W

Pelican: Backends to
Globus, HTTP, and S3

Pelican and Storage Backends

OSG has a long, storied histo
using POSIX backends:

e Built-in POSIX backend trans
XRootD storage APl to POSIX
open/read/write/close/etc ¢
a fixed user (“xrootd”).

* The “multiuser” backend
additionally changes the per
thread filesystem UID/GID.
Requires you tell XRootD wh
user to use (story for a differ
day).

xrootd daemon

HTTP Storage

Protocol Laver
Layer Y

xrootd (ONY)

https://github.com/opensciencegrid/xrootd-multiuser

: Going beyond POSIX

* However, part of Pelican’s success will be based on how ma
scientific data repositories we can integrate into OSDF.

* Rarely do we have direct POSIX access to remote dataset re

* More commonly, a HTTP-based protocol!

* We have begun developing new plugins for HTTP-like things‘f
* https://github.com/PelicanPlatform/xrootd-s3-http

Basic Concept - HTTP

* The repository builds two libr
libXrdS3 and libXrdHttpServe

* l[ibXrdHttpServer translates t
APl to corresponding libcurl
requests.

* Requests are performed in an i
blocking manner.

* Open, Stat => HEAD
 Read => GET
* Write => PUT

xrootd daemon

HTTP Storage

I
ALY Layer HTTP
Layer

xrootd (ONY)

Basic Concept - HTTP

* For HTTP, the setup is design
export a simple, nearby web

e E.g., it's not meant to proxy an
data federation; does not do a
clever with redirects.

xrootd daemon

Storage

Web
Server

Protocol
(OROC0 Layer HTTP
Layer

xrootd (ONY)

e Sample simple configuration:

ofs.osslib libXrdHTTPServer.so
httpserver.url_base https://example.com/foo

4 And into the data federation

Director

Pelican origin

pelican
Daemon

Client
Xrootd
Daemon

HTTP/S3 and the OSDF

* Note we have no locality
requirements — it matters
little if the Pelican origin
runs in the same physical
rack as the backend
webserver or simply
“nearby”.

* In the US, we utilize the
National Research Platfo
(NRP) to place the origin
the service at the nearest
network point of presenc
we have available.

Reg 4 Queéb
Winnipeg
North
Dakota
Minnesota Queb
South 9 Ottawa M Nova
D3 . Vi otla
UdKO ad Verno ‘,,"
vomina 9 9 Torgo 9
= Mad ’ (9
g y\p[,qr,g lowa Chicago etri M ‘:w'mspl
Penns 9
S V=o'
colorado United States* T M yland
9 Kxf'“‘dxm\} \‘/“A‘*’, a
Ne Carol
\ex Atlanta
Ciudad Juarez exas oy 9 "
Nt U -
Austin
Florida
Monterrey Miami Batismas
2inaloa Mexico
Cuba
9 NRP Site
: Jamaica = OSDF-exclusive Site
Belize K==
Guatemala © Mapbox © OpenStreetMap Improve this P

https://dash.nrp-nautilus.io/

HTTP/S3 and the OSDF

* The NRP provides a sing
“stretched” Kubernetes
cluster.

e Can use the “typical”
Kubernetes control plan
methods — it just happe
the cluster is spread
across the US.

* We use flux V2 / GitOps
the production deploys.

1IpbOX;

Monterrey
13195 Mexico

Belize

Guatemala

Jamaica e
wms OSDF-exclusive Site

© Mapbox © OpenStreetMap Improve this'hisp

HTTP and the OSDF

Instead of this:

Local Site

Global

Web Pelican Network

Server

Global
Network

Configuration - HTTP

* The configuration allows “mounting” URLs at any storage pre

* Example: suppose you want the contents of https://example.
to be exported as prefix /bar from XRootD:

ofs.osslib libXrdHTTPServer.so
httpserver.url_base https://example.com/foo
httpserver.storage prefix /bar

https://example.com/foo
https://example.com/foo

HTTP backend — functionality and ‘gotchas’

* The following works:
* Opening & Reading files, including vector reads & page reads.
e ‘Stat’-type functionality
* Single-operation writes

* The following doesn’t (but are in the plans):
* Multipart writes
* Checksums
* Directory listings

S3 Plugin

e Sharing the common libcurl-ba
infrastructure, we have the S3
plugin.

