
Making XCache Do What you 
Want

Writing XrdCl Plugins for fun and profit



XCache and XrdCl

• XCache is the ‘caching proxy’ 
mode for XRootD.

• The cache itself is implemented 
as the “XrdPfc” (Proxy File 
Cache), a plugin for the XRootD 
storage layer.
• Really is “just” a storage plugin like 

POSIX, S3, or HTTP backends.

• Additional plugin layers expose the 
cache functionality.
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XCache and XrdCl

• When a request comes in, XrdPfc 
determines if the requested data 
is available locally.
• If local, it’s served from storage.

• On a cache miss, XrdPfc needs to 
download the missing data.

• How?  Use the XrdCl client!
• Great synergy: XCache uses the 

exact same client library underlying 
the venerable xrdcp.
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Pelican Reminder

The Pelican software powers the OSDF, a shared scientific data 
distribution infrastructure.  A “CDN for science”.

Pelican relies on XCache to do the actual data movement.

• Hence, we need to ensure XCache fits well into the Pelican 
architecture.



Using XCache in Pelican

Pelican has some challenging aspects for XCache:

• All components speak HTTP, not necessarily XRootD.
• (Particularly the director)

• Some origins are behind a firewall – no incoming connectivity.

• Pass through client-provided timeouts.

Q: How do we make XrdCl do all this “stuff”?
A: Use the XrdCl plugin mechanism!



The XrdCl Plugin

• One can provide a shared library that 
re-implements the XrdCl C++ API.

• For registered URLs, the shared library 
object is called instead of the default 
XrdCl code.

• Provided the implementation obeys the 
API “contract”, the shared library can 
have any desired behavior.
• Let’s write a plugin for Pelican!

Example plugin configuration file 
contents:

url = pelican://*
lib = libXrdClPelican.dylib
enable = true

The above has libXrdClPelican.dylib used 
for any pelican:// URL.



Pelican-izing XCache “Phase 1”

• Started by having the plugin 
invoke libcurl for file operations:
• Open => HTTP GET sent to director, 

gets redirect to the origin.

• Read => GET sent to origin

• Stat => HEAD

• Write => PUT (but not currently 
implemented)

• There’s a similar plugin, 
libXrdClHttp, that invokes Davix.
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Pelican-izing XCache “Phase 1”

• Invoking libcurl directly reduces 
dependencies.

• We use the libcurl “multi” interface 
to have a single thread handle many 
transfers.

• By default, 5 worker threads
• Concurrency is configurable

• When completed, the worker 
thread invokes the appropriate 
callback.
• Hugely benefits from the fact XrdCl is 

asynchronous/callback-based.
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Great, we have a XrdCl backend 
for HTTP.  Now what?
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Plugin data flow
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Plugin data flow

Director

Client Cache Origin
HTTP GET open()

data datadata

Note that the protocol between the client, 
cache, director, and origin is based on HTTP.



Next step – origins behind firewalls

• We want scientists to easily setup their own origin.

• Aspirational Goal: 
“I have a server in my lab and I want to share the data with my 
collaborators via OSDF”

• Aspirational Goal:
Anyone with enough technical knowledge to setup a WiFi router can 
setup a Pelican origin.

• The average scientist doesn’t know how to:
• Get a public IPv4 address for their lab.
• Open an incoming port in the university firewall.
• Setup a DNS entry.
• Get a host certificate for their endpoint.

Get rid of these 
requirements!



Connection Reversing

• Q: How do you host an origin without incoming connectivity?
A: Connection Reversing!
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Connection Reversing

• Broker is the central agent to turn around requests.
• Origin’s outgoing poll either times out or retrieves a request.

Connection 
Broker

Cache Origin

Responds with 
request info and 

nonce.

Request to 
connect to 
origin. (Includes 

cache 
callback 
address 
and 
nonce)



Connection Reversing

• The origin opens an outgoing connection to the cache.
• To authenticate the request, sends the nonce it received from the broker.

• The cache will generate a temporary host certificate and send it to the origin.
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Connection Reversing

• Once the callback HTTP request has succeeded, we take advantage of the 
fact that an established TCP connection is bidirectional.
• No difference between client and server!
• Pretend it’s a fresh connection and just treat it in reverse.

• The origin will use the temporary certificate it received (signed by the 
cache’s self-signed CA) for future communication from the cache.
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Origin

Connection Reversing

• Cache: Use Unix file descriptor passing to send the TCP connection from 
pelican to xrootd.

• Origin: Proxy requests from Pelican to xrootd.

• XrdCl plugin uses the TCP connection “normally” for HTTPS.
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Connection Reversing – Putting it Together

• The XrdCl plugin gets a request for data.

• XrdCl plugin contacts the director, told the origin needs a connection 
reverse.

• XrdCl prepares and invokes a libcurl request.

• If libcurl doesn’t have an existing TCP connection, it’ll callback to the 
plugin to provide one.
• The plugin will request a TCP connection from the pelican process.
• Pelican will do the connection reversing and return a file descriptor.
• The plugin returns the connected TCP socket to libcurl.

• Libcurl continues the request with the connected socket.



Handling client timeouts

• Q: Who is to blame for an unresponsive cache?
• Is the cache overloaded or deadlocked?
• Or is the cache fine and the origin unresponsive?

• Understanding if it’s an “origin problem” or a “cache problem” greatly 
influences debugging and retry policies.
• If it’s an origin problem, then retrying at a different cache will likely only 

contribute to origin overload!

• Idea: Client should send, in its request, when it’ll give up on the 
service.
• If the cache is responsive but waiting on the origin, timeout the origin request 

and respond with “bad origin”.



Request timeouts

• Client sets “X-Pelican-Timeout” header, e.g.
• X-Pelican-Timeout: 10s

• Timeout is copied from header to the XRootD “cgi”:
• /foo/bar?X-Pelican-Timeout=10s

• The XrdCl plugin gets the XRootD string and parses out the timeout
• /foo/bar

• Timeout: 10s

• The plugin will cancel the libcurl request prior to the timeout.
• When timed out, the cache will return HTTP’s “502 Bad Gateway”.



Conclusions

• Pelican wants lots of custom behavior, different from the default 
XRootD / XCache experience.
• But don’t want to re-implement XCache!  Many, many reasons to keep this 

component.

• XrdCl plugins allow us to do keep XCache but also mix in our desired behavior.

• The existing plugin allows use of HTTP origins and connection-
reversing.

• Food for thought: what’s the difference between a XrdCl plugin that 
speaks HTTP and an OSS plugin that speaks HTTP?

See https://github.com/PelicanPlatform/xrdcl-pelican - have fun!

https://github.com/PelicanPlatform/xrdcl-pelican


Questions?
This project is supported by the National Science Foundation under Cooperative 
Agreements OAC-2331480. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation.
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