¢
o

Making XCache Do What you
Want

Writing XrdCl Plugins for fun and profit

XCache and XrdCl

e XCache is the ‘caching prox
mode for XRootD.

* The cache itself is implemel
as the “XrdPfc” (Proxy File
Cache), a plugin for the XRo
storage layer.

e Really is “just” a storage plu
POSIX, S3, or HTTP backend

e Additional plugin layers exp
cache functionality.

Storage

Protocol

. Layer XrdCl

(XrdPfc)

A highly abstracted view of what’s
inside an xrootd daemon when
configured in XCache mode.

XCache and XrdCl

* When a request comes in,
determines if the requested
is available locally.

* |f local, it’s served from stora

* On a cache miss, XrdPfc ne
download the missing data.

e How? Use the XrdCl client!

* Great synergy: XCache uses t
exact same client library und
the venerable xrdcp.

HTTP Storage

Protocol Layer XrdCl xrootd
Layer

A highly abstracted view of what’s
inside an xrootd daemon when
configured in XCache mode.

Pelican Reminder

The Pelican software powers the OSDF, a shared scientific data
distribution infrastructure. A “CDN for science”.

Pelican relies on XCache to do the actual data movement.

* Hence, we need to ensure XCache fits well into the Pelican
architecture.

Pelican National Distribution Available
Connector Infrastructure Compute

Your Data

Using XCache in Pelican

Pelican has some challenging aspects for XCache:

* All components speak HTTP, not necessarily XRootD.
e (Particularly the director)

* Some origins are behind a firewall — no incoming connectivi
* Pass through client-provided timeouts.

Q: How do we make XrdCl do all this “stuff”?
A: Use the XrdCl plugin mechanism!

The XrdCl Plugin

* One can provide a shared library thz
re-implements the XrdCl C++ API.

* For registered URLs, the shared libr
object is called instead of the defau
XrdCl code.

* Provided the implementation obey
API “contract”, the shared library ca
have any desired behavior.

* Let’s write a plugin for Pelican!

Example plugin configuration file
contents:

url = pelican://*
lib = libXrdClPelican.dylib
enable = true

The above has libXrdClPelican.dylib used
for any pelican:// URL.

Pelican-izing XCache “Phase 1”

 Started by having the plugin
invoke libcurl for file operati

* Open =>HTTP GET sent to dir
gets redirect to the origin.

* Read => GET sent to origin
e Stat => HEAD

e Write => PUT (but not currentl
implemented)

Director

Redirect
HTTP GET

* There’s a similar plugin,
libXrdClHttp, that invokes Da

Pelican-izing XCache “Phase 1”

* Invoking libcurl directly reduce
dependencies.

 We use the libcurl “multi” inter
to have a single thread handle
transfers.

XrdCl API

Ill

Worker reads
from queue

* By default, 5 worker threads
e Concurrency is configurable

* When completed, the worker
thread invokes the appropriate
callback.

* Hugely benefits from the fact Xr
asynchronous/callback-based.

Curl

Curl
worker worker
1 2

worker
\l

Callback

Great, we have a XrdCl backend
for HTTP. Now what?

: Plugin data flow

HTTP GET

Director

.

: Plugin data flow

HTTP 307 Redirect

q .

Director

: Plugin data flow

HTTP GET
Client

.

: Plugin data flow

Director

Plugin data flow

Director

HTTP 307 Redirect

HTTP GET
Origin

: Plugin data flow

Plugin data flow

HTTP GET

data data

Note that the protocol between the client,
cache, director, and origin is based on HTTP.

Next step — origins behind firewalls

* We want scientists to easily setup their own origin.

e Aspirational Goal:
“l have a server in my lab and | want to share the data with my
collaborators via OSDF”

* Aspirational Goal: |
Anyone with enough technical knowledge to setup a WiFi router
setup a Pelican origin. |

* The average scientist doesn’t know how to:
* Get a public IPv4 address for their lab. Get rid of these
* Open an incoming port in the university firewall.
* Setup a DNS entry.
* Get a host certificate for their endpoint.

requirements!

Connection Reversing

* Q: How do you host an origin without incoming connectivit
A: Connection Reversing! %

Connection

Broker HTTP long-poll
for connection
requests.

Connection Reversing

* Broker is the central agent to turn around requests.
* Origin’s outgoing poll either times out or retrieves a request.

Request to
connect to

origin.

