

FTS Service Status at BNL

Hironori Ito

XRootD and FTS Workshop at STFC UK Sept 10th, 2024

Current Status

- FTS Agents
 - 9 hosts
 - 64 GB RAM
 - 16 CPU threads
 - RHEV Clusters
 - Scalability
 - Horizontally (more VMs)
 - Vertically (more CPUs, more RAMs, etc...)
 - Resiliency
 - RHEL 7
 - Issues
 - RHEV Ending soon (2026)
 - RHEL7 (VM support will end soon)
 - New FTS is not supported
- FTS DB
 - Physical host
 - NVME SSD 2.2 TB
 - 256GB RAM
 - MySQL 8.0

VM1	VM2 F	• RHEV FTS Ag	• Clu gen	• uste its	VM8 rs	··· ··· VM9	
		MyS FTS		DB			

Future Setup

- FTS Agents
 - 9 or more hosts
 - 64 GB RAM
 - 16 CPU threads
 - Openshift
 - In progress
 - Scalability
 - Resiliency
 - Container support
 - RHEL 9 and beyond
 - In progress
- FTS DB
 - Physical host
 - NVME SSD 2.2 TB
 - 256GB RAM
 - MySQL 8

ATLAS & Belle II VOs

- BNL FTS serves primarily ATLAS and Belle II
- ATLAS
 - North American sites
- Belle II
 - All transfers except RAW data SEs

Mini Data Challenges in US

- Mini Data Challenges
 - US ATLAS
 - Prior to DC24, there were series of data challenges in US
 - Identify the current capabilities and deficiencies to prepare US sites for HL-LHC
 - Testing upto the full network and/or storage capabilities
 - Higher than DC target
 - Plan to do periodic tests to check any issues and monitor progress
 - Do tests on demand by sites
 - Using the load generator script
 - Joint mini challenges with US CMS
 - NOTE: CMS has their own FTS
 - Identify the multi VO issues on network
 - Any chock points?
 - BNL FTS has been also used for Belle II mini data challenge
 - To check the site performance

USATLAS T2 Mini Tests

- AGLT2
 - Destinations
 - 200 Gbps
- MWT2
 - Destinations
 - 200 Gbps
- BNL
 - Source
 - 2x400 Gbps (at the time of this test. It is now 4x400)

AGLT2 ~ 150Gbps

MWT2 ~ 180Gbps

US ATLAS T1 Mini Test

• BNL as source

Brookhaven

National Laboratory

- BNL had 2x400 Gbps at that time of this test. (Now, it is 4x400 Gbps.)
- AGLT2 and MWT2 as destinations

WebDAV vs XRootD

- XRootD is not primarily used for storage-tostorage WAN transfers in ATLAS and Belle II.
- ATLAS uses XCache to cache the data at a site.
 - XCache can trigger large data transfers.

- There are no differences in observed maximum throughput between WebDAV and XRootd
- Dip in the throughput seen during
 XRootD testing was caused by the small number of failed transfers
 - XRootD door is not well monitored
 - Small number of failures have a big impact to the maximum throughput due to FTS optimizer regardless of the protocol.

US ATLAS Data WRITE Throughput ~

Effect of slow transfers

Some other fun stuff

- Some other clients for GFAL and FTS
 - Written purely in Ruby and Crystal
 - webdav-ls.rb, webdav-rm.rb, ftsDelegate.rb, ftsSubmit.rb, etc...
 - Load Generator for mini data challenge
 - NetworkLoadGen.rb
 - Submitting FTS requests periodically with the list of files with the data size corresponds to desired data volume periodically.
 - Token not supported yet.
 - They are found at
 - <u>https://bnlbox.sdcc.bnl.gov/index.php/s/XGs6LJEGNzf69zK</u>

Load Generator

Load generator can generate consistent network load at the desired rate. Network and BNL FTS monitor shows the same throughput

BNL FTS Monitor

Network Monitor

Conclusion

- BNL FTS has been in production successfully for two experiments; ATLAS and Belle II
 - It helps to have more than one FTS
 - ATLAS: CERN and BNL
 - Belle II: KEK and BNL
 - As a backup
 - For testing
 - Split loads and functions
- BNL FTS has been used for data challenge
 - US mini data challenge will continue

