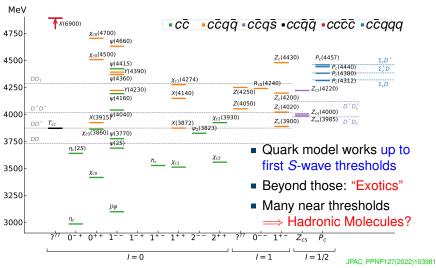
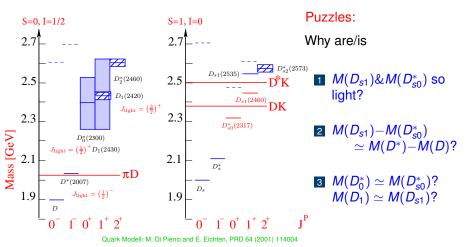
UNDERSTANDING D_0 ET AL. by combining results from

Lattice QCD, EFTs and Experiment


April 19, 2024 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich

SETTING THE STAGE: XYZ ET AL.



SETTING THE STAGE II: D-MESONS

The solution provides crucial information about the nature of these states

HADRONIC MOLECULES

- are few-hadron states, bound by the strong force
- do exist: light nuclei.
 e.g. deuteron as pn & hypertriton as ∧d bound state
- are located typically close to relevant continuum threshold; e.g., for $E_B = m_1 + m_2 M$ and $\gamma = \sqrt{2\mu}E_B$

can be identified in observables (Weinberg compositeness):

$$\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

 \rightarrow $r \gtrsim 0$ for molecule; $r < 0 \& |r| \gg range$ of forces for compact state

DISCLAIMERS AND OUTLINE

The method presented is 'diagnostic' — especially,

- it does not allow for conclusions on the binding force;
- it allows one only to study individual states;
- quantitative interpretation gets lost when states get bound too deeply ('uncertainty' $\sim R\gamma$)

To go beyond tailor made effective field theories needed

In this talk I present how a unitarized chiral theory (UChPT) can be applied to Goldstoneboson D meson scattering and allows for a simultaneous study of experimental and lattice data to reveal the nature of $D_{s0}^*(2317) \& D_0^*(2300)$ and quantify the implications for other observables

CHIRAL LAGRANGIAN (1)

The leading order Lagrangian (no free parameters)

$$\mathcal{L}_{\phi P}^{(1)} = D_{\mu}PD^{\mu}P^{\dagger} - m^{2}PP^{\dagger}$$

with $P = (D^0, D^+, D_s^+)$ for the *D* mesons, and the covariant derivative

$$\begin{split} D_{\mu}P &= \partial_{\mu}P + P\Gamma_{\mu}^{\dagger}, \quad D_{\mu}P^{\dagger} = (\partial_{\mu} + \Gamma_{\mu})P^{\dagger}, \\ \Gamma_{\mu} &= \frac{1}{2}\left(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger}\right), \end{split}$$

where
$$u_{\mu}=i\left[u^{\dagger}(\partial_{\mu}-ir_{\mu})u+u(\partial_{\mu}-il_{\mu})u^{\dagger}\right],\quad u=e^{j\lambda_{a}\phi_{a}/(2F_{0})}$$

Burdman, Donoghue (1992); Wise (1992); Yan et al. (1992)

• this gives the Weinberg–Tomozawa term for $P\phi$ scattering:

$$\propto E_{\phi} + \mathcal{O}(1/M_D)$$
 (S – wave)

Interaction of kaons significantly stronger than that of pions

CHIRAL LAGRANGIAN (2)

At the next-to-leading order p² (6 free parameters)

