
The future of FTS

XRootD and FTS Workshop 2024 at STFC UK

Steven Murray on behalf of the CERN FTS team
September 2024

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 2

What’s wrong with FTS?

● Legacy code base

● Too much C++

● We use MySQL when our collective expertise is in PostgreSQL

● Scheduler and optimizer overload the DB

● Many scheduling problems

● Missing features

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 3

Legacy code base 1 of 3

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 4

Legacy code base 2 of 3

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 5

Legacy code base 3 of 3

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 6

Too much C++ - Moving towards Python

● Easier to hire staff with Python skills

● Easier to prototype new ideas in Python

● The following FTS daemons are written 100% in C++
● fts_msg_bulk – sends monitoring messages to ActiveMQ

● fts_qos – manages tape transfers

● fts_server – manages disk transfers

● Everything can be rewritten in Python except for the file-transfer code

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 7

Moving towards PostgreSQL
● Cold start performance problems with MySQL on top of NFS – unavoidable DBoD setup

● PostgreSQL is seen by the European Commission as a credible alternative to MySQL
● https://ec.europa.eu/commission/presscorner/detail/en/IP_10_40

● No single entity behind PostgreSQL

● PostgreSQL provides more index types allowing for more scalability options

● Multi-language support for stored procedures

● The IT Storage group is responsible for the CERN Tape Archive (CTA) project

● CTA uses PostgreSQL (and Oracle)

● The IT storage group have close ties with the ALICE experiment

● ALICE have a wealth of experience with PostgreSQL

●

https://ec.europa.eu/commission/presscorner/detail/en/IP_10_40

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 8

The FTS scheduler needs to be replaced
● Main reason – Amnesiac scheduler
● Scheduler immediately throws away all of its scheduling results

FTS-ATLAS: Scheduled vs process for Mon 2nd September 2024

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 9

Amnesiac scheduler overloads DB
● Good: FTS uses a replica DB to improve its performance:

● Main DB for queuing, configuring and scheduling

● Read-only replica DB for monitoring

● Bad: Main DB load is still too high:

● Scheduler retrieves many possible transfers, executes a few and forgets the rest

● Scheduler stats are always recalculated using hundreds of thousands of rows:
sql << "SELECT MAX(priority) "
 "FROM t_file "
 "WHERE "
 " vo_name=:voName AND source_se=:source AND dest_se=:dest AND "
 " file_state = 'SUBMITTED' AND "
 " hashed_id BETWEEN :hStart AND :hEnd"

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 10

Many scheduling problems

1) Link vs link starvation

2) Throughput starvation

3) Cannot specify source shares when writing to a common destination

4) Cannot prioritise geographically closer links of multi-source transfers

5) No concepts for tape archive and retrieve staging areas

6) Fake distributed index-partitioning – many FTS schedulers with no shared global-view :

● Transfer limits are exceeded

● Non-FIFO ordering

● Unwanted randomness and debugging noise

7) Aggressive scheduling when reaching the upper limit of a storage endpoint

8) Recalled tape-files garbage collected before being used

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 11

Link vs link starvation - implicit
ordering in C++ data structures
● When few transfers jobs can be started, implicit lexicographical order picks

the same links(s) each time the scheduler is executed:
boost::optional<TransferFile> TransferFileHandler::get(std::string vo)
{
 // get the index of the next File in turn for the VO
 boost::optional<FileIndex> index = getIndex(vo);

boost::optional<FileIndex> TransferFileHandler::getIndex(std::string vo)
{
 ...

 // find the item
 std::map<std::string, std::map< std::pair<std::string, std::string>, std::list<FileIndex> > >::iterator it =
 voToFileIndexes.find(vo);
 ...
 // get the index value
 FileIndex index = it->second[*src_dst].front();
 it->second[*src_dst].pop_front();

The map keys are
lexicographically ordered
source and destination pairs

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 12

Throughput starvation - slow and fast
transfers treated as equals
● Multiple sources writing to a common destination
● Destination is NOT saturated
● Equal number of concurrent transfers given to each source
● Throughput of each link is ignored

Source 1

Source 2

Destination
Incoming limit = 10

x5

x5

Fast transfers

Slow transfers

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 13

Throughput starvation –
lexicographical starvation
● Multiple sources writing to a common destination
● Destination IS saturated
● Very few transfers can takes place
● Some sources are starved due to lexicographical order of source/destination pairs

Source 1

Source 2

Destination
Incoming limit = 10

x10

Lexicographically first

Lexicographically second Never
If there is always only 1 transfer
to start on each scheduler run

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 14

Throughput starvation – transfers
started at fixed intervals

Time

Transfers

Sleep N seconds
Execute scheduler algorithm which
uses the DB and start next
transfers

Dead zone

● A transfer should be started when a previous one finishes

● Slow DB increases the “dead zone”

