
Making XCache Do What you
Want

Writing XrdCl Plugins for fun and profit

XCache and XrdCl

• XCache is the ‘caching proxy’
mode for XRootD.

• The cache itself is implemented
as the “XrdPfc” (Proxy File
Cache), a plugin for the XRootD
storage layer.
• Really is “just” a storage plugin like

POSIX, S3, or HTTP backends.

• Additional plugin layers expose the
cache functionality.

XCache

Protocol
Layer

Storage
Layer

(XrdPfc)
XrdCl

A highly abstracted view of what’s
inside an xrootd daemon when
configured in XCache mode.

XCache and XrdCl

• When a request comes in, XrdPfc
determines if the requested data
is available locally.
• If local, it’s served from storage.

• On a cache miss, XrdPfc needs to
download the missing data.

• How? Use the XrdCl client!
• Great synergy: XCache uses the

exact same client library underlying
the venerable xrdcp.

XCache

Protocol
Layer

Storage
Layer

(XrdPfc)
XrdCl

A highly abstracted view of what’s
inside an xrootd daemon when
configured in XCache mode.

HTTP

xrootd

xrootd

Pelican Reminder

The Pelican software powers the OSDF, a shared scientific data
distribution infrastructure. A “CDN for science”.

Pelican relies on XCache to do the actual data movement.

• Hence, we need to ensure XCache fits well into the Pelican
architecture.

Using XCache in Pelican

Pelican has some challenging aspects for XCache:

• All components speak HTTP, not necessarily XRootD.
• (Particularly the director)

• Some origins are behind a firewall – no incoming connectivity.

• Pass through client-provided timeouts.

Q: How do we make XrdCl do all this “stuff”?
A: Use the XrdCl plugin mechanism!

The XrdCl Plugin

• One can provide a shared library that
re-implements the XrdCl C++ API.

• For registered URLs, the shared library
object is called instead of the default
XrdCl code.

• Provided the implementation obeys the
API “contract”, the shared library can
have any desired behavior.
• Let’s write a plugin for Pelican!

Example plugin configuration file
contents:

url = pelican://*
lib = libXrdClPelican.dylib
enable = true

The above has libXrdClPelican.dylib used
for any pelican:// URL.

Pelican-izing XCache “Phase 1”

• Started by having the plugin
invoke libcurl for file operations:
• Open => HTTP GET sent to director,

gets redirect to the origin.

• Read => GET sent to origin

• Stat => HEAD

• Write => PUT (but not currently
implemented)

• There’s a similar plugin,
libXrdClHttp, that invokes Davix.

Director

Origin

XrdCl

HTTP GET

HTTP 307
Redirect

HTTP GET

Pelican-izing XCache “Phase 1”

• Invoking libcurl directly reduces
dependencies.

• We use the libcurl “multi” interface
to have a single thread handle many
transfers.

• By default, 5 worker threads
• Concurrency is configurable

• When completed, the worker
thread invokes the appropriate
callback.
• Hugely benefits from the fact XrdCl is

asynchronous/callback-based.

Curl
worker

1

Curl
worker

2

Curl
worker

N

…

XrdCl API
call

Request
Queued

Worker reads
from queue

Callback

Great, we have a XrdCl backend
for HTTP. Now what?

Plugin data flow

Director

Client Cache Origin

HTTP GET

Plugin data flow

Director

Client Cache Origin

HTTP 307 Redirect

Plugin data flow

Director

Client Cache Origin
HTTP GET

Plugin data flow

Director

Client Cache Origin

HTTP GET

Plugin data flow

Director

Client Cache Origin

HTTP 307 Redirect

HTTP GET

Plugin data flow

Director

Client Cache Origin
HTTP GET open()

Plugin data flow

Director

Client Cache Origin
HTTP GET open()

data datadata

Note that the protocol between the client,
cache, director, and origin is based on HTTP.

Next step – origins behind firewalls

• We want scientists to easily setup their own origin.

• Aspirational Goal:
“I have a server in my lab and I want to share the data with my
collaborators via OSDF”

• Aspirational Goal:
Anyone with enough technical knowledge to setup a WiFi router can
setup a Pelican origin.

• The average scientist doesn’t know how to:
• Get a public IPv4 address for their lab.
• Open an incoming port in the university firewall.
• Setup a DNS entry.
• Get a host certificate for their endpoint.

Get rid of these
requirements!

Connection Reversing

• Q: How do you host an origin without incoming connectivity?
A: Connection Reversing!

