
Pelican and the OSDF: An 
Overview



Introducing the

The              is a federated platform for 
delivering datasets from repositories to 

compute in an effective, scalable manner.
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OSDF Integrates Independent Repositories 
into a common fabric

• About a dozen 
repositories 
integrated already, 
more on the way.

• Working to grow: 
• clients,

• integrated 
resources, and

• environments.
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OSDF Architecture - Vision

Long-term vision:
We want OSDF to be an “all-science” CDN.

Requires:

• Connect many repositories to the 
distribution fabric.

• Provide clients that enable as many use 
cases.

And benefit from the network effects.
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A bit on the cache layer…

• Anyone can run a cache!
• However, the OSDF 

centrally runs regional 
caches, mostly at network 
locations.

• Builds on top of a 
distributed Kubernetes 
cluster run by the National 
Research Platform (NRP).
• Single, uniform interface to 

run services across the 
country.

• “Typical” cache hardware 
is ~100GbE / 20TB NVMe.



The            : Connecting your repository

The OSDF provides an “adapter plug”, connecting your science 
repository to the national and international cyberinfrastructure.

The OSDF is 
operated by 

Using 
hardware from

And integrates a wide 
range of open science,
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OSDF & Pelican

• You may have seen prior 
presentations about the 
OSDF – it (or predecessors) 
have existed for ~10 years.

• We split out the technology 
powering the OSDF and 
christened it the “Pelican 
Platform”.
• Same components as before, 

just integrated into a 
standalone platform.
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The Pelican Project

The OSDF is operated by              using hardware from           and others. 

Who develops the software?

The Pelican project (OAC-2331480) is a newly-funded, $7M/4-year 
project with the following goals:

1. Strengthen and Advance the OSDF.

2. Expand the types of computing where OSDF is impactful.

3. Expand the science user communities.
• With a particular driver of the climate community.
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Who uses the OSDF

A few notable use cases:

• LIGO distributes their proprietary data via OSDF.

• NRAO has used it for image processing.

• NCAR connects its Research Data Archive (~5PB of climate data).

• DUNE uses it for conditions data

• Several experiments use it for container distribution

• Individual PIs on the OSPool use it for managing inputs and outputs.



by the numbers

Over the last 12 
months, the OSDF

transferred

230PB &

125 req/s

Data used by

15 science 

collaborations &

~120 OSPool 

users
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Example Daily Volume – June 2024

Note: individual experiments can still dominate a day’s activities.



The OSDF: A brief history
Starting in ancient times – 2009.
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Any time, Any Data, Anywhere

• In ~2009, the teams at Nebraska, Wisconsin, and UCSD 
started using the XRootD software to build out a data 
federation for CMS.

• This turned into a 3-year funded project, AAA (NSF 
#1104664), starting in 2011.

• Outcomes include:
• A robust data federation, based on the XRootD protocol, that 

delivers petabytes to CMS through this day.

• Highly tailored to the needs of the High Energy Physics community.

AAA Project
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Evolution toward the OSDF

• Around 2016, the OSG Consortium built on top of the AAA 
approach.
• Originally used to export the “Stash” filesystem at U.Chicago; hence, the 

caching infrastructure was “StashCache”.

• Evolutions from being CMS-specific:
• Used the cache software, developed in AAA, for data delivery.
• Switched to                        -based authorization (OAC-1738962, 2114989).
• Origins could register with the OSG registration service.

• This evolved into the OSDF in ~2021:
• Hardware was placed into the network.
• Emphasis on Kubernetes-based packaging.
• Distributed service operations with Kubernetes and the NRP.
• NSF-funded hardware projects join in the federation.

Stash/Stash
Cache

14Resulted in the Pelican Project in 2023!



How does the OSDF work?
A brief tour through the Pelican architecture as implemented by the OSDF.
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OSDF in Practice

• Currently, the most common 
client for the OSDF is the 
OSPool.

• The OSPool is a distributed High 
Throughput Computing service, 
part of the OSG Consortium and 
run by PATh.
• The OSPool is a distributed 

HTCondor pool, run across ~60 US 
sites, including 28 CC* awardees 
(active + ‘alumni’).
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OSDF In Practice

• If HTCondor needs an object – 
say, a container – for a job, the 
first step is to start the OSDF 
client.

• The OSDF client contacts the 
manager, requesting to read 
the object.

17



OSDF In Practice

• The manager determines a 
nearby cache to serve the 
object.
• Every location in the lower 48 

states is within 500 miles from an 
OSDF cache hosted by the NRP.

• If the object is in cache, it is 
served to the client 
immediately.
• Otherwise…
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OSDF In Practice

• The cache contacts the origin 
hosting the object.
• The object prefix is used as a 

routing key to determine the 
correct origin.

• The origin will read the object 
from the underlying object 
store.
• Typically, a filesystem – but 

expanding to many dataset 
repository types!
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Architecture: Recap

• An origin service integrates the 
object store into the OSDF in the 
same way a CE integrates a batch 
system into the OSPool.  Interfaces 
to move data and map 
authorizations.

• The cache service stores and 
forwards objects, providing 
scalability to the data access.

• The manager selects a source/sink 
of an object for clients and 
maintains the namespace.
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Zooming in –
Technical Components



Pelican Implementation

• The Pelican core is a standalone software project.
• Golang for core; Next.js for web UI.
• Shipped as a single statically-linked executable.
• Fairly significant reasonable test suite (~50% code coverage).

