tarball created
with git archive . Inside it, the VERsION file contains the expanded version which is used by the new spec file to detect the version of
XRootD being built. You can also create a source RPM with such tarballs, but they must be built with rpmbuild --with git as donein
the Cl builds and the Dockerfile s in the docker/build/ subdirectory.

Build the container image

The next step is to build the container image for the desired OS. It can be built with either docker or podman . The xrd-docker script
has the build command to facilitate this. Currently, supported OSs for building are CentOS 7, AlmaLinux 8, AlmaLinux 9, Fedora. The
command to build the image is simply

$ xrd-docker build <0S> ©

where <0s> is one of centos7 (default), almas, almag,or fedora.The name simply chooses which Dockerfile is used from the
build/ directory, as they are named Dockerfile.<0s> for each suported OS. It is possible to add new Dockerfile s following this
same naming scheme to support custom setups and still use xrd-docker build command to build an image. The images built with
xrd-docker build are named simply xrootd (latest being a default tag added by docker), and an extra xrootd:<0s> tag is added to
allow having it built for multiple OSs at the same time. The current Dockerfile s use the spec file and build the image using the RPM
packaging workflow, installing dependencies as declared in the spec file, in the first stage, building the RPMs in a second stage, then,
in a third stage starting from a fresh image, the RPMs built in stage 2 are copied over and installed with yum or dnf .

Switching between docker and podman if both are installed

The xrd-docker script takes either docker or podman if available, in this order. If you have only one of the two installed, everything
should work without any extra setup, but if you have both installed and would like to use podman instead of docker for building the
images, it can be done by exporting an environment variable:

$ export DOCKER=$(command -v podman) @
$ xrd-docker build # uses podman from now on...

Appendix

13

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

°
= 0 xrootd / xrootd Q Type /] to search > U O n B8 a

<> Code (Issues 95 1% Pull requests 3 Q) Discussions () Actions [Projects @ Security |2 Insights £ Settings

Actions New workflow QEMU Q Filter workflow runs cee

QEMU.yml
All workflows

Workflows 1 workflow run Event Status « Branch « Actor ~
Cl
DEB This workflow has a workflow_dispatch event trigger. Run workflow ~
Python Use workflow from
© Qemu
QEMU mastel B he et~
QEMU #1: Manually run by amadio e asier
RPM Pt
fedora =
Management
8 Cachiss Architecture *
$390x s

Runners

https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml

[Files xrootd / .github / workflows / QEMU.yml M Top
Code Blame 57 lines (49 loc) - 1.16 KB Raw r_g S 2~ E]
¥ master - + | Q
30
Q Gotofile t 31 concurrency:
32 group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.os }}-${{ inputs.arch }}
> . .ci = 33 cancel-in-progress: true
34
v [@ .github/workflows 3e Aapaee
D Cl.yml 36 run:
37 shell: bash
O DEByml 38
I D QEMU.yml 39 env:
490 DOCKER: podman
O RPM.yml a1
42 jobs:
O pythonyml 43 buildx:
>l bindings a4 name: QEMU (${{ inputs.os }}-${{ inputs.arch }})
45 runs-on: ubuntu-latest
> BB cmake 46
5 . debian 47 steps:
48 - name: Clone repository
> . docker 49 uses: actions/checkout@v3
50 with:
> @ docs 51 fetch-depth: @
> [packaging 2
53 - name: Setup QEMU for cross-building images
> . src 54 run: docker run --rm --privileged multiarch/gemu-user-static --reset -p yes
> B tests =
56 - name: Cross-build container with docker/podman buildx
> ups 57 run:lcd docker && ./xrd-docker buildx ${{ inputs.os }} ${{ inputs.arch }}I
> BB utils

15

https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml

docker $ xrd-docker
xrd-docker [COMMAND] [ARGS]

COMMANDS :

clean remove tarball created by package command

package [VERSION] create xrootd.tar.gz tarball (VERSION=HEAD by default)

build [0S] build docker image based on 0S: centos7 (default), alma8, alma9

buildx [0S] [ARCH] cross-build docker image based on OS/ARCH pair. Supported architectures
are amd64, aarch64, ppc64le, s390x (big-endian). Default O0S is fedora.
You can see supported platforms with docker buildx inspect --bootstrap.

gemu setup QEMU to be able to run cross-builds with buildx command.