Connection
Broker

Cache Origin

HTTP long-poll
for connection

requests.

Connection Reversing

• Broker is the central agent to turn around requests.
• Origin’s outgoing poll either times out or retrieves a request.

Connection
Broker

Cache Origin

Responds with
request info and

nonce.

Request to
connect to
origin. (Includes

cache
callback
address
and
nonce)

Connection Reversing

• The origin opens an outgoing connection to the cache.
• To authenticate the request, sends the nonce it received from the broker.

• The cache will generate a temporary host certificate and send it to the origin.

Connection
Broker

Cache Origin

Callback
address

Callback request (w/ nonce)

Temporary Cert.

Connection Reversing

• Once the callback HTTP request has succeeded, we take advantage of the
fact that an established TCP connection is bidirectional.
• No difference between client and server!
• Pretend it’s a fresh connection and just treat it in reverse.

• The origin will use the temporary certificate it received (signed by the
cache’s self-signed CA) for future communication from the cache.

Connection
Broker

Cache Origin

Origin

Connection Reversing

• Cache: Use Unix file descriptor passing to send the TCP connection from
pelican to xrootd.

• Origin: Proxy requests from Pelican to xrootd.

• XrdCl plugin uses the TCP connection “normally” for HTTPS.

Cache

pelicanpelican

xrootd
xrootd

Connection Reversing – Putting it Together

• The XrdCl plugin gets a request for data.

• XrdCl plugin contacts the director, told the origin needs a connection
reverse.

• XrdCl prepares and invokes a libcurl request.

• If libcurl doesn’t have an existing TCP connection, it’ll callback to the
plugin to provide one.
• The plugin will request a TCP connection from the pelican process.
• Pelican will do the connection reversing and return a file descriptor.
• The plugin returns the connected TCP socket to libcurl.

• Libcurl continues the request with the connected socket.

Handling client timeouts

• Q: Who is to blame for an unresponsive cache?
• Is the cache overloaded or deadlocked?
• Or is the cache fine and the origin unresponsive?

• Understanding if it’s an “origin problem” or a “cache problem” greatly
influences debugging and retry policies.
• If it’s an origin problem, then retrying at a different cache will likely only

contribute to origin overload!

• Idea: Client should send, in its request, when it’ll give up on the
service.
• If the cache is responsive but waiting on the origin, timeout the origin request

and respond with “bad origin”.

Request timeouts

• Client sets “X-Pelican-Timeout” header, e.g.
• X-Pelican-Timeout: 10s

• Timeout is copied from header to the XRootD “cgi”:
• /foo/bar?X-Pelican-Timeout=10s

• The XrdCl plugin gets the XRootD string and parses out the timeout
• /foo/bar

• Timeout: 10s

• The plugin will cancel the libcurl request prior to the timeout.
• When timed out, the cache will return HTTP’s “502 Bad Gateway”.

Conclusions

• Pelican wants lots of custom behavior, different from the default
XRootD / XCache experience.
• But don’t want to re-implement XCache! Many, many reasons to keep this

component.

• XrdCl plugins allow us to do keep XCache but also mix in our desired behavior.

• The existing plugin allows use of HTTP origins and connection-
reversing.

• Food for thought: what’s the difference between a XrdCl plugin that
speaks HTTP and an OSS plugin that speaks HTTP?

See https://github.com/PelicanPlatform/xrdcl-pelican - have fun!

https://github.com/PelicanPlatform/xrdcl-pelican

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

	Slide 1: Making XCache Do What you Want
	Slide 2: XCache and XrdCl
	Slide 3: XCache and XrdCl
	Slide 4: Pelican Reminder
	Slide 5: Using XCache in Pelican
	Slide 6: The XrdCl Plugin
	Slide 7: Pelican-izing XCache “Phase 1”
	Slide 8: Pelican-izing XCache “Phase 1”
	Slide 9: Plugin data flow
	Slide 10: Plugin data flow
	Slide 11: Plugin data flow
	Slide 12: Plugin data flow
	Slide 13: Plugin data flow
	Slide 14: Plugin data flow
	Slide 15: Plugin data flow
	Slide 16: Next step – origins behind firewalls
	Slide 17: Connection Reversing
	Slide 18: Connection Reversing
	Slide 19: Connection Reversing
	Slide 20: Connection Reversing
	Slide 21: Connection Reversing
	Slide 22: Connection Reversing – Putting it Together
	Slide 23: Handling client timeouts
	Slide 24: Request timeouts
	Slide 25: Conclusions
	Slide 26: Questions?

