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SETTING THE STAGE: XYZ ET AL.
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with Γp = 120 MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but different Q2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763 MeV and widths 70 and 159 MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T+

cc [287, 288]
and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar suffered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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cc̄ cc̄qq̄ cc̄qs̄ ccq̄q̄ ccc̄c̄ cc̄qqq

Quark model works up to
first S-wave thresholds
Beyond those: “Exotics”
Many near thresholds
=⇒ Hadronic Molecules?
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SETTING THE STAGE II: D-MESONSExample: Strange-Charm states
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Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Note: decay modes of D∗
s0(2317) and Ds1(2460) either D(∗)

s π or D(∗)
s γ → narrow

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 10/20

S=0, I=1/2 S=1, I=0

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Puzzles:

Why are/is

1 M(Ds1)&M(D∗
s0) so

light?

2 M(Ds1)−M(D∗
s0)

≃ M(D∗)−M(D)?

3 M(D∗
0) ≃ M(D∗

s0)?
M(D1) ≃ M(Ds1)?

The solution provides crucial information about the nature of these states
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HADRONIC MOLECULES

are few-hadron states, bound by the strong force
do exist: light nuclei.
e.g. deuteron as pn & hypertriton as Λd bound state
are located typically close to relevant continuum threshold;
e.g., for EB = m1 + m2 − M and γ =

√
2µEB

Edeuteron
B = 2.22 MeV (γ = 45 MeV)

Ehypertriton
B = (0.13 ± 0.05) MeV (to Λd) (γ = 13 MeV)

can be identified in observables (Weinberg compositeness):

g2
eff

4π
=

4M2γ

µ
(1 − λ2) → a = −2

(
1 − λ2

2 − λ2

)
1
γ
; r = −

(
λ2

1 − λ2

)
1
γ

where (1 − λ2)=probability to find molecular component in
bound state wave function

→ r ≳ 0 for molecule; r < 0 & |r | ≫ range of forces for compact state

Are there mesonic molecules?

THE NAME OF THE GAME:
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Picture by Soeren Lange

How can one disentangle the different structures?
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DISCLAIMERS AND OUTLINE
The method presented is ’diagnostic’ — especially,

it does not allow for conclusions on the binding force;

it allows one only to study individual states;

quantitative interpretation gets lost when states get bound too deeply
(’uncertainty’ ∼ Rγ)

To go beyond tailor made effective field theories needed

In this talk I present how a unitarized chiral theory (UChPT) can be applied to
Goldstoneboson D meson scattering and allows for a simultaneous study of
experimental and lattice data to reveal the nature of D∗

s0(2317) & D∗
0(2300)

and quantify the implications for other observables
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CHIRAL LAGRANGIAN (1)

The leading order Lagrangian (no free parameters)

L(1)
ϕP = DµPDµP† − m2PP†

with P = (D0,D+,D+
s ) for the D mesons, and the covariant derivative

DµP = ∂µP + PΓ†µ, DµP† = (∂µ + Γµ)P†,

Γµ =
1
2
(
u†∂µu + u∂µu†) ,

where uµ = i
[
u†(∂µ − irµ)u + u(∂µ − ilµ)u†] , u = eiλaϕa/(2F0)

Burdman, Donoghue (1992); Wise (1992); Yan et al. (1992)

this gives the Weinberg–Tomozawa term for Pϕ scattering:

∝ Eϕ +O(1/MD) (S − wave)

Interaction of kaons significantly stronger than that of pions
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CHIRAL LAGRANGIAN (2)
At the next-to-leading order p2 (6 free parameters)

F-K Guo, CH, S. Krewald, U.-G. Meißner, PLB666(2008)251

L(2)
ϕP = P [−h0⟨χ+⟩ − h1χ+ + h2⟨uµuµ⟩ − h3uµuµ]P†

+ DµP [h4⟨uµuν⟩ − h5{uµ,uν}]DνP†,

χ± = u†χu† ± uχ†u, χ = 2B0 diag(mu,md ,ms)

Low-energy constants:

h1 = 0.42: from MDs − MD

Same effective operator leads to strong isospin violation
mD+ − mD0 = ∆mstrong +∆me.m. = ((2.5 ± 0.2) + (2.3 ± 0.6)) MeV

h0: from quark mass dependence of charmed meson masses (lattice)

h2,3,4,5: fixed from lattice results on scattering lengths

calls for unitarisation =⇒ UChPT
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UNITARISATION
Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...

ChPT is only perturbatively consistent with unitarity.

Observe Im(t(s)) = σ(s) |t(s)|2 implies Im
(
t(s)−1

)
= −σ(s)

=⇒ write subtracted dispersion integral for t(s)−1

=⇒ fix Re(t(s)−1) by matching to ChPT

Effectively this gives

with ChPT expression for V ... and additional parameter a(µ) (from the loop)

Dependence on unitarization method needs to be clarified!
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FIT TO LATTICE DATA
fit LECs to lattice data for a(S,I)

Dxϕ
in selected channels Liu et al. PRD87(2013)014508

=⇒ 5 parameters: h2,h3,h4,h5 and a(µ)
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π/K/η–D(∗)/D(∗)
s scattering fixed

D∗
s0(2317) emerges as a pole with MD∗

s0
= 2315+18

−28 MeV (Eb = 47+28
−18);

since Eb(Ds0) = Eb(D∗
s1) + O(1/MD) =⇒ puzzel 2 solved

controlled quark
mass dependence
Fit range up to
Mπ = 500 MeV

Slide 8 20



INTERPRETATION A LA WEINBERG

D∗
s0(2317): a= eff

g
eff

g +O(1/β) ≃ −
(

2(1−λ2)
2−λ2

)
1
γ

=⇒ a = −(1.05±0.36) fm for molecule (λ2=0); smaller otherwise

150 200 250 300 350 400
Mπ [MeV]

0.0

0.2

0.4
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0.8

1.0

−
a
γ

pure molecule
Liu et al., PRD 87 (2013) 014508
Martinez Torres et al., JHEP 05 (2015) 153; data: Lang et al., PRD 90 (2014) 034510
RQCD, PRD 96 (2017) 074501
HadSpec, JHEP 02 (2021) 100

Various lattice studies show
under binding

study a γ (removes Eb dep.)