Note: The test suite runs automatically during the container builds

docker $ xrd-docker package

Creating tarball for XRootD v5.7.1

docker $ 1s

build xrd-docker xrootd.tar.gz

docker $ 1ls build

Dockerfile.alma8 Dockerfile.alma9 Dockerfile.centos7 Dockerfile.debian Dockerfile.fedora Dockerfile.ubuntu
docker $ xrd-docker qemu

Setting /usr/bin/gemu-alpha-static as binfmt interpreter for alpha

Setting /usr/bin/gemu-arm-static as binfmt interpreter for arm

Setting /usr/bin/qemu-sparc-static as binfmt interpreter for sparc

Setting /usr/bin/gemu-sparc32plus-static as binfmt interpreter for sparc32plus
Setting /usr/bin/gemu-sparc64-static as binfmt interpreter for sparc64

Setting /usr/bin/gemu-ppc-static as binfmt interpreter for ppc

Setting /usr/bin/qemu-ppc64-static as binfmt interpreter for ppcé64

Setting /usr/bin/gemu-ppc64le-static as binfmt interpreter for ppcé64le

Setting /usr/bin/gemu-m68k-static as binfmt interpreter for m68k

Setting /usr/bin/gemu-s390x-static as binfmt interpreter for s390x

Setting /usr/bin/qemu-aarch64-static as binfmt interpreter for aarch64

Setting /usr/bin/gemu-aarch64_be-static as binfmt interpreter for aarch64_be

docker $ xrd-docker buildx alma9 s390x

docker $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

xrootd alma9-s390x e36db8e93819 1 minute ago 2.61GB
multiarch/qemu-user-static latest 3539aaa87393 19 months ago 305MB

Issues, Discussions, Security Vulnerabilities

= 0 xrootd / xrootd Q Type (/] to search

<> code | ® Issues 89 17 Pullrequests 4 lC!J Discussionsl ® Actions [Projects | O Security 194

Welcome to XRootD Discussions!

Announcements - amadio

Q is:open (<) Sort by: Latest activity « Label ~
Categories Vi Discussions
ICI vi i di . X1 » How to implement TAPE REST API call
¥ View all discussions BISEIESOLE Documentation Issue
Announcements maksiks announced on Apr 24 in Announcements
* General

need help with configuration for davix-cp

+ v~ (@[] Q.Q

[~ Insights 3 Settings

L —
e

m Oz

. ldeas maksiks asked on Mar 19 in Q&A - Unanswered
& Polls
Welcome to XRootD Discussions!
' Q&A ())
o Q 'r 5 0 dig onnauncad on Cob 16 00 Annao % D O

18

GitHub Actions Overview

<> Code

Actions

© Issues 89

= 0 xrootd / xrootd

11 Pull requests

New workflow

All workflows

Cl
CodeQL
cov
DEB
macOS
Python
QEMU

RPM

Management

£ caches

Q Type (7] to search

4 L) Discussions ® Actions | Projects

cov
cov.yml

Help us improve GitHub Actions

C
@© security 194 |~ Insights

Q Filter workflow runs

°
O &

83 Settings

Give feedback

Tell us how to make GitHub Actions work better for you with three quick questions.

51 workflow runs

This workflow has a workflow_dispatch event trigger.

@ Change type in XrdSutCacheArg_t to long...

COV #51: Commit ca9c703 pushed by amadio

@ Add error string to e2sMap if EBADE is ou...

COV #50: Commit f633e0f pushed by abh3

Event ~ Status

Use workflow from

Run workflow

deve .

Branch

& Attestations

Runners

@ o) - £y .

X

Actor ~

Run workflow

@ 7m 44s

€

19

GitHub Actions Overview

I (A Summary

Jobs

@ centos 7
@ Alma Linux 8
@ Alma Linux 9

@ Fedora 40

Run details

(5 Usage

&Y Workflow file

/\ centos7

Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actio..

Show more

A Deprecation notice: v1, v2, and v3 of the artifact actions

The following artifacts were uploaded using a version of actions/upload-artifact that is schedu..

Show more

Artifacts
Produced during runtime

Name Size

@ almas 44.7 MB K]
@ alma9 32.9 MB & U
@ centos7 32.2 MB & 0
@ fe39 31.9 MB & U

20

Summary

Configure, build, test cycle automated with CMake (test.cmake)
e Low entry barrier, easy to run same thing as the Cl locally on your machine
Continuous Integration with GitHub Actions
e Leverages test.cmake script and DEB/RPM packaging to keep Cl description simple
Builds and runs tests on all supported platforms
e Alpine (MUSL), CentOS 7, Alma 8, Alma 9, Fedora, Ubuntu (GCC & Clang), macOS
CDash dashboard results to make digging through errors more easily
Coverage reports in CDash as well as CodeCov.io (not covered)
e Make it clear which areas of the code are not covered by tests
Use static analysis to spot problems in parts of the code which are not covered by tests

e Clang-tidy, CodeQL, valgrind, asan, tsan, etc.

21

XRootD