Connection
Broker

Responds with
request info and
\ nonce.

(Includes
cache
callback
address
and
nonce)

Connection Reversing

* The origin opens an outgoing connection to the cache.

* To authenticate the request, sends the nonce it received from the
* The cache will generate a temporary host certificate and send it t

Connection
Broker

Callback

address

Callback request (w/ nonce)
Cache Origin
Temporary Cert.

Connection Reversing

* Once the callback HTTP request has succeeded, we take advanta
fact that an established TCP connection is bidirectional.

* No difference between client and server!
* Pretend it’s a fresh connection and just treat it in reverse.

* The origin will use the temporary certificate it received (signed b

cache’s self-signed CA) for future communication from the cache.

Connection
Broker

>

Connection Reversing

e Cache: Use Unix file descriptor passing to send the TCP connecti
pelican to xrootd.

 Origin: Proxy requests from Pelican to xrootd.
e XrdCl plugin uses the TCP connection “normally” for HTTPS.

- N 4 N

./

xrootd rel

/ xrootd

pelican

(U

Connection Reversing — Putting it Together

* The XrdCl plugin gets a request for data.

* XrdCl plugin contacts the director, told the origin needs a con
reverse.

e XrdCl prepares and invokes a libcurl request.

* If libcurl doesn’t have an existing TCP connection, it’ll callback
plugin to provide one.
* The plugin will request a TCP connection from the pelican process.
* Pelican will do the connection reversing and return a file descriptor.
* The plugin returns the connected TCP socket to libcurl.

* Libcurl continues the request with the connected socket.

Handling client timeouts

* Q: Who is to blame for an unresponsive cache?
* |s the cache overloaded or deadlocked?
e Oris the cache fine and the origin unresponsive?

e Understanding if it’s an “origin problem” or a “cache problem
influences debugging and retry policies.

* If it’s an origin problem, then retrying at a different cache will likely c
contribute to origin overload! *

* Idea: Client should send, in its request, when it’ll give up on t
service.

* If the cache is responsive but waiting on the origin, timeout the orig
and respond with “bad origin”.

Request timeouts

* Client sets “X-Pelican-Timeout” header, e.g.
e X-Pelican-Timeout: 10s

* Timeout is copied from header to the XRootD “cgi”:
* /foo/bar?X-Pelican-Timeout=10s

* The XrdCl plugin gets the XRootD string and parses out the t
» /foo/bar
* Timeout: 10s

* The plugin will cancel the libcurl request prior to the timeo
* When timed out, the cache will return HTTP’s “502 Bad Gateway™.

Conclusions

e Pelican wants lots of custom behavior, different from the defa
XRootD / XCache experience.

e But don’t want to re-implement XCache! Many, many reasons to ke
component.

e XrdCl plugins allow us to do keep XCache but also mix in our desired

* The existing plugin allows use of HTTP origins and connection:
reversing.

* Food for thought: what’s the difference between a XrdCl plu
speaks HTTP and an OSS plugin that speaks HTTP?

See https://github.com/PelicanPlatform/xrdcl-pelican - have fun!

https://github.com/PelicanPlatform/xrdcl-pelican

Questions?

This project is supported by the National Science Foundation und

Agreements OAC-2331480. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the auth
necessarily reflect the views of the National Science Foundation.

	Slide 1: Making XCache Do What you Want
	Slide 2: XCache and XrdCl
	Slide 3: XCache and XrdCl
	Slide 4: Pelican Reminder
	Slide 5: Using XCache in Pelican
	Slide 6: The XrdCl Plugin
	Slide 7: Pelican-izing XCache “Phase 1”
	Slide 8: Pelican-izing XCache “Phase 1”
	Slide 9: Plugin data flow
	Slide 10: Plugin data flow
	Slide 11: Plugin data flow
	Slide 12: Plugin data flow
	Slide 13: Plugin data flow
	Slide 14: Plugin data flow
	Slide 15: Plugin data flow
	Slide 16: Next step – origins behind firewalls
	Slide 17: Connection Reversing
	Slide 18: Connection Reversing
	Slide 19: Connection Reversing
	Slide 20: Connection Reversing
	Slide 21: Connection Reversing
	Slide 22: Connection Reversing – Putting it Together
	Slide 23: Handling client timeouts
	Slide 24: Request timeouts
	Slide 25: Conclusions
	Slide 26: Questions?