* Similar concept: translate the
OSS APl into a sequence of S3
commands.

* Includes support for “directory”

» Tested with AWS S3, Ceph’s RG
MinlO.

xrootd daemon

Storage S3-

Protocol
L HTTP t
B ayer compa

xrootd (OSS) endpoint

S3 Plugin — Export all Buckets

The plugin can export all bucket
S3 endpoint. |

xrootd daemon

https://origin.example.com/prefix/foo/bar/baz

Storage S3-

Protocol

HTTP
L Layer compat

* https://origin.example.com: origin URL (could [EGE (0S3) endpoint
be ‘root://origin.example.com’ as well).

* /prefix: Admin-specified export prefix.

* foo: name of bucket.

* bar/baz: name of object.

S3 Plugin — Export specific buckets

The plugin can also export just a speci
bucket.

In either mode, you can specify the
credentials to use with S3

xrootd daemon

https://origin.example.com/prefix/foo/bar/baz

Storage

Protocol

L Layer

* https://origin.example.com: origin URL (could B (0S3)
be ‘root://origin.example.com’ as well)

* /prefix: Admin-specified export prefix.

* foo/bar/baz: name of object

e Bucket name to use is specified in

configuration and not from the URL.

HTTP

S3-
compat
endpoint

S3 Configuration

* Each configured S3 backend g
between an “s3.begin” and
“s3.end” directive.

* Specify one per bucket; if no
bucket is given, it’ll switch to
“export all buckets” mode.

s3.begin

s3.path_name /prefix

s3.bucket_ name my-great-bucket
s3.service_name Ss3.amazonaws.com
s3.region us-east-1

s3.service_url https://s3.amazonaws.com

e s3.url_style can be “virtual” or Sg-ur'—sty'i ;{:ft;*s') k
‘“« 7 . s3.access_key_file /nome/b/access-key
pat.h ’,depen.dmg (I)n your 53 s3.secret_key file /home/b/secret-key
service s COangU ration. s3.end

* s3.region is optional for some
implementations (Ceph RGW).

S3 Plugin — A note on authorization

Note we have decoupled the XRootl
authorization from the S3 authoriza

* The incoming request or session i
authenticated/authorized based o
XRootD authorization system (e.g.
X.509, VOMS, tokens).

* Once authorized, the generated r
to S3 is based on the admin-provi
access / secret key.

* The credential is not passed through
the incoming request.

e Onus is on admin to ensure the auth
between the two layers.

xrootd daemon

HTTP Storage

Protocol
L Layer
xrootd (OSS)

|
XRootD auth’z I
|

HTTP

S3 auth’z

S3-
compat
endpoint

S3 and the OSDF

In the OSDF, S3 is used for:
* Exporting AWS OpenData

 Amazon has a program where large, popular scientific datasets are hoste
(no egress costs!).

* One S3-backed origin for each relevant AWS region.

* (In-progress) Exporting NOAA datasets in AWS:

 NOAA (National Oceanic and Atmospheric Administration; a US governm
has negotiated an egress-free contract with Amazon.

* Exporting a Ceph RGW instance at UW-Madison:

* Used for small-to-medium-scale datasets for teams that have nowhere e
e ~400TB of capacity.

https://aws.amazon.com/opendata/?wwps-cards.sort-by=item.additionalFields.sortDate&wwps-cards.sort-order=desc

One more topic - Globus

* One common question we get f
US universities: why should we
Pelican when we already have
Globus?

* A bit of a misnomer: Pelican & Gl
different, but complimentary thin

 OTOH, we have lots of empathy f
institutions: it’s a big “ask” to lear
run anything new!

e |dea: if the site has a Globus DT
we use Globus’s new HTTP-bas
as a backend?

xrootd daemon

Storage

Globus
endpoint

FeiEEel Layer | HTTP
Layer

xrootd (ONY)

One more topic - Globus

* Globus’s “bread and butter” i
transferring files between tw
Globus endpoints.

* Proprietary protocol (GridFTP-i
guarantee of version stability.

 Historically, no such thing as
“downloading” from a Globus
endpoint — closed system.

e Recently, Globus added HTTP
functionality and a correspon
API.

e Can even do “curl” if you'd like

xrootd daemon

Storage

Globus
endpoint

Protocol

HTTP
L Layer

xrootd (ONY)

Globus Integration

* To contact a Globus endpoint, y
need a valid Globus token.