All analyses consistent with
purely molecular D∗

s0(2317)
(analogous for Ds1(2460))

=⇒ puzzel 1 solved
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EXP. TEST: HADRONIC WIDTHHadronic width

prediction from UChPT without lattice data
prediction from UChPT using lattice data

predictions from various non-molecular approaches
0
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Γ
(D

∗ s0
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31
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→
π
0
D

+ s
)

Measurement of width is decisive, if D∗
s0 is molecular or not

Experiment needs very high resolution → PANDA
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Genuine contribution:

EXP. TEST: HADRONIC DECAYS

mass differences, e.g.
mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
π0 − η mixing −→ parameters fixed

Isospin breaking scattering amplitude
e.g. KD → π0Ds predicted

Exp. Test: Hadronic decays
Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251

Isospin breaking (drives decay) via quark masses and charges

The same effective operators lead to

→ mass differences, e.g.
⊲ mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
⊲ π0 − η mixing −→ parameters fixed

→ Isospin breaking scattering amplitude
⊲ e.g. KD → π0Ds predicted
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Specific for

molecules!
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Specific for molecules:
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mass differences, e.g.
mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
π0 − η mixing −→ parameters fixed

Isospin breaking scattering amplitude
e.g. KD → π0Ds predicted

Exp. Test: Hadronic decays
Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251

Isospin breaking (drives decay) via quark masses and charges

The same effective operators lead to

→ mass differences, e.g.
⊲ mD+−mD0=∆mq+∆me.m. = ((2.5±0.2)+(2.3±0.6)) MeV
⊲ π0 − η mixing −→ parameters fixed

→ Isospin breaking scattering amplitude
⊲ e.g. KD → π0Ds predicted

K+

π0

π0
π0

π0

K0

K/ηK/η

η

D∗
s0

D∗
s0 D∗

s0

D∗
s0

D0

D+
s

D+
s D+

s

D+
s

D+

D/D+
s D/D+

s

Specific for

molecules!

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 18/20

Specific for

molecules!

Slide 6 20

-

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510
and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180

Experiment needs very high resolution → PANDA

Predict MB∗
s0
= 5722 ± 14 MeV and various decays Fu et al., EPJA58(2022)70

Most recent lattice result: MB∗
s0
= 5699 ± 14 MeV Hudspith & Mohler, [arXiv:2303.17295 [hep-lat]].

Next: Study multiplet structure from GB-D-meson scattering

[k
eV

]
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THE S = 0 SECTOR
Keeping parameters fixed one gets:

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP10(2016)011
Fits directly to these data: Z. H. Guo et al., EPJC 79(2019)13; M. F. M. Lutz et al., PRD106(2022)114038Poles for

Mπ≃391 MeV: (2264, 0) MeV [000] & (2468,113) MeV [110]
Mπ=139 MeV: (2105,102) MeV [100] & (2451,134) MeV [110]

Questions cq̄ nature of lowest lying 0+ D state, D∗
0(2300)
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POLE STRUCTURE FROM LATTICE STUDY
Lattice study reported only bound state pole Moir et al. [Had.Spec.Coll.] JHEP10(2016)011

Second pole was present, but location depends on amplitude model4
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Pole Locations on RS221

Fig. 2 The location of poles on sheet RS221 on the complex energy
plane. The 𝑥-axis and 𝑦-axis show the real and imaginary part of
energy, respectively. The poles from the amplitude parametrizations
employed in Ref. [24] are shown in yellow. The pole from the UChPT
amplitude [19] is shown in green [14]. The vertical green and blue
dashed lines represent the 𝐷𝜂 and 𝐷𝑠𝐾̄ thresholds, respectively. The
error bars show the 1𝜎 statistical uncertainty.

This prescription is straightforwardly generalized to arbitrary
transitions between sheets.
At a pion mass of about 391 MeV, the lowest pole in the

studied channel turns out to be a bound state, accordingly lo-
cated on sheet RS111 [24]; the same conclusion was reached
in UChPT in Ref. [14]. This pole was found in the fits of
all 9 parametrizations employed by the Hadron Spectrum
Collaboration [24]. At the same time, additional poles were
found on sheets RS211, RS221, and RS222. These additional
poles were found for almost all amplitude paramterizations
employed in Ref. [24], which were, however, not reported
in the publication since they not only scatter very much, but
also are in parts located outside the energy region where the
fit was performed. Table 3 shows the pole values found from
the search with the corresponding sheets from the different
amplitude parametrizations. The 1𝜎 uncertainties of the pole
values were calculated by the bootstrap method.
Graphically the poles on RS221 are displayed in Fig. 2.

In the following we focus the discussion on this sheet, since
this is the one where the UChPT amplitude has its most
prominent higher 𝐷∗

0 pole at physical [15] as well as the
unphysical meson masses employed in the lattice study [14].
The plots of the pole locations of the higher pole for the
different parametrizations on the other Riemann sheets that
connect closely to the physical axis (RS211 and RS222) are
shown in the Appendix. Table 4 gives the location of the
corresponding two particle thresholds.
Figure 2 and Fig. 13 in the Appendix and Table 3 clearly

show two important features of the poles extracted from dif-
ferent parametrizations: (𝑖) There is a significant correlation
between real part and imaginary part of the poles, and the
location of the pole extracted from the UChPT analysis is in
line with that correlation. (𝑖𝑖) All poles are located on hidden

sheets, which are the sheets that are not directly connected
to the physical sheet. For example, the RS221 poles are well
above the 𝐷𝑠𝐾̄ threshold. Thus they are all shielded by the
RS222 sheet and their effect on the amplitude can hardly
be seen above the 𝐷𝑠𝐾̄ threshold. As we discuss in the fol-
lowing, both features together guide one to an understanding
that there indeed needs to be a second pole in an amplitude
that describes the lattice data and that it is natural that the
original analysis performed on the lattice data lead to badly
constrained pole locations. The mechanism underlying this
is that the distance from the threshold is overcome by an
enhanced residue. This mechanism, also reported e.g. for the
case of the 𝑓0 (980) and 𝑎0 (980), was observed before as a
general feature of Flatté amplitudes [26].