F-K Guo, CH, S. Krewald, U.-G. Meißner, PLB666(2008)251

$$\begin{split} \mathcal{L}_{\phi P}^{(2)} &= P \left[-\textbf{h}_0 \langle \chi_+ \rangle - \textbf{h}_1 \chi_+ \ + \ \textbf{h}_2 \langle u_\mu u^\mu \rangle - \textbf{h}_3 u_\mu u^\mu \right] P^\dagger \\ &\quad + \ D_\mu P \left[\textbf{h}_4 \langle u_\mu u^\nu \rangle - \textbf{h}_5 \{ u^\mu, u^\nu \} \right] D_\nu P^\dagger, \\ \chi_\pm &= u^\dagger \chi u^\dagger \pm u \chi^\dagger u, \quad \chi = 2 B_0 \operatorname{diag}(\textbf{m}_u, \textbf{m}_d, \textbf{m}_s) \end{split}$$

Low-energy constants:

$$h_1 = 0.42$$
: from $M_{D_s} - M_D$

Same effective operator leads to strong isospin violation

$$m_{D^+} - m_{D^0} = \Delta m^{\mathrm{strong}} + \Delta m^{\mathrm{e.m.}} = ((2.5 \pm 0.2) + (2.3 \pm 0.6)) \text{ MeV}$$

 h_0 : from quark mass dependence of charmed meson masses (lattice)

 $h_{2,3,4,5}$: fixed from lattice results on scattering lengths

calls for unitarisation ⇒ UChPT

UNITARISATION

Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ...


ChPT is only perturbatively consistent with unitarity.

Observe $Im(t(s)) = \sigma(s) |t(s)|^2$ implies $Im(t(s)^{-1}) = -\sigma(s)$

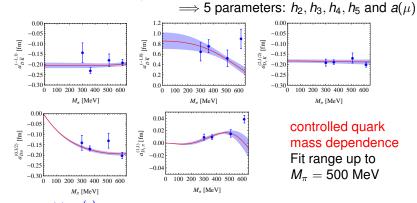
 \implies write subtracted dispersion integral for $t(s)^{-1}$

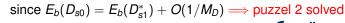
 \implies fix Re($t(s)^{-1}$) by matching to ChPT

Effectively this gives

with ChPT expression for V ... and additional parameter $a(\mu)$ (from the loop)

Dependence on unitarization method needs to be clarified!

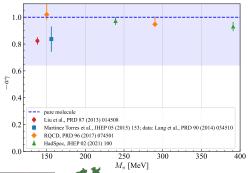



FIT TO LATTICE DATA

fit LECs to lattice data for $a_{D,\phi}^{(S,l)}$ in selected channels

Liu et al. PRD87(2013)014508

- $\pi/K/\eta$ – $D^{(*)}/D_s^{(*)}$ scattering fixed
- D_{s0}^* (2317) emerges as a pole with $M_{D_{s0}^*} = 2315_{-28}^{+18} \text{ MeV } (E_b = 47_{-18}^{+28});$

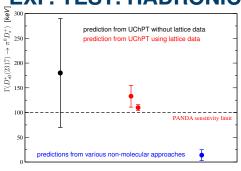


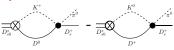
INTERPRETATION A LA WEINBERG

$$D_{s0}^*(2317)$$
: $a=g_{\rm eff}$ $g_{\rm eff}+\mathcal{O}(1/\beta)\simeq-\left(\frac{2(1-\lambda^2)}{2-\lambda^2}\right)\frac{1}{\gamma}$ $\Longrightarrow a=-(1.05\pm0.36)~{\rm fm}~{\rm for~molecule}~(\lambda^2=0);$ smaller otherwise

Various lattice studies show under binding

study $a\gamma$ (removes E_b dep.) All analyses consistent with purely molecular $D_{s0}^*(2317)$ (analogous for $D_{s1}(2460)$)




EXP. TEST: HADRONIC WIDTH

Genuine contribution:

Specific for molecules:

F.K. Guo et al., PLB666(2008)251; L. Liu et al. PRD87(2013)014508; X.Y. Guo et al., PRD98(2018)014510 and, e.g., P. Colangelo and F. De Fazio, PLB570(2003)180

Experiment needs very high resolution → PANDA

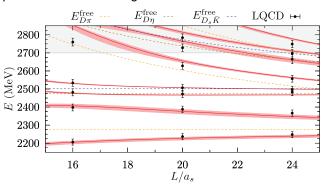
Predict $M_{B_{s0}^*} = 5722 \pm 14$ MeV and various decays

Fu et al., EPJA58(2022)70

Most recent lattice result: $M_{B_{c0}^*} = 5699 \pm 14 \text{ MeV}$

Hudspith & Mohler, [arXiv:2303.17295 [hep-lat]].