* Globus uses traditional OAuth2 fl
hand tokens to web applications.

* |dea: The Pelican daemon export
interface — use that as the OAuth
client!

* We then use libXrdHttpServer.s
communicate with Globus.

* No Globus-specific code!

httpserver.token_file /tmp/foo

Globus Cloud
Services

OAuth
Pelican client

daemon

xrootd Globus
daemon endpoint

Globus Collections and Authentication

Pelican will:

* (One-time) Request user to perform a
OAuth2 flow with Globus, approving
origin’s access to the configured
collection.

* Pelican receives refresh and access token
writes it to disk.

* (Periodically) Pelican runs refresh flo
get a new access token, writes it to di

» (Per-request) libXrdHttpServer loads
token from disk, adds it to the
Authorization header of the HTTP
request.

Like S3, the Globus auth’z and XRootD
auth’z is decoupled.

Pelican configuration YAML snippet:

Origin:

- GlobusCollectionName: Human-Friendly Name
- GlobusClientIDFile: /etc/pelican/globus-client
- GlobusClientSecretFile: /etc/pelican/globus-secret

- GlobusCollectionID: ffc70472-e145-49e6-a41a-f7c695d31a0b

: Globus — What Works, What Doesn’t

Works:

* Read-only file operations.

* ‘Stat’ files

Doesn’t:

* Writes (easy to fix, shared with HTTP).

* Directory listing (will need to spawn Globus-specific code!

; Vision: Re-exporting Globus into the WLCG
ecosystem

WLCG has historically struggled with HPC sites whose only dat
movement option is Globus.

* One approach is to add Globus support to the WLCG data
management stack.
* Has been hard to maintain — need to plug in to several software sta

* Another approach is to ask the HPC site to run XRootD.

* Also hard to maintain: HPC site sees this as alien technology, hard tc
them to keep it alive.

Vision: Re-exporting Globus into the WLCG
ecosystem

Idea: Run XRootD an proxy “nearby” the site.

No presence needed at the HPC site, they (theoretically) don’t need to be a
XRootD exists.

No changes to WLCG DM tooling, no changes to the HPC sit‘

Offsite in nearby HPC Site
network (NRP)

Remote xrootd " Globus
daemon endpoint

site

FS

e o o

r--
|

|

|

|

|

|

|

|

|

|

|

|

|

|

I-
r-

Think of what exists as a “tech preview” — will need help finishing it off!

Conclusions

* For Pelican, it's important to integrate as many data repositor
possible.
* This has led us into developing a series of HTTP-esque OSS plugins.
* Often, we run the origin ‘nearby’ on behalf of the site by using the
Kubernetes cluster.

* The S3 backend is seeing production usage.

* The Globus backend is more “tech preview” but potentially h
impact in extending Pelican’s reach.

* Next up? More specialized data repositories and their APIs, s
the DataVerse software.

Questions?

This project is supported by the National Science Foundation und

Agreements OAC-2331480. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the auth
necessarily reflect the views of the National Science Foundation.

	Slide 1: Pelican: Backends to Globus, HTTP, and S3
	Slide 2: Pelican and Storage Backends
	Slide 3: Going beyond POSIX
	Slide 4: Basic Concept - HTTP
	Slide 5: Basic Concept - HTTP
	Slide 6: And into the data federation
	Slide 7: HTTP/S3 and the OSDF
	Slide 8: HTTP/S3 and the OSDF
	Slide 9: HTTP and the OSDF
	Slide 10: Configuration - HTTP
	Slide 11: HTTP backend – functionality and ‘gotchas’
	Slide 12: S3 Plugin
	Slide 13: S3 Plugin – Export all Buckets
	Slide 14: S3 Plugin – Export specific buckets
	Slide 15: S3 Configuration
	Slide 16: S3 Plugin – A note on authorization
	Slide 17: S3 and the OSDF
	Slide 18: One more topic - Globus
	Slide 19: One more topic - Globus
	Slide 20: Globus Integration
	Slide 21: Globus Collections and Authentication
	Slide 22: Globus – What Works, What Doesn’t
	Slide 23: Vision: Re-exporting Globus into the WLCG ecosystem
	Slide 24: Vision: Re-exporting Globus into the WLCG ecosystem
	Slide 25: Conclusions
	Slide 26: Questions?