2.2 Residues and Threshold distance

A resonance is characterized by the pole location, tradition-
ally parametrized as
√
𝑠𝑝 = 𝑀 − 𝑖Γ/2. (13)

Please note that the parameters 𝑀 and Γ, derived from the
pole location, agree to those found e.g. in the BW fits only
for narrow, isolated resonances — for details see the review
on resonances in Ref. [8]. Equally fundamental resonance
properties are provided by the pole residues. A pole-residue
quantifies the couplings of the resonance to the various chan-
nels. The residues of a pole located at 𝑠 = 𝑠𝑝 are defined as

𝑅𝑖 𝑗 = lim
𝑠→𝑠𝑝

(𝑠 − 𝑠𝑝)𝑇𝑖 𝑗 (𝑠). (14)

The residues can be easily obtained using the L’Hôpital rule
to compute the limit:

𝑅𝑖 𝑗 =

(
𝑑

𝑑𝑠
𝑇−1
𝑖 𝑗

)−1

𝑠=𝑠𝑝

. (15)

Since the residues factorize according to 𝑅2
𝑖 𝑗 = 𝑅𝑖𝑖𝑅 𝑗 𝑗

one can define an effective coupling via

𝑔𝑟𝑖 = 𝑅𝑖 𝑗/
√︁
𝑅 𝑗 𝑗 , (16)

which has dimension [mass]. The index 𝑟 is meant to dis-
tinguish the residues from the parameters 𝑔𝑖 that appear in
the 𝐾-matrix in Eq. (2). The couplings 𝑔𝑟𝑖 characterize the
transition strengths of the resonance to the channel. Those
residues can also be extracted from production reactions and
are independent of how the resonance was produced.
Since the poles of interest here are hidden, their effect

on the physical axis is visible only at the thresholds irre-
spective of their exact pole locations. Moreover, the visible
effect in the amplitude on the physical axis from a pole on
a hidden sheet close to the threshold with a small residue

2

by the Hadron Spectrum Collaboration in Ref. [23] reported
only one 𝐷∗

0 state just below the 𝐷𝜋 threshold, with the
pion mass of about 391 MeV. In this paper, we will discuss
whether the higher 𝐷∗

0 pole is consistent with the lattice
data, and propose a 𝐾-matrix formalism constrained with
the SU(3) flavor symmetry that can be used in analyzing
coupled-channel lattice data.

2 Analysis of the Amplitude from the Lattice study

In Ref. [23] lattice data for the strangeness zero, isospin-1/2
channel at a pion mass of about 391MeVwere presented and
analyzed with a sizable set of 𝐾-matrix parametrizations of
the kind

𝐾𝑖 𝑗 =

(
𝑔 (0)𝑖 + 𝑔 (1)𝑖 𝑠

) (
𝑔 (0)𝑗 + 𝑔 (1)𝑗 𝑠

)
𝑚2 − 𝑠 + 𝛾 (0)𝑖 𝑗 + 𝛾 (1)𝑖 𝑗 𝑠, (2)

where 𝑖 and 𝑗 label the different reaction channels and 𝑚,
𝑔 (𝑛)𝑖 and 𝛾 (𝑛)𝑖 𝑗 are real parameters to be determined in the fit
to the lattice data. From this, the 𝑇-matrix for the 𝑆-wave
coupled-channel (𝐷𝜋-𝐷𝜂-𝐷𝑠𝐾̄) scattering is given by

𝑇 (𝑠) = −16𝜋 𝑇𝐾 (𝑠), (3)

with 𝑇𝐾 (𝑠) defined as

𝑇−1
𝐾 (𝑠)𝑖 𝑗 = 𝐾−1 (𝑠)𝑖 𝑗 +

(
𝐼 (𝑖)CM (𝑠) − 𝐼

(𝑖)
CM (𝑚2)

)
𝛿𝑖 𝑗 , (4)

where the second term on the right-hand side contains the
Chew-Mandelstam function, subtracted at the 𝐾-matrix pole
parameter 𝑚. It is given by

𝐼 (𝑖)CM (𝑠) =
𝜌𝑖 (𝑠)
𝜋
log

[
𝜉𝑖 (𝑠) + 𝜌𝑖 (𝑠)
𝜉𝑖 (𝑠) − 𝜌𝑖 (𝑠)

]

−𝜉𝑖 (𝑠)
𝜋

𝑚 (𝑖)
2 − 𝑚 (𝑖)

1

𝑚 (𝑖)
1 + 𝑚 (𝑖)

2

log
𝑚 (𝑖)
2

𝑚 (𝑖)
1

, (5)

with

𝜉𝑖 (𝑠) = 1 −

(
𝑚 (𝑖)
1 + 𝑚 (𝑖)

2

)2
𝑠

, (6)

𝜌2𝑖 (𝑠) = 𝜉𝑖 (𝑠)
(
1 − (𝑚 (𝑖)

1 − 𝑚 (𝑖)
2 )2

𝑠

)
, (7)

where 𝑚 (𝑖)
1 and 𝑚

(𝑖)
2 are the masses of the two particles in

channel 𝑖 and 𝑠 is the centre-of-mass (c.m.) energy squared.
The imaginary part of 𝑇−1

𝐾 (𝑠)𝑖 𝑗 is then given by the phase-
space factor −𝛿𝑖 𝑗 𝜌 𝑗𝜃

(√
𝑠 − 𝑚 (𝑖)

1 − 𝑚 (𝑖)
2

)
, which automati-

cally ensures the unitarity of the 𝑆-matrix.
The nine parametrizations presented in Ref. [23] differed

by the set of parameters that was allowed to vary in the course
of the fit. The parameters present in the different amplitudes
along with their reduced 𝜒2 values from energy level fits
performed in Ref. [23] are given in Table 1.

