
Pelican and the OSDF: An
Overview

Introducing the

The is a federated platform for
delivering datasets from repositories to

compute in an effective, scalable manner.

2

OSDF Integrates Independent Repositories
into a common fabric

• About a dozen
repositories
integrated already,
more on the way.

• Working to grow:
• clients,

• integrated
resources, and

• environments.

3

AWS
Open Data

DeltaAI

= existing integration

OSDF Architecture - Vision

Long-term vision:
We want OSDF to be an “all-science” CDN.

Requires:

• Connect many repositories to the
distribution fabric.

• Provide clients that enable as many use
cases.

And benefit from the network effects.

4

A bit on the cache layer…

• Anyone can run a cache!
• However, the OSDF

centrally runs regional
caches, mostly at network
locations.

• Builds on top of a
distributed Kubernetes
cluster run by the National
Research Platform (NRP).
• Single, uniform interface to

run services across the
country.

• “Typical” cache hardware
is ~100GbE / 20TB NVMe.

The : Connecting your repository

The OSDF provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is
operated by

Using
hardware from

And integrates a wide
range of open science,

6
As part of the OSG Consortium’s Fabric of Services

OSDF & Pelican

• You may have seen prior
presentations about the
OSDF – it (or predecessors)
have existed for ~10 years.

• We split out the technology
powering the OSDF and
christened it the “Pelican
Platform”.
• Same components as before,

just integrated into a
standalone platform.

7

Software Service

The Pelican Project

The OSDF is operated by using hardware from and others.

Who develops the software?

The Pelican project (OAC-2331480) is a newly-funded, $7M/4-year
project with the following goals:

1. Strengthen and Advance the OSDF.

2. Expand the types of computing where OSDF is impactful.

3. Expand the science user communities.
• With a particular driver of the climate community.

8

Who uses the OSDF

A few notable use cases:

• LIGO distributes their proprietary data via OSDF.

• NRAO has used it for image processing.

• NCAR connects its Research Data Archive (~5PB of climate data).

• DUNE uses it for conditions data

• Several experiments use it for container distribution

• Individual PIs on the OSPool use it for managing inputs and outputs.

by the numbers

Over the last 12
months, the OSDF

transferred

230PB &

125 req/s

Data used by

15 science

collaborations &

~120 OSPool

users

10

Example Daily Volume – June 2024

Note: individual experiments can still dominate a day’s activities.

The OSDF: A brief history
Starting in ancient times – 2009.

12

Any time, Any Data, Anywhere

• In ~2009, the teams at Nebraska, Wisconsin, and UCSD
started using the XRootD software to build out a data
federation for CMS.

• This turned into a 3-year funded project, AAA (NSF
#1104664), starting in 2011.

• Outcomes include:
• A robust data federation, based on the XRootD protocol, that

delivers petabytes to CMS through this day.

• Highly tailored to the needs of the High Energy Physics community.

AAA Project

13

Evolution toward the OSDF

• Around 2016, the OSG Consortium built on top of the AAA
approach.
• Originally used to export the “Stash” filesystem at U.Chicago; hence, the

caching infrastructure was “StashCache”.

• Evolutions from being CMS-specific:
• Used the cache software, developed in AAA, for data delivery.
• Switched to -based authorization (OAC-1738962, 2114989).
• Origins could register with the OSG registration service.

• This evolved into the OSDF in ~2021:
• Hardware was placed into the network.
• Emphasis on Kubernetes-based packaging.
• Distributed service operations with Kubernetes and the NRP.
• NSF-funded hardware projects join in the federation.

Stash/Stash
Cache

14Resulted in the Pelican Project in 2023!

How does the OSDF work?
A brief tour through the Pelican architecture as implemented by the OSDF.

15

OSDF in Practice

• Currently, the most common
client for the OSDF is the
OSPool.

• The OSPool is a distributed High
Throughput Computing service,
part of the OSG Consortium and
run by PATh.
• The OSPool is a distributed

HTCondor pool, run across ~60 US
sites, including 28 CC* awardees
(active + ‘alumni’).