Next: Study multiplet structure from GB-D-meson scattering



THE S = 0 SECTOR

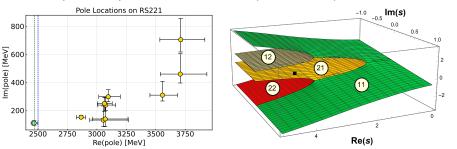
Keeping parameters fixed one gets:

Poles for

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. [Had.Spec.Coll.] JHEP10(2016)011 Fits directly to these data: Z. H. Guo et al., EPJC 79(2019)13; M. F. M. Lutz et al., PRD106(2022)114038

- $M_{\pi} \simeq 391$ MeV: (2264, 0) MeV [000] & (2468, 113) MeV [110]
- M_π=139 MeV: (2105, 102) MeV [100] & (2451, 134) MeV [110]

Questions $c\bar{q}$ nature of lowest lying 0⁺ D state, $D_0^*(2300)$



POLE STRUCTURE FROM LATTICE STUDY

Lattice study reported only bound state pole

Moir et al. [Had. Spec. Coll.] JHEP10(2016)011

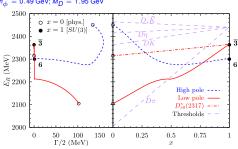
Second pole was present, but location depends on amplitude model

Poles located on hidden on sheet

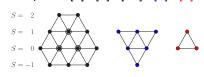
- A. Asokan et al., EPJC83(2023)850
- Pole locations correlated; in line with pole from UChPT
- Distance to threshold balanced by size of residue

V. Baru et al.,EPJA23(2005)523

Explains correlation between Re(pole) and Im(pole)



SU(3) STRUCTURE FROM UCHPT


Albaladejo et al., PLB767(2017)465

$$m(x) = m^{\text{phy}} + x(m - m^{\text{phy}})$$

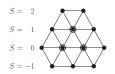
 $m_{\phi} = 0.49 \, \text{GeV}; M_D = 1.95 \, \text{GeV}$

Multiplets: $[\overline{3}] \otimes [8] = [\overline{15}] \oplus [6] \oplus [\overline{3}]$

with [15] repulsive,

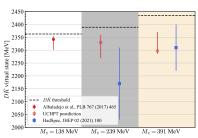
- [6] attractive,
- [3] most attractive
- 3 poles give observable effect with SU(3)-breaking on
- At SU(3) symmetric point $m_{\phi} \simeq 490$ MeV: 3 bound and 6 virtual states
- The light $D\pi$ state is the multiplet member of $D_{c0}^*(2317)$

$$\implies M_{D_{s0}^*(2317)} - M_{D_0^*(2100)} = 217 \text{ MeV}$$



SU(3) STRUCTURE

Lattice shows repulsion in [15]
 as predicted in UChPT



Albaladejo et al., PLB767(2017)465

Hofmann and Lutz, NPA733(2004)142

States in [6] found in UChPT and lattice:

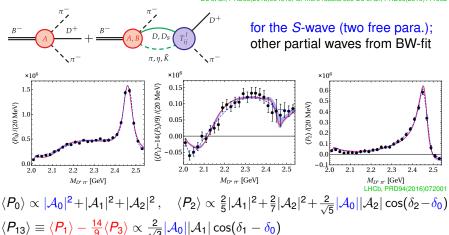
■ *S* = -1

• S = 0: Lattice finds virtual pole in [6] $@M_{\pi} \approx 600 \text{ MeV}$

in line with UChPT prediction Gregory et al., [arXiv:2106.15391 [hep-ph]]+Lüscher analysis.