Fig. 1 Illustration for the sheet labeling in the case of two channels.

2.1 Pole Search

The 𝑇-matrix is analytic over the whole complex energy
plane except for poles and branch cuts along the real axis
due to kinematic (right-hand cuts) and dynamic singulari-
ties (left-hand cuts). Dynamic singularities (left-hand cuts)
are associated with the interactions in the crossed channels.
Since those are usually distant, one assumes that their ef-
fect can be captured by polynomial terms allowed in the
parametrization of the 𝐾-matrix used. Right-hand cuts start
from branch points that appear whenever a channel opens.
Accordingly, at each threshold the number of Riemann sheets
of the complex energy (or 𝑠) plane gets doubled. Thus,
the three-channel case studied here leads to eight Riemann
sheets. The sheets are labeled as shown in Table 2, where the
thresholds are arranged with increasing energies 1 = 𝐷𝜋,
2 = 𝐷𝜂 and 3 = 𝐷𝑠𝐾̄ . For illustration we show in Fig. 1 the
analogous labeling for two channels. See Fig. 3 of Ref. [24]
for the three-channel case.
The poles correspond to bound states or resonances de-

pending on their location on the Riemann sheets. Bound
states correspond to poles on the physical sheet below the
lowest threshold energy and resonances are poles in the com-
plex plane of the unphysical sheets (in addition there are
virtual state poles, located on the real axis of unphysical
sheets, but those do not play a role in this work). The poles
on the sheets closest to the physical sheet have the strongest
influence on the scattering amplitude. In the current nota-
tion sheets RS211, RS221, and RS222 would be directly
connected to the physical sheet, i.e., RS111, above the re-
spective thresholds (c.f. Fig. 1). The poles of the 𝑇-matrix
are given by the zeroes of the determinant of the matrix in
Eq. (4), i.e.,

det
(
𝐾−1 (𝑠) + (𝐼CM (𝑠) − 𝐼CM (𝑚2))

)
= 0. (8)

The unphysical sheets can be accessed by adding the dis-
continuity across the branch cut to Eq. (4). Via the Schwarz
reflection principle the discontinuity across the branch cut is

Poles located on hidden on sheet A. Asokan et al., EPJC83(2023)850

Pole locations correlated; in line with pole from UChPT
Distance to threshold balanced by size of residue V. Baru et al.,EPJA23(2005)523

Explains correlation between Re(pole) and Im(pole)

.
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SU(3) STRUCTURE FROM UCHPT
Albaladejo et al., PLB767(2017)465

m(x) = mphy + x(m − mphy)
mϕ = 0.49 GeV; MD = 1.95 GeV

SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

Multiplets: [3]⊗[8]=[15]⊕[6]⊕[3]SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

with [15] repulsive,
[6] attractive,
[3] most attractive

3 poles give observable effect with SU(3)-breaking on
At SU(3) symmetric point mϕ ≃ 490 MeV: 3 bound and 6 virtual states
The light Dπ state is the multiplet member of D∗

s0(2317)

=⇒ MD∗
s0(2317) − MD∗

0 (2100) = 217 MeV
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SU(3) STRUCTURE

SU(3) analysis

• In the SU(3) limit, irreps: 3⊗ 8 = 15⊕ 6⊕ 3

• Evolution of the two poles from the physical to the SU(3) symmetric case

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 9 / 21

Albaladejo et al., PLB767(2017)465

Lattice shows repulsion in [15]
as predicted in UChPT

States in [6] found in UChPT and lattice: Hofmann and Lutz, NPA733(2004)142

S = −1

SU(3) analysis (2)

• Virtual state (S, I) = (−1, 0) DK̄ from lattice HadSpec, JHEP02(2021)100

Mπ = 138 MeV        Mπ = 239 MeV        Mπ = 391 MeV2000
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2150
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2450

D
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 v
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ua
l s
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 [M
eV

]

DK̄ threshold
Albaladejo et al., PLB 767 (2017) 465
UCHPT postdiction
HadSpec, JHEP 02 (2021) 100

Feng-Kun Guo (ITP) Exotic hadrons from an EFT perspective 12.08.2022 18 / 28

S = 0: Lattice finds virtual pole in [6] @Mπ ≈ 600 MeV
in line with UChPT prediction Gregory et al., [arXiv:2106.15391 [hep-ph]]+Lüscher analysis.

Confirmed by J.D.E. Yeo, C.E. Thomas and D.J. Wilson, [arXiv:2403.10498 [hep-lat]].

Quark Model: [3]⊗ [1] = [3] — the [6] is absent
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OBSERVABLE: B− → D+π−π−

With ϕD amplitude fixed we can calculate production reactions:
Du et al., PRD98(2018)094018; for more results see Du et al., PRD99(2019)114002

Fit to LHCb data (2) Du et al., arXiv:1712.07957 [hep-ph]

• S-wave: use the coupled-channel (1: Dπ; 2 : Dη; 3 : DsK̄) amplitudes with all

parameters fixed before

• For the production vertex:

soft pion: pseudo-Goldstone boson; fast pion: matter field M

b→ c ūd ⇒ spurion field: H =




0 0 0

1 0 0

0 0 0


, t ≡ uHu†

Leff = B̄
[
c1 (uµtM +Mtuµ) + c2 (uµM +Muµ) t+ c3 t (uµM +Muµ) +

c4 (uµ〈Mt〉+M〈uµt〉) + c5 t〈Muµ〉+ c6〈(Muµ + uµM) t〉
]
∂µD†

where uµ = i
[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, u = eiλaφa/(2F )