16
Let’s run through a HTCondor Example

OSDF In Practice

• If HTCondor needs an object –
say, a container – for a job, the
first step is to start the OSDF
client.

• The OSDF client contacts the
manager, requesting to read
the object.

17

OSDF In Practice

• The manager determines a
nearby cache to serve the
object.
• Every location in the lower 48

states is within 500 miles from an
OSDF cache hosted by the NRP.

• If the object is in cache, it is
served to the client
immediately.
• Otherwise…

18

OSDF In Practice

• The cache contacts the origin
hosting the object.
• The object prefix is used as a

routing key to determine the
correct origin.

• The origin will read the object
from the underlying object
store.
• Typically, a filesystem – but

expanding to many dataset
repository types!

19

Architecture: Recap

• An origin service integrates the
object store into the OSDF in the
same way a CE integrates a batch
system into the OSPool. Interfaces
to move data and map
authorizations.

• The cache service stores and
forwards objects, providing
scalability to the data access.

• The manager selects a source/sink
of an object for clients and
maintains the namespace.

20

Zooming in –
Technical Components

Pelican Implementation

• The Pelican core is a standalone software project.
• Golang for core; Next.js for web UI.
• Shipped as a single statically-linked executable.
• Fairly significant reasonable test suite (~50% code coverage).

• For origins/caches, forks & manages an XRootD process.
• Dynamically generates XRootD configuration. One, YAML-based config file for

admins to manage.

• All components have a web (management) interface.
• Distributed via RPM and containers. Majority use is containers.

https://github.com/PelicanPlatform/pelican

Commit graph from the last 12 months

Pelican “Manager” Components

The central manager contains two
components:

• The Registry maintains the
authoritative list of known caches,
origins, and namespaces.
• Also associates each entity with a list

of public keys.
• Authorization is done by signing an

appropriate token with the pubkey.

• The Director receives requests from
clients / caches and selects an
appropriate service.
• All communication done over HTTP!

Registry Director

Cache
Cache

Cache
Client

Web UI – Registry and Director

Pelican uses HTTP

• Pelican uses HTTP to move bytes.

• We hew to using standard HTTP
where possible. While we prefer
you use the Pelican client, any
HTTP client suffices.
• Downloading an object? => GET

• Uploading an object? => PUT

• Want to know if the object exists? =>
HEAD

Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example director response

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-url=https://origin-
auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Director Response

• If you speak “plain HTTP”, you only understand the “blue” headers
and will successfully access the data.

• If you are the “Pelican client”, you can interpret the “red” headers:
• X-pelican-authorization: What token the client needs to successfully access

the data.

• X-pelican-namespace: What namespace the object is in. Informs client how
to reuse the director response; no need to return to director for each object.

• X-pelican-token-generation: If the client doesn’t have a usable token, how to
receive one.

• Link: An ordered list of potential endpoints (caches) that can serve the
requests. Actually, a standard RFC header (RFC 6249).

Pelican Origin

• Pelican daemon launches and
manages the xrootd daemon.
• However, HTTP data movement requests

go straight to the xrootd process.

• pelican’s HTTP interface is used for
monitoring, management, and token
issuer.

• XRootD can be configured for a variety
of backends.

Pelican Origin

pelican

xrootd

OA4MP
(issuer)

HTTP

HTTP

Pelican Cache

• Similar setup to the origin: two
separate processes, two ports for
HTTP.
• Given the director and origin works

exclusively over HTTP, the XCache must
talk to them over HTTP as well.

• How is this done? See next talk!

Pelican Cache

pelican

xrootd
(Xcache)

HTTP

HTTP

Pelican
Director

Pelican
Origin

HTTP

A slide for the XRootD people out there…

Cache Container

Pelican process

XRootD process

H
T

TP

Cache

Storage

Client
Pelican
Plugin

Origin Container

Pelican process

XRootD process

H
T

TP

B
acken

d

O
SS

Object
Store

HTTP GET

Note: pelican plugin is
a modest wrapper
around libcurl.

