
Pelican: Backends to
Globus, HTTP, and S3

Pelican and Storage Backends

OSG has a long, storied history in
using POSIX backends:

• Built-in POSIX backend translates
XRootD storage API to POSIX
open/read/write/close/etc calls as
a fixed user (“xrootd”).

• The “multiuser” backend
additionally changes the per-
thread filesystem UID/GID.
Requires you tell XRootD what Unix
user to use (story for a different
day).

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

open()

read()

https://github.com/opensciencegrid/xrootd-multiuser

Going beyond POSIX

• However, part of Pelican’s success will be based on how many
scientific data repositories we can integrate into OSDF.

• Rarely do we have direct POSIX access to remote dataset repositories.

• More commonly, a HTTP-based protocol!

• We have begun developing new plugins for HTTP-like things:
• https://github.com/PelicanPlatform/xrootd-s3-http

Basic Concept - HTTP

• The repository builds two libraries,
libXrdS3 and libXrdHttpServer.

• libXrdHttpServer translates the OSS
API to corresponding libcurl
requests.
• Requests are performed in an inline,

blocking manner.

• Open, Stat => HEAD

• Read => GET

• Write => PUT

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP

Basic Concept - HTTP

• For HTTP, the setup is designed to
export a simple, nearby web server.
• E.g., it’s not meant to proxy an entire

data federation; does not do anything
clever with redirects.

• Sample simple configuration:

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
Web

Server

ofs.osslib libXrdHTTPServer.so
httpserver.url_base https://example.com/foo

Pelican origin

And into the data federation

Xrootd
Daemon

pelican
Daemon

Web
Server

Director

Client

HTTP/S3 and the OSDF

• Note we have no locality
requirements – it matters
little if the Pelican origin
runs in the same physical
rack as the backend
webserver or simply
“nearby”.

• In the US, we utilize the
National Research Platform
(NRP) to place the origin at
the service at the nearest
network point of presence
we have available.

https://dash.nrp-nautilus.io/

HTTP/S3 and the OSDF

• The NRP provides a single,
“stretched” Kubernetes
cluster.

• Can use the “typical”
Kubernetes control plane
methods – it just happens
the cluster is spread
across the US.
• We use flux V2 / GitOps for

the production deploys.

HTTP and the OSDF

Local Site

Instead of this:

Web
Server

Pelican
Origin

Regional Network

Global
Network

We have this:

Local Site

Web
Server

Pelican
Origin

Regional Network

Global
Network

Configuration - HTTP

• The configuration allows “mounting” URLs at any storage prefix.

• Example: suppose you want the contents of https://example.com/foo
to be exported as prefix /bar from XRootD:

ofs.osslib libXrdHTTPServer.so
httpserver.url_base https://example.com/foo
httpserver.storage_prefix /bar

https://example.com/foo
https://example.com/foo

HTTP backend – functionality and ‘gotchas’

• The following works:
• Opening & Reading files, including vector reads & page reads.

• ‘Stat’-type functionality

• Single-operation writes

• The following doesn’t (but are in the plans):
• Multipart writes

• Checksums

• Directory listings

S3 Plugin

• Sharing the common libcurl-based
infrastructure, we have the S3 OSS
plugin.

• Similar concept: translate the XRootD
OSS API into a sequence of S3
commands.
• Includes support for “directory” listing!

• Tested with AWS S3, Ceph’s RGW, and
MinIO.

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
S3-

compat
endpoint

S3 Plugin – Export all Buckets

The plugin can export all buckets at the
S3 endpoint.

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
S3-

compat
endpoint

https://origin.example.com/prefix/foo/bar/baz

• https://origin.example.com: origin URL (could
be ‘root://origin.example.com’ as well).

• /prefix: Admin-specified export prefix.
• foo: name of bucket.
• bar/baz: name of object.

S3 Plugin – Export specific buckets

The plugin can also export just a specified
bucket.

In either mode, you can specify the
credentials to use with S3 xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
S3-

compat
endpoint

https://origin.example.com/prefix/foo/bar/baz

• https://origin.example.com: origin URL (could
be ‘root://origin.example.com’ as well)

• /prefix: Admin-specified export prefix.
• foo/bar/baz: name of object
• Bucket name to use is specified in

configuration and not from the URL.

S3 Configuration

• Each configured S3 backend goes
between an “s3.begin” and
“s3.end” directive.
• Specify one per bucket; if no

bucket is given, it’ll switch to
“export all buckets” mode.

• s3.url_style can be “virtual” or
“path”, depending on your S3
service’s configuration.

• s3.region is optional for some
implementations (Ceph RGW).

s3.begin
s3.path_name /prefix
s3.bucket_name my-great-bucket
s3.service_name s3.amazonaws.com
s3.region us-east-1
s3.service_url https://s3.amazonaws.com
s3.url_style virtual
s3.access_key_file /home/b/access-key
s3.secret_key_file /home/b/secret-key
s3.end

S3 Plugin – A note on authorization

Note we have decoupled the XRootD
authorization from the S3 authorization!

• The incoming request or session is
authenticated/authorized based on the
XRootD authorization system (e.g.,
X.509, VOMS, tokens).

• Once authorized, the generated request
to S3 is based on the admin-provided S3
access / secret key.
• The credential is not passed through from

the incoming request.
• Onus is on admin to ensure the auth’z aligns

between the two layers.

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
S3-

compat
endpoint

XRootD auth’z S3 auth’z

S3 and the OSDF

In the OSDF, S3 is used for:

• Exporting AWS OpenData
• Amazon has a program where large, popular scientific datasets are hosted for free

(no egress costs!).