Long transfer

Short transfer

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 15

Recalled tape-files garbage collected
before being used

STAGING

STARTED

SUBMITTED

File-transfer with
tape-source submitted

Bring-online issued by
fts_qos daemon

Time passed /
fts_qos daemon
polls disk locality

Queue disk-to-disk
transfer as a brand-

new transfer

READY

fts_server daemon starts
disk-to-disk transfers

● File-transfers with a tape-source are split brain
● fts_qos and fts_server are unaware of each other
● Nothing prevents fts_qos from retrieving a large amount of files from tape
● fts_server may or may not be able to read them out before they are garbage collected

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 16

Possible additional features for the future

1) Support atomic uploads where supported by storage endpoints

2) Support for copying directory trees

3) Scheduling across multiple FTS instances – multi-instance constraints

4) Replayable transfers for debugging the Grid

5) Storage endpoint health monitoring

6) Million file user jobs – jobs are currently “small” batches for the FTS REST API

7) We hope to hear your feedback during this workshop

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 17

The plan – The steps to get to “FTS4”

1) Move from MySQL to PostgreSQL

2) Implement a dedicated FTS scheduler daemon in Python

3) Use DB in a scalable way

4) Add new functionalities

5) Migrate as much code as possible to Python

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 18

Current progress

● Ported all MySQL queries to PostgreSQL

● An “empty” scheduler has been written in Python

● First scalable uses of DB have been implemented

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 19

Scalable DB use

● Reduce database-server RAM requirements to the minimum

● When getting the next file-transfer:
● No in-memory sorting of queue contents

● No in-memory statistics gathering of queue contents

● The “Next” file transfer must be a read from a persistent DB index

● When scheduling
● Scheduler statistics must not be calculated from queue contents

● All scheduler statics must be running statics and stored in the database as such

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 20

First scalable statistics

● In a single transaction the fts3web application:
● Inserts a file transfer and increments the SUBMITTED count of the appropriate queue

● In a single transaction the “empty” FTS scheduler:
● Decrements the SUBMITTED count of the current queue and increments the SCHEDULED count of the next queue

● In a single transaction the fts_server daemon:
● Decrements the SCHEDULED count of the current queue and increments the READY count of the next queue

● In a single transaction the fts_server daemon:
● Decrements the READY count of the current queue and increments the ACTIVEACTIVE count of the next queue

● In a single transaction the fts_server daemon:
● Decrements the ACTIVE count of the current queue and increments the FINISHED count of the next queue

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 21

The anatomy of a queue
● A queue is for:

● A given activity share for

● A given Virtual Organisation (VO) over

● A given link (source and destination storage)

VO1

VO2

Activity1

Activity2

Youngest
medium
priority

Oldest
low
priority

Youngest
high
priority

Oldest
high
priority

Oldest
medium
priority

Youngest
low
priority

Destination
storage

Source
storage

● Example use-cases

● Activity shares protect DAQ streams

● Priorities expedite missing analysis files

The activity share vs priority debate is subjective. The above definitions are now frozen for FTS.

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 22

Table: t_queue

Table: t_file

The new t_queue DB table

queue_id
(primary key)

created vo_name source_se dest_se activity file_state nb_files

queue_id priority file_id
(primary key)

job_id source_surl dest_surl

Foreign
key

CREATE INDEX idx_file_queue ON t_file(queue_id, priority, file_id); file_id = FIFO order

See next slide

3 column index

● The idx_file_queue index enables the DB to order queue contents on disk – no in-memory sort needed

● PostgreSQL recommends multicolumn indexes do not exceed three columns:
● https://www.postgresql.org/docs/current/indexes-multicolumn.html

● queue_id allows the t_file table to not exceed a 3 column index
● The t_queue table allows as many identifying attributes as are necessary

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 23

Many sets of queues (file_state)

httpd
(fts3rest)

fts_scheduler

fts_server
(TransferService)

(TokenExchangeService)

file_state = SUBMITTED

file_state =
TOKEN_PREP

file_state =
SUBMITTED

file_state =
SCHEDULED

file_state =
SUBMITTED

fts_qos

file_state =
STAGING

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 24

The new “empty” Python scheduler

Submitted

Ready

Scheduled

Submitted

Ready

Inserted into DB by
FTS-REST API

Initial

Scheduled and started
by fts_server

Scheduled by the new
Python scheduler

Started by a modified
fts_server

Initial

Current FTS file
state machine

New FTS file
state machine

def schedule(dbconn):
 nb_scheduled = 0

 submitted_queues = get_queues_of_submitted_files(dbconn)

 for submitted_queue in submitted_queues:
 nb_scheduled += schedule_queue(submitted_queue)

 if nb_scheduled:
 log.info(f"Scheduled one or more transfers: nb_scheduled={nb_scheduled}")

The scheduler is currently “empty”

The future of FTS - XRootD and FTS Workshop 2024 at STFC UK 25

Next steps

● Continue to implement the population of “running” stats in the database

● Close the scheduler feedback-loop – finished/failed transfer events

● Flesh out the new scheduler in Python

● Getting a minimum working solution in production at CERN ASAP

● Add new functionalities

● Convert as much C++ to Python as possible

● Make the scheduler algorithm pluggable?

home.cern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