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 13 / 21

for the S-wave (two free para.);
other partial waves from BW-fit

Fit to LHCb data (3) Du et al., arXiv:1712.07957
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• The S-wave Dπ well described using our amplitudes with pre-fixed LECs (the

same as before)

• Fast variation in [2.4, 2.5] GeV in 〈P13〉: cusps at Dη and DsK̄ thresholds

Feng-Kun Guo (ITP) Charmed meson sspectrum 12.07.2018 14 / 21

LHCb, PRD94(2016)072001

⟨P0⟩ ∝ |A0|2+|A1|2+|A2|2 , ⟨P2⟩ ∝ 2
5 |A1|2+ 2

7 |A2|2+ 2√
5
|A0||A2| cos(δ2−δ0)

⟨P13⟩ ≡ ⟨P1⟩ − 14
9 ⟨P3⟩ ∝ 2√

3
|A0||A1| cos(δ1 − δ0)
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Dπ S-WAVE FROM B− → D+π−π−

Effect of thresholds enhanced, by pole at
√

sp ∼ (2451 − i134) MeV

on nearby unphysical sheet
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LIGHTEST CHARMED SCALAR

35Where is the lowest charm-strange meson?
Du, Guo, Hanhart, Kubis, UGM, Phys.Rev.Lett. 126 (2021) 192001 [2012.04599]
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• Precise analysis of the LHCb data
on B− → D+π−π− using UChPT
and Khuri-Treiman eq’s (3-body unit.) → next slide

Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001

• Breit-Wigner description not appropriate
for the S-wave but UChPT and the
dispersive analysis are!

• First determination of the Dπ phase shift

• The lowest charm-strange meson is located at:
(
2105+6

−8 − i 102+10
−11

)
MeV

• Recently confirmed by Lattice QCD!
Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

BW withD?0(2300)

– Ulf-G. Meißner / Ch. Hanhart, Two-pole structures in QCD – PDG, CERN, Nov. 2022 –

Mass of lightest charmed JP = 0+ state:

BW with m = 2300 MeV incompatible
with data

UChPT with
(2105 ± 8 − i(102 ± 11)) MeV
is compatible Du et al., PRL126(2021)192001

Low mass confirmed by Lattice QCD
(2196 ± 64 − i(210 ± 110)) MeV
at Mπ = 239 MeV HadSpec, JHEP07(2021)123

Analogous picture for JP = 1+

momenta here imply isospin I ¼ 2 and therefore nonreso-
nant partial waves, the relative angular momentum of π0π−

in the decay B− → D0π0π− is by far dominantly odd in the
low-energy regime forD0π0, and the ρ− plays a crucial role.
If we assume that the decay B− → Dþπ−π− is dominated

by the process in Fig. 2, the Dπ S-wave part of the triangle
diagram can be estimated by the integral

Atrig
0 ðsÞ ¼ 1

π

Z
∞

sth

ds0
P̂ðs0Þρðs0ÞTD0π0→Dþπ−ðs0Þ

s0 − s
; ð5Þ

where P̂ðsÞ is the production amplitude for B− → D0ρ− →
D0π0π− projected to the D0π0 s channel, ρðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2

D;M
2
πÞ

p
=ð16πsÞ is the Dπ phase space with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc the Källén
function, TD0π0→Dþπ−ðsÞ the S-wave scattering amplitude
for D0π0 → Dþπ−, and sth ¼ ðMD þMπÞ2. The expres-
sion for P̂ðsÞ is the same as F̂ 1=2

0 ðsÞ in Eq. (12) below.
The evaluation of Eq. (5) depends on the asymptotic

behavior of the integrand, which is divergent in
general. We may estimate Eq. (5) using a cutoff atffiffiffiffiffiffiffiffiffi
smax

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

D

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þM2

π

p
, where qmax ≈

1 GeV (another way is to introduce a form factor, e.g.,
e−ðs−sthÞ=s0 with s0 ¼ Oð1 GeVÞ [48]). We evaluate Eq. (5)
by employing both the Dπ scattering amplitude from
UChPT [19] and that of a Breit-Wigner (BW) parametri-
zation of the D�

0ð2300Þ for comparison, despite the defi-
ciencies of the latter discussed in Ref. [39]; see also
Ref. [49].
The results with qmax ¼ 1 GeV are shown in Fig. 1,

where the solid blue band and the green dashed band
correspond to the Dπ scattering amplitudes from UChPT
and BW, respectively. The obtained phase describes the
data perfectly for the UChPT amplitude, while the BWone
fails. We have checked that the obtained phases are
insensitive to a variation of the cutoff in a reasonable
region, qmax ∈ ½0.8; 1.2� GeV.
Khuri-Treiman formalism.—While Eq. (5) provides

a reasonable estimation of the S-wave decay amplitude
with a clear underlying physical picture, it does not respect

three-body unitarity. In order to check if the conclusion
formulated above is robust, we cure this deficiency by
employing the Khuri-Treiman equations [50], which are
based on two-body elastic phase shifts and explicitly
generate the crossed-channel rescattering between final-state
particles. The formulas are constructed from dispersion
relations for the related crossed scattering processes and
then analytically continued to the decay region, referring to
the continuation of the triangle graph [51].
We can write amplitudes for Aþ−−ðB− → Dþπ−π−Þ and

A00−ðB− → D0π0π−Þ in terms of single-variable functions
according to a reconstruction theorem [47,52],

Aþ−−ðs; t; uÞ ¼ F 1=2
0 ðsÞ þ κðsÞ

4
zsF

1=2
1 ðsÞ

þ κðsÞ2
16

ð3z2s − 1ÞF 1=2
2 ðsÞ þ ðt↔ sÞ;