• For origins/caches, forks & manages an XRootD process.
• Dynamically generates XRootD configuration.  One, YAML-based config file for 

admins to manage.

• All components have a web (management) interface.
• Distributed via RPM and containers.  Majority use is containers.

https://github.com/PelicanPlatform/pelican

Commit graph from the last 12 months



Pelican “Manager” Components

The central manager contains two 
components:

• The Registry maintains the 
authoritative list of known caches, 
origins, and namespaces.
• Also associates each entity with a list 

of public keys.
• Authorization is done by signing an 

appropriate token with the pubkey.

• The Director receives requests from 
clients / caches and selects an 
appropriate service.
• All communication done over HTTP!

Registry Director

Cache
Cache

Cache
Client



Web UI – Registry and Director



Pelican uses HTTP

• Pelican uses HTTP to move bytes.

• We hew to using standard HTTP 
where possible.  While we prefer 
you use the Pelican client, any 
HTTP client suffices.
• Downloading an object? => GET

• Uploading an object? => PUT

• Want to know if the object exists? => 
HEAD



Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*



Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2; 
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109



Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2; 
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109



Example director response
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Director Response

• If you speak “plain HTTP”, you only understand the “blue” headers 
and will successfully access the data.

• If you are the “Pelican client”, you can interpret the “red” headers:
• X-pelican-authorization: What token the client needs to successfully access 

the data.

• X-pelican-namespace: What namespace the object is in.  Informs client how 
to reuse the director response; no need to return to director for each object.

• X-pelican-token-generation: If the client doesn’t have a usable token, how to 
receive one.

• Link: An ordered list of potential endpoints (caches) that can serve the 
requests.  Actually, a standard RFC header (RFC 6249).



Pelican Origin

• Pelican daemon launches and 
manages the xrootd daemon.
• However, HTTP data movement requests 

go straight to the xrootd process.

• pelican’s HTTP interface is used for 
monitoring, management, and token 
issuer.

• XRootD can be configured for a variety 
of backends.

Pelican Origin

pelican

xrootd

OA4MP 
(issuer)

HTTP

HTTP



Pelican Cache

• Similar setup to the origin: two 
separate processes, two ports for 
HTTP.
• Given the director and origin works 

exclusively over HTTP, the XCache must 
talk to them over HTTP as well.

• How is this done?  See next talk!

Pelican Cache

pelican

xrootd
(Xcache)

HTTP

HTTP

Pelican 
Director

Pelican 
Origin

HTTP



A slide for the XRootD people out there…

Cache Container

Pelican process

XRootD process
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Note: pelican plugin is 
a modest wrapper 
around libcurl.



Client - CLI

• While curl can be used, we have quite a bit of specialized knowledge:
• Immutable files means file download resumption is straightforward.
• Parse the extra director headers to understand where backup caches are.  Retry as 

necessary.
• From the director headers, we know what tokens are required and how to generate 

them.

• The client can also do metadata operations (“stat”, “list”), recursive 
upload/downloads of directories.

• The client also serves as a plugin to HTCondor, enabling HTCondor to do 
the data movement (instead of buried inside user scripts).

• The client is all in the same static binary as the server – the entire system is 
the one file.



Client - Python

• While we love CLIs, we want to tap into the Python community 
(which is more interactive/visualization focused).

• Accordingly, we started a FSSpec for Pelican.
• Summer student was able to use the FSSpec to run PyTorch against the OSDF.

• Allows us to tap into more communities (particularly, a large 
contingent of climate science).

https://github.com/PelicanPlatform/pelicanfs


Monitoring

• Pelican natively uses Prometheus for monitoring.
• Embeds Prometheus itself, meaning a full Prometheus setup is at each 

origin/cache: You have all monitoring you need locally!

• Embeds an instance of the Shoveler.  Allows you to forward to non-ES 
systems.

• The built-in Prometheus monitoring powers the web dashboards and 
(increasingly) used for performance statistics from both XRootD and 
Pelican.



Zooming out



Pelican Year 1 – quite the whirlwind!

• We reengineered the origin and cache services, added new central 
services, and greatly improved the OSDF’s integration with HTCSS.
• OSDF saw corresponding enormous growth, with some days moving >2PB.

• We’ve picked up new science partners (notably, NCAR) and supported 
some great science (NRAO).

• Working to provide more visibility into the system: what’s my cache 
hardware doing?  who’s using my objects?  who am I impacting?



Planning Ahead

• Development only:
• Additional backends (DataVerse), stabilizing/completing the new-er backends.

• More robust web interface, better monitoring dashboards.

• Additional configuration options for the issuer.

• New “collections API”, allowing user sharing at the prefix level.

• Client functionality around synchronizing.

• Larger project:
• Much to do in training, documentation.

• Expand within the climate user community.

• Expand work with some bigger use cases (LIGO, NRAO).



The            : Connecting to your datasets
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Operates (most of) the                hardware

Operates the               services

The OSG Consortium is the “umbrella” we work within.

To acknowledge all of the partners working together...

Provides the software

OAC-2331480

OAC-2030508

OAC-2112167



Questions?
This project is supported by the National Science Foundation under Cooperative 
Agreements OAC-2331480. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation.
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