• One S3-backed origin for each relevant AWS region.

• (In-progress) Exporting NOAA datasets in AWS:
• NOAA (National Oceanic and Atmospheric Administration; a US government agency)

has negotiated an egress-free contract with Amazon.

• Exporting a Ceph RGW instance at UW-Madison:
• Used for small-to-medium-scale datasets for teams that have nowhere else to go.

• ~400TB of capacity.

https://aws.amazon.com/opendata/?wwps-cards.sort-by=item.additionalFields.sortDate&wwps-cards.sort-order=desc

One more topic - Globus

• One common question we get from
US universities: why should we use
Pelican when we already have
Globus?
• A bit of a misnomer: Pelican & Globus do

different, but complimentary things.

• OTOH, we have lots of empathy for small
institutions: it’s a big “ask” to learn or
run anything new!

• Idea: if the site has a Globus DTN, can
we use Globus’s new HTTP-based API
as a backend?

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
Globus

endpoint

One more topic - Globus

• Globus’s “bread and butter” is
transferring files between two
Globus endpoints.
• Proprietary protocol (GridFTP-ish), no

guarantee of version stability.
• Historically, no such thing as

“downloading” from a Globus
endpoint – closed system.

• Recently, Globus added HTTP
functionality and a corresponding
API.
• Can even do “curl” if you’d like!

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
Globus

endpoint

Globus Integration

• To contact a Globus endpoint, you
need a valid Globus token.
• Globus uses traditional OAuth2 flows to

hand tokens to web applications.

• Idea: The Pelican daemon exports a web
interface – use that as the OAuth2
client!

• We then use libXrdHttpServer.so to
communicate with Globus.
• No Globus-specific code!

xrootd
daemon

HTTP HTTP
Globus

endpoint

Token
file

Pelican
daemon

OAuth
client

Globus Cloud
Services

httpserver.token_file /tmp/foo

Globus Collections and Authentication

Pelican will:

• (One-time) Request user to perform an
OAuth2 flow with Globus, approving the
origin’s access to the configured
collection.
• Pelican receives refresh and access token,

writes it to disk.

• (Periodically) Pelican runs refresh flow to
get a new access token, writes it to disk.

• (Per-request) libXrdHttpServer loads
token from disk, adds it to the
Authorization header of the HTTP
request.

Like S3, the Globus auth’z and XRootD
auth’z is decoupled.

Pelican configuration YAML snippet:

Origin:
 - GlobusCollectionID: ffc70472-e145-49e6-a41a-f7c695d31a0b
 - GlobusCollectionName: Human-Friendly Name
 - GlobusClientIDFile: /etc/pelican/globus-client
 - GlobusClientSecretFile: /etc/pelican/globus-secret

Globus – What Works, What Doesn’t

Works:

• Read-only file operations.

• ‘Stat’ files

Doesn’t:

• Writes (easy to fix, shared with HTTP).

• Directory listing (will need to spawn Globus-specific code!).

Vision: Re-exporting Globus into the WLCG
ecosystem

WLCG has historically struggled with HPC sites whose only data
movement option is Globus.

• One approach is to add Globus support to the WLCG data
management stack.
• Has been hard to maintain – need to plug in to several software stacks.

• Another approach is to ask the HPC site to run XRootD.
• Also hard to maintain: HPC site sees this as alien technology, hard to motivate

them to keep it alive.

Offsite in nearby
network (NRP)

Vision: Re-exporting Globus into the WLCG
ecosystem

Idea: Run XRootD an proxy “nearby” the site.

No presence needed at the HPC site, they (theoretically) don’t need to be aware that
XRootD exists.

No changes to WLCG DM tooling, no changes to the HPC site.

xrootd
daemon

HTTP HTTP
Globus

endpoint

FTS

Remote
site

HPC
FS

HPC Site

Think of what exists as a “tech preview” – will need help finishing it off!

Conclusions

• For Pelican, it’s important to integrate as many data repositories as
possible.
• This has led us into developing a series of HTTP-esque OSS plugins.

• Often, we run the origin ‘nearby’ on behalf of the site by using the NRP’s
Kubernetes cluster.

• The S3 backend is seeing production usage.

• The Globus backend is more “tech preview” but potentially has large
impact in extending Pelican’s reach.

• Next up? More specialized data repositories and their APIs, such as
the DataVerse software.

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

	Slide 1: Pelican: Backends to Globus, HTTP, and S3
	Slide 2: Pelican and Storage Backends
	Slide 3: Going beyond POSIX
	Slide 4: Basic Concept - HTTP
	Slide 5: Basic Concept - HTTP
	Slide 6: And into the data federation
	Slide 7: HTTP/S3 and the OSDF
	Slide 8: HTTP/S3 and the OSDF
	Slide 9: HTTP and the OSDF
	Slide 10: Configuration - HTTP
	Slide 11: HTTP backend – functionality and ‘gotchas’
	Slide 12: S3 Plugin
	Slide 13: S3 Plugin – Export all Buckets
	Slide 14: S3 Plugin – Export specific buckets
	Slide 15: S3 Configuration
	Slide 16: S3 Plugin – A note on authorization
	Slide 17: S3 and the OSDF
	Slide 18: One more topic - Globus
	Slide 19: One more topic - Globus
	Slide 20: Globus Integration
	Slide 21: Globus Collections and Authentication
	Slide 22: Globus – What Works, What Doesn’t
	Slide 23: Vision: Re-exporting Globus into the WLCG ecosystem
	Slide 24: Vision: Re-exporting Globus into the WLCG ecosystem
	Slide 25: Conclusions
	Slide 26: Questions?