A00−ðs; t; uÞ ¼ −
1ffiffiffi
2

p F 1=2
0 ðsÞ− κðsÞ

4
ffiffiffi
2

p zsF
1=2
1 ðsÞ

−
κðsÞ2
16

ffiffiffi
2

p ð3z2s − 1ÞF 1=2
2 ðsÞ þ κuðuÞ

4
zuF 1

1ðuÞ;

ð6Þ
where the subindex l and superindex I of the single-
variable amplitudes F I

l represent the angular momentum
and isospin, respectively, and only the I < 3=2 and l ≤ 2
terms are taken into account. The Mandelstam variables of
the B-meson decay B−ðpBÞ → DðpDÞπðp1Þπ−ðp2Þ are
s ¼ ðpB − p2Þ2, t ¼ ðpB − p1Þ2, and u ¼ ðpB − pDÞ2.
The corresponding angles are given by

zs ≡ cos θs ¼
sðt − uÞ − Δ

κðsÞ ; zu ≡ cos θu ¼
t − s
κuðuÞ

; ð7Þ

where κðsÞ¼λ1=2ðs;M2
D;M

2
πÞλ1=2ðs;M2

B;M
2
πÞ, κuðuÞ ¼

λ1=2ðu;M2
B;M

2
DÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=u
p

, and Δ ¼ ðM2
B −M2

πÞ×
ðM2

D −M2
πÞ.

Since we are interested in the s-channel process, we use
the index A (B) to label the two-body channels correspond-
ing toDþπ− andD0π0. The partial-wave decomposition for
the decay amplitudes AA reads

AAðs; zsÞ ¼
X
I;l

bAI;lPlðzsÞfIlðsÞ; ð8Þ

with bAI;l denoting Clebsch-Gordan coefficients. By
comparing with Eq. (1), it is easy to obtain AlðsÞ ¼
ð2lþ 1Þ−1=2PI b

1
I;lf

I
lðsÞ. We have the following partial-

wave unitarity relation for elastic rescattering:

disc fIlðsÞ ¼ 2ifIlðsÞ sin δIlðsÞe−iδ
I
lðsÞθðs − sthÞ; ð9Þ

where δIlðsÞ is the elastic final-state scattering phase shift.
The discontinuities of fIl and those of the single-variable

FIG. 2. The decay B− → Dþπ−π− via the coupled channel
B− → D0π0π−. The filled square denotes the D0π0 → Dþπ− T-
matrix element.

PHYSICAL REVIEW LETTERS 126, 192001 (2021)

192001-3
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CHARMED STATESExample: Strange-Charm states

*
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D∗
2(2460)

D∗
s2(2573)

D∗
0(2300)

D1(2430)

D∗
s0(2317)

Jlight =
(
1
2

)+

Jlight =
(
3
2

)+

Jlight =
(
1
2

)−

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Note: decay modes of D∗
s0(2317) and Ds1(2460) either D(∗)

s π or D(∗)
s γ → narrow

Lecture series onExotic MesonsPart I: Effective Field theories and their application to Ds(2317) – p. 10/20

S=0, I=1/2 S=1, I=0

Quark Modell: M. Di Pierro and E. Eichten, PRD 64 (2001) 114004

Puzzles solved:

1 M(Ds1)&M(D∗
s0) are

DK and D∗K bound
states

2 M(Ds1)−M(D∗
s0)

≃ M(D∗)−M(D),
since spin symmetry
gives equal binding

3 States with
strangeness heavier
M(D∗

0) = 2100 MeV
M(D∗

s0) = 2317 MeV

M(D1) = 2247 MeV
M(Ds1) = 2460 MeV

... role of left-hand cuts needs to be clarified
Lutz et al., PRD106(2022)114038; Korpa et al., PRD107(2023)L031505
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FROM B → ππlν TO B → D̄πl+l−

Provide input to CKM
matrix elements:

We thus expect the QCD factorization formula for the
dipion form factors in the considered kinematic limit (and
for mb ≫ Λhad) to take an analogous form as for non-
leptonic B → ππ decays. Here at leading term all dipion
form factors would be expressed in terms of a universal
B → π form factor, the first inverse moment of the pion
LCDA, and simple kinematic factors. The measurement of
the dipion form factors would thus provide an independent
test of the QCD factorization approach, respectively an
independent determination of the relevant hadronic input
parameters. Radiative corrections from hard and hard-
collinear gluon exchange could be calculated perturba-
tively, see Fig. 2. More details will be provided in [32].

B. Resonance contributions

Formally, a resonance contribution to B → ππ form
factors can be obtained using hadronic dispersion relations
in the variable k2,

hππjJμV−AjB̄i ¼
1

π

Z
∞

4M2
π

ds
ImhππjJμV−AjB̄i
s − k2 − iε

þ subtractions;

(4.1)

with the current JμV−A ¼ ūγμð1 − γ5Þb. Insertion of all
possible intermediate states yields a unitarity relation

2 ImhππjJμV−AjB̄i ¼
X
H

Z
dτHhππjHihHjJμV−AjB̄i; (4.2)

with integration over the phase space τH and summation
over the helicity states of the intermediate hadronic stateH.
We single out in this relation H ¼ R, with a resonant one-
particle intermediate state R, so that the right-hand side
contains the strong coupling hππjRi of R with two pions
multiplied by the form factors for B → R transitions.
At this point we must carefully identify the resonances

that emerge in the k2 spectrum, according to the isospin
quantum numbers of the dipion. In the decay B− →
πþπ−l−ν̄l the dipion system is a superposition of the
isoscalar IG ¼ 0þ and isovector ðIG; I3Þ ¼ ð1þ; 0Þ states.
In the analogous decay B̄0 → πþπ0l−ν̄l and B− →
π0π0l−ν̄l, however, the pions are purely in the isovector
ðIG; I3Þ ¼ ð1þ;þ1Þ and isoscalar state, respectively.
Altogether, the three hadronic matrix elements for

