Strangeness production (K^0 , Λ^0) in diffractive pp collisions on STAR experiment at RHIC accelerator.

Adam Wątroba AGH University of Krakow

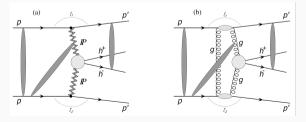
19.07.2024

Introduction

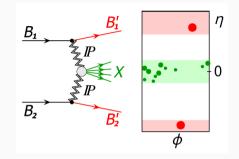
- The goal: characterisation of diffractive interactions in central diffraction
- Main research subject is strange quark production $(K_S^0 \text{ and } \Lambda^0 \text{ measurement through their most frequent decay channels}):$

•
$$K^0_S
ightarrow \pi^+\pi^-$$
, 69%

•
$$\Lambda^0 o p^\pm \pi^\mp$$
, 64%



Double Pomeron Exchange (DPE) by (a) Regge theory and (b) QCD. Absorption effects denoted with dark grey.

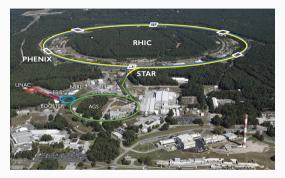


Central diffraction with protons (B_i, B'_i) and DPE.

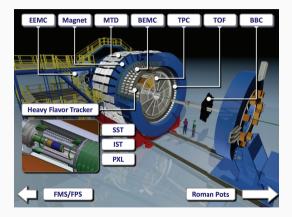
Why?

- Strong interactions conserve flavour - so strangeness production is interesting
- Inclusive production in this conditions wasn't researched 2/10

STAR detector and RHIC accelerator

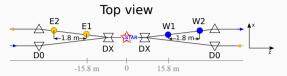


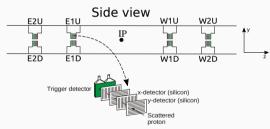
RHIC accelerator, aerial view



STAR detector, with modules noted

Roman Pot detectors