Client - CLI

• While curl can be used, we have quite a bit of specialized knowledge:
• Immutable files means file download resumption is straightforward.
• Parse the extra director headers to understand where backup caches are. Retry as

necessary.
• From the director headers, we know what tokens are required and how to generate

them.

• The client can also do metadata operations (“stat”, “list”), recursive
upload/downloads of directories.

• The client also serves as a plugin to HTCondor, enabling HTCondor to do
the data movement (instead of buried inside user scripts).

• The client is all in the same static binary as the server – the entire system is
the one file.

Client - Python

• While we love CLIs, we want to tap into the Python community
(which is more interactive/visualization focused).

• Accordingly, we started a FSSpec for Pelican.
• Summer student was able to use the FSSpec to run PyTorch against the OSDF.

• Allows us to tap into more communities (particularly, a large
contingent of climate science).

https://github.com/PelicanPlatform/pelicanfs

Monitoring

• Pelican natively uses Prometheus for monitoring.
• Embeds Prometheus itself, meaning a full Prometheus setup is at each

origin/cache: You have all monitoring you need locally!

• Embeds an instance of the Shoveler. Allows you to forward to non-ES
systems.

• The built-in Prometheus monitoring powers the web dashboards and
(increasingly) used for performance statistics from both XRootD and
Pelican.

Zooming out

Pelican Year 1 – quite the whirlwind!

• We reengineered the origin and cache services, added new central
services, and greatly improved the OSDF’s integration with HTCSS.
• OSDF saw corresponding enormous growth, with some days moving >2PB.

• We’ve picked up new science partners (notably, NCAR) and supported
some great science (NRAO).

• Working to provide more visibility into the system: what’s my cache
hardware doing? who’s using my objects? who am I impacting?

Planning Ahead

• Development only:
• Additional backends (DataVerse), stabilizing/completing the new-er backends.

• More robust web interface, better monitoring dashboards.

• Additional configuration options for the issuer.

• New “collections API”, allowing user sharing at the prefix level.

• Client functionality around synchronizing.

• Larger project:
• Much to do in training, documentation.

• Expand within the climate user community.

• Expand work with some bigger use cases (LIGO, NRAO).

The : Connecting to your datasets

40

Operates (most of) the hardware

Operates the services

The OSG Consortium is the “umbrella” we work within.

To acknowledge all of the partners working together...

Provides the software

OAC-2331480

OAC-2030508

OAC-2112167

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

	Slide 1: Pelican and the OSDF: An Overview
	Slide 2: Introducing the
	Slide 3: OSDF Integrates Independent Repositories into a common fabric
	Slide 4: OSDF Architecture - Vision
	Slide 5: A bit on the cache layer…
	Slide 6: The : Connecting your repository
	Slide 7: OSDF & Pelican
	Slide 8: The Pelican Project
	Slide 9: Who uses the OSDF
	Slide 10: by the numbers
	Slide 11: Example Daily Volume – June 2024
	Slide 12: The OSDF: A brief history
	Slide 13: Any time, Any Data, Anywhere
	Slide 14: Evolution toward the OSDF
	Slide 15: How does the OSDF work?
	Slide 16: OSDF in Practice
	Slide 17: OSDF In Practice
	Slide 18: OSDF In Practice
	Slide 19: OSDF In Practice
	Slide 20: Architecture: Recap
	Slide 21: Zooming in – Technical Components
	Slide 22: Pelican Implementation
	Slide 23: Pelican “Manager” Components
	Slide 24: Web UI – Registry and Director
	Slide 25: Pelican uses HTTP
	Slide 26: Example request from client to director
	Slide 27: Example director response
	Slide 28: Example director response
	Slide 29: Example director response
	Slide 30: Director Response
	Slide 31: Pelican Origin
	Slide 32: Pelican Cache
	Slide 33: A slide for the XRootD people out there…
	Slide 34: Client - CLI
	Slide 35: Client - Python
	Slide 36: Monitoring
	Slide 37: Zooming out
	Slide 38: Pelican Year 1 – quite the whirlwind!
	Slide 39: Planning Ahead
	Slide 40: The : Connecting to your datasets
	Slide 41: Questions?