B → ππ are expressed in terms of two independent isospin
amplitudes. From this we obtain in the isospin symmetry
limit the relation

hπþπ−jJμV−AjB−i þ 1ffiffiffi
2

p hπþπ0jJμV−AjB̄0i

¼ hπ0π0jJμV−AjB−i: (4.3)

We consider only resonant contributions due to the iso-
vector vector mesons ρðnÞ, as well as the isoscalar scalar
mesons f0ðnÞ, where n denotes the quantum number of
radial excitation. We sketch the region of phase space
where the ρðnÞ dominate in Fig. 1. Since we consider only
dipion states up to angular momentum 1, we discard
resonances with spin larger than 1. Hereafter, we will
proceed with the more general case of B− → πþπ−l−ν̄l.
The B0 decay can be recovered by omitting the f0
contributions and adding a relevant isospin factor.
Continuing with Eq. (4.2), we obtain for the contribution

of the ρ intermediate states

ImhππjJμV−AjB̄i
¼ −πgρππδðM2

ρ − sÞ
X

a¼0;þ;−
½k̄ · ηðaÞ�

× hρðk; ηðaÞÞjJμV−AjB̄ðpÞi; (4.4)

with η being the polarization vector for the vector state
associated with the four-momentum k. In the B-RF

ηð�ÞμjB-RF ¼ εð∓ÞμjB-RF;
ηð0ÞμjB-RF ¼ ðjq⃗j; 0; 0;MB − q0Þ=MV; (4.5)

see the Appendix for details. For the f0 state we obtain

ImhππjJμV−AjB̄i¼πgf0ππδðM2
f0
−sÞMf0hf0ðkÞjJμV−AjB̄ðpÞi:

(4.6)

For both ρ and f0, the above formulas still employ the
narrow-width approximation. The strong couplings are
fixed via

FIG. 2. Sketch of QCD factorization in B → ππlν decays at large dipion masses: (a),(b) Leading contributions from hard gluon
exchange; (c) sample diagram for hard-collinear spectator scattering corrections.

DISENTANGLING THE DECAY OBSERVABLES IN ... PHYSICAL REVIEW D 89, 014015 (2014)

014015-5

u ¼ exp

�
iϕ
2fπ

�
; (15)

with

ϕ ¼
ffiffiffi
2

p
2
6664

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

3
7775: (16)

fπ ≃ 92.2 MeV is the pion decay constant [26]. Based on
these building blocks, the leading-order Lagrangian
describing the interactions of the B family and the
Goldstone bosons reads [23]

L ¼ −iTrH̄avμ∂μHa þ
1

2
TrH̄aHbvμðu†∂μuþ u∂μu†Þba

þ ig
2
TrH̄aHbγνγ5ðu†∂νu − u∂νu†Þba: (17)

Determining the coupling g ¼ gB�Bπ ¼ gB�B�π , using
heavy-quark symmetry, from the partial decay width for
D�þ → D0πþ leads to g ¼ gD�Dπ ¼ 0.58� 0.07, with the
error given by the uncertainty in the width of the D�þ. This
is in surprisingly good agreement with the most recent
lattice simulations, which find gB�Bπ ¼ 0.516� 0.052 [27]
and gB�Bπ ¼ 0.569� 0.076 [28] (we have added different
error sources in quadrature for simplicity in both cases). In
the present analysis, we stick to the experimental number
extracted from D�þ decays for illustration. The dominant
parts of the Bl4 amplitude will depend on g in a very simple
manner (being directly proportional either to g or to g2),
thus suggesting a straightforward strategy towards an
extraction of jVubj via lattice calculations of gB�Bπ .
To improve on the analytic properties of the amplitudes

calculated in heavy-meson chiral perturbation theory, we

include the effect of the B� − B mass splitting, defined by
Δ ¼ mB� −mB (which is of Oð1=mQÞ), in the propagators,
which in the heavy-meson approximation are of the form

i
2v · k

for the pseudoscalarBmeson;

−iðgμν − vμvνÞ
2ðv · k − ΔÞ for the vectorB�; (18)

where k is the small residual momentum of the propagating
B or B�. We do not otherwise include heavy-quark-
symmetry-breaking effects, and stick to Eq. (17) for the
determination of the interaction vertices.
The left-handed current Lνa ¼ q̄aγνð1 − γ5ÞQ, with qa

denoting a light and Q the heavy quark, is written in chiral
perturbation theory as

Lνa ¼
i

ffiffiffiffiffiffiffi
mB

p
fB

2
Tr½γνð1 − γ5ÞHbu

†
ba� þ � � � ; (19)

where the ellipsis denotes terms with derivatives, factors of
the light-quark mass matrix mq, or factors of 1=mQ.
Computing the trace, one can write it explicitly as

Lνa ¼ i
ffiffiffiffiffiffiffi
mB

p
fBðP�

bν − vνPbÞu†ba þ � � � : (20)

fB is the B meson decay constant; averaging the most recent
lattice calculations with 2þ 1 dynamical quark flavors leads
to the very precise value fB ¼ 190.5� 4.2 MeV [29]. The
whole Bl4 decay amplitude is proportional to fB, such that
any uncertainty on this parameter directly translates into
a contribution to the error in the extraction of jVubj.
We briefly discuss the chiral power counting of the Bl4

amplitudes and form factors. If we denote soft pion
momenta, or derivatives acting on the pion field, by p
generically, the current of Eq. (19) is Oðp0Þ, and so we
expect to be the leading-order amplitude resulting from the
diagrams in Fig. 2. Equation (4) then suggests the leading
contributions to the form factors F, G, H, and R to be of
chiral orders p−1, p−1, p−2, and p0, respectively (remember
that the dilepton momentum Lμ is large, of order mB); the
alternative form factors F1 and F4 both are Oðp0Þ.
The results for the individual diagrams of Fig. 2 are given

in Appendix A. In order to ensure that we do not miss
any effects of the nontrivial analytic structure of triangle
graphs, resulting from the B� pole terms once rescattering
between the two outgoing pions is taken into account, we
keep the full relativistic form of the denominator part of the
propagator. The latter is connected with the above heavy-
meson approximation Eq. (18) by [30]

i
2v · k

→
−imB

ðpB − kÞ2 −m2
B
;

i
2ðv · kþ ΔÞ →

−imB�

ðpB − kÞ2 −m2
B�
; (21)