Confirmed by J.D.E. Yeo, C.E. Thomas and D.J. Wilson, [arXiv:2403.10498 [hep-lat]].

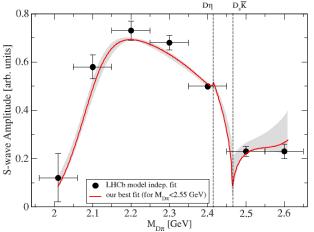
• Quark Model: $[\overline{3}] \otimes [1] = [\overline{3}]$ — the [6] is absent



OBSERVABLE: $B^- o D^+ \pi^- \pi^-$

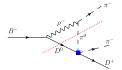
With ϕD amplitude fixed we can calculate production reactions:

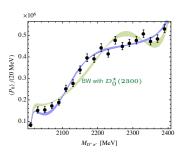
Ou et al., PRD98(2018)094018; for more results see Du et al., PRD99(2019)114002

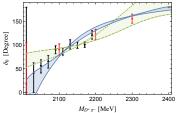


$D\pi$ S-WAVE FROM $B^- o D^+\pi^-\pi^-$

Effect of thresholds enhanced, by pole at $\sqrt{s_p} \sim (2451 - i134) \text{ MeV}$


on nearby unphysical sheet

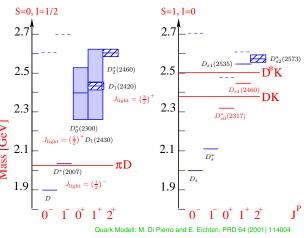



LIGHTEST CHARMED SCALAR

Mass of lightest charmed $J^P = 0^+$ state:

- BW with m = 2300 MeV incompatible with data
- UChPT with $(2105 \pm 8 i(102 \pm 11))$ MeV is compatible Du et al., PRL126(2021)192001

• Low mass confirmed by Lattice QCD (2196 \pm 64 - i(210 \pm 110)) MeV at $M_{\pi}=$ 239 MeV HadSpec, JHEP07(2021)123


Analogous picture for $J^P = 1^+$

CHARMED STATES

Puzzles solved:

- 1 $M(D_{s1})\&M(D_{s0}^*)$ are DK and D^*K bound states
- 2 $M(D_{s1})-M(D_{s0}^*)$ $\simeq M(D^*)-M(D),$ since spin symmetry gives equal binding
- States with strangeness heavier $M(D_0^*) = 2100 \text{ MeV}$ $M(D_{s0}^*) = 2317 \text{ MeV}$

$$M(D_1) = 2247 \text{ MeV}$$

 $M(D_{s1}) = 2460 \text{ MeV}$

... role of left-hand cuts needs to be clarified

FROM $B \rightarrow \pi\pi I \nu$ **TO** $B \rightarrow \bar{D}\pi I^+ I^-$

Remarks about $B \to \bar{D}\pi I^+I^-$:

- Good control of πD system
- Access to πD scattering from $B \to D\pi I\nu$ (see $\pi\pi$ from $K \to \pi\pi e\nu$)

E. J. Gustafson et al. [arXiv:2311.00864 [hep-ph]].

X. W. Kang et al. PRD89(2014)053015

J. R. Batley et al. [NA48/2], EPJC70(2010)635

0.4

 $s[GeV^2]$

0.6

0.8

SUMMARY AND CONCLUSION

- For near threshold states Weinberg criterion provides proper diagnostics
- View extended by studying the SU(3)_f multiplet structure
 - what kinds of multiplets are there?
 - pattern of spin and flavor symmetry breaking important
- Interplay of different poles leads to
 - non-trivial line shapes
 - non-trivial phase motions

We are on a good path to identify the hadronic molecules in the spectrum

... and to exploit their imprint on various observables

Thanks a lot for your attention

