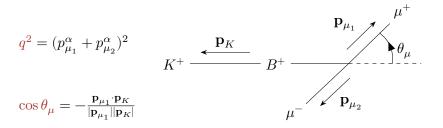
An Unbinned Angular Analysis of $B^{\pm} \rightarrow K^{\pm}\mu\mu$ Decays

TES-HEP 2024

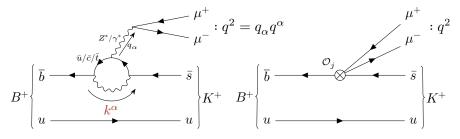
Zak Williams

Supervised by: Dr. Konstantinos Petridis

University of Bristol


19th July 2024

$B \to K \mu \mu$


- $1 \rightarrow 3$ body decay: phasespace can be entirely modelled by dependence on the angular $\cos \theta_{\mu}$, and the dimuon pair invariant mass, $q^2 (\equiv m_{\mu\mu}^2)$.
- My goal is to fit the model $\frac{d^2\Gamma}{dq^2d\cos\theta_{\mu}}$ ¹ to the unbinned distribution of events in this phase space.

¹J. Gratrex, M. Hopfer, R. Zwicky. *Generalised helicity formalism, higher moments, and* $B \rightarrow K_{J_K} (\rightarrow K\pi) \bar{\ell}_1 \ell_2$ angular distributions. 2015. arXiv: 1506.03970 Zak Williams An Unbinned Angular Analysis of $B^{\pm} \rightarrow K^{\pm} \mu \mu$ Decays

Effective Field Theory

- $b \rightarrow s$ is loop and CKM suppressed: NP rates highlighted
- Effective Field Theory integrates over uncontrained virtual k^{α} , contracting the loops into single point interactions:

- $b \rightarrow s$ decays can probe contributions from arbitrarily massive NP, limited only by precision.
- An operator \mathcal{O}_j contains many loop diagrams, grouped together by their J^P number. Contribution $\langle s\mu\mu|\mathcal{O}_j|b\rangle$ is quantified by C_j .

Effective Field Theory - Model

 \bullet Broad contributions to $\frac{d^2\Gamma}{dq^2d\cos\theta_u}$ are produced by each possible $|C_j|^2$, $C_i C_k^*$ combination. Each with a distinct shape in $(q^2, \cos \theta_{\mu})$ space. 1.00• Only $C_{7/9/10}$ 0.75 $(J^P = 1^{-/-/+})$ are 0.50 non-zero in the SM. 0.25 $cos(\theta_{\mu})$ 0.00 • The sharp peaks in -0.25 $m_{\mu\mu}$ are from -0.50non-locals that escape -0.75the virtual loop, then decay. -1.001000 2000 3000 4000 $m_{\mu\mu}$ MeV

Zak Williams

An Unbinned Angular Analysis of $B^{\pm} \rightarrow K^{\pm} \mu \mu$ Decays

4/8

$b \rightarrow s\ell\ell$ (Flavor) Anomalies

- $b \rightarrow s\ell\ell$ decays have turned over a host of measurements of $> 2\sigma$ over a range of final states.²
- Collectively, these all point to new physics in the C_9 loop vector coupling at the $>4\sigma$ level.

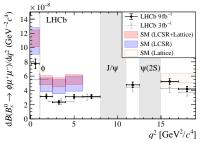
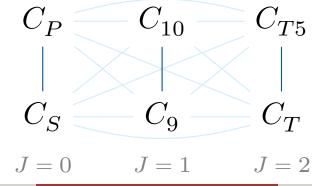


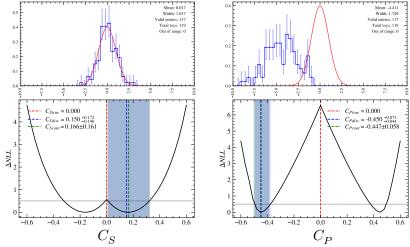
Figure: A 3.6 σ SM flavor contention in the most common analysis type, an exclusive $\left(\frac{dB}{dq^2}\right)$ binned measurement. Note the absence of non-local q^2 .³

²Andersson, M.; Marshall, A.M.; Petridis, K.A.; Smith, E. Strange Things in Bottom-to-Strange Decays: The Standard Model Turned Upside Down? Symmetry 2024, 16, 638. https://doi.org/10.3390/sym16060638


³Aaij, R.; et al. Branching Fraction Measurements of the Rare $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B^0 \rightarrow f_2'(1525)\mu^+\mu^-$ Decays. Phys. Rev. Lett. 2021, 127, 151801.

Zak Williams

My goal is to simultaneously fit $C_S, C_P, C_9, |C_{10}|, C_T, \text{ and } C_{T5}.$ scalar vector axial-vector pseudoscalar tensor


Motivations for our methodology

- Including non-local q^2 accounts for non-local tails (and provides more information)
- Angular dimension completely breaks the $\Delta J > 0$ degeneracies
- Unbinned preserves all the information from the data
- High and low q^2 limits help break the $\Delta J = 0$ degeneracies
- Floating all C_i means a reduced model dependence.

Pseudodata Toy (assessing fit quality):

• Fit quality is good, with the exception of $C_{P}...$

Next Steps:

• Modelling combinatorial background with a non-parametric approach

Zak Williams

Overview

- $b \rightarrow s\ell\ell$ loops offer effective NP probes
- NP is strongly suggested in the C_9 sector of $b \rightarrow s\ell\ell$ loops by a variety of past results.
- I aim to simultaneously fit C_S , C_P , C_9 , $|C_{10}|$, C_T , and C_{T5} .
- This fit will be unbinned, include an angular dimension, and incorporate typically excluded non-local peak regions.