FIG. 2. Leading-order diagrams forB → ππ matrix elements of the
hadronic current. Diagrams (b) and (c) contain u-channel pole terms.
Solid double lines and dashed lines represent heavy mesons and
pseudo-Goldstone bosons, respectively. The shaded square denotes
an insertion of the left-handed leptonic current. Diagram (c) involves
both BB�π and B�B�π vertices. Diagrams (a) and (d) are suppressed
in the chiral expansion as long as the lepton mass is neglected.
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V. DISCUSSION AND SUMMARY

We wish to emphasize that matching to chiral perturba-
tion theory at leading order can only be considered an
estimate, and mainly serves for illustration purposes here.
Higher-order corrections are expected to be significant.
Ultimately, the subtraction constants that influence the
shape ought to be determined by fits to experimental data;
they can be thought of as parametrizing a “background
polynomial,” beyond the dominant pole terms, albeit with
completely correct rescattering corrections, obeying
Watson’s theorem. The necessary theoretical normalization
of the form factors is essentially provided at s ¼ M2

ρ, via
Eq. (42); its stability under higher-order corrections still
merits further investigation in order to provide a theoretical
uncertainty for jVubj extracted from Bl4 decays.
To summarize, we have provided a description of the

form factors for the decay B− → πþπ−l−ν̄l using dispersion
theory, which should lead to an improved method to
measure jVubj. Pion-pion final-state interactions have been
included nonperturbatively in the elastic approximation,
while left-hand-cut structures in the πB interaction are
approximated by B� pole terms. We stress that our
formalism allows, for the first time, to use the full
information for ππ invariant masses below 1 GeV, without
the need to refer to particular parametrization for selected
resonances such as the ρð770Þ [or the f0ð980Þ]; it allows
for a full exhaustion of the corresponding spectra.
Improved experimental data to allow for such an analysis
to be performed in practice is therefore highly desirable.
As an outlook concerning theoretical improvement, we

have hinted at the possibility to extend the present analysis
to lower values of the dilepton invariant mass sl, beyond the
range of applicability of heavy-meson chiral perturbation
theory, but still making use of dispersion relation for the

dependence on the dipion invariant mass s. One promising
constraint could be obtained from soft-pion theorems [56],
which relate linear combinations of Bl4 form factors at
s ¼ M2

π, but arbitrary sl, to B → πlν (Bl3) form factors at
same sl. Given reliable phenomenological information on
the form factors for Bl3, this may provide precisely (part of)
the matching information needed to extend the dispersive
method of this paper to lower values of sl.
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APPENDIX A: TREE-LEVEL AMPLITUDES IN
HEAVY-MESON CHIRAL PERTURBATION

THEORY

Calculating the tree-level diagrams in Fig. 2 in heavy-
meson chiral perturbation theory, one obtains the correspond-
ing amplitudes [24] [A −D, in obvious correspondence to
diagrams (a)–(d)],

A¼ ifB
4f2π

pμ
B; B¼ ipμ

− Bð1Þ þ ipμ
B Bð2Þ;

Bð2Þ ¼−
gfB
2f2π

v ·p−

v ·p−þΔ
¼−

v ·p−

mB
Bð1Þ;

C¼ ipμ
B Cð1Þ þϵμαβγpBαp−βpþγCð2Þ;

Cð1Þ ¼−
g2fB
2f2π

pþ ·p−−ðv ·pþÞðv ·p−Þ
½v ·ðpþþp−Þ�½v ·p−þΔ� ;

Cð2Þ ¼−
g2fB
2f2π

1

½v ·ðpþþp−ÞþΔ�½v ·p−þΔ� ;

D¼ ipμ
B Dð1Þ; Dð1Þ ¼−

fB
4f2π

v ·ðpþ−p−Þ
v ·ðpþþp−Þ

: (A1)

Identifying the contributions to the individual decay form
factors, we find for these as the leading-order (LO) results

FLO¼RLO−GLO; GLO¼mB

2
Bð1Þ; HLO¼−

m3
B

2
Cð2Þ;

RLO¼−
mBfB
4f2π

−mBðBð2Þ þCð1Þ þDð1ÞÞ: (A2)

From these, it is then straightforward to identify the pole
contributions given in Eq. (22), as well as the nonpole pieces
of Eq. (25).
It is obvious that all diagrams (a)–(d) are formally of

Oðp0Þ in terms of soft pion momenta. Note, however, that
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FIG. 4 (color online). Differential decay width dΓ=dsdsl
divided by jVubj2 for the example value of sl ¼
ðmB − 1 GeVÞ2, decomposed into S- and P-wave contributions.
For details, see discussion in main text.
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Remarks about B → D̄πl+l−:

Good control of πD system E. J. Gustafson et al. [arXiv:2311.00864 [hep-ph]].

Access to πD scattering from B → Dπlν
(see ππ from K → ππeν) J. R. Batley et al. [NA48/2], EPJC70(2010)635
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SUMMARY AND CONCLUSION
For near threshold states Weinberg criterion provides proper diagnostics

View extended by studying the SU(3)f multiplet structure

what kinds of multiplets are there?

pattern of spin and flavor symmetry breaking important

Interplay of different poles leads to
non-trivial line shapes
non-trivial phase motions

We are on a good path to identify the hadronic molecules in the spectrum

... and to exploit their imprint on various observables

Thanks a lot for your attention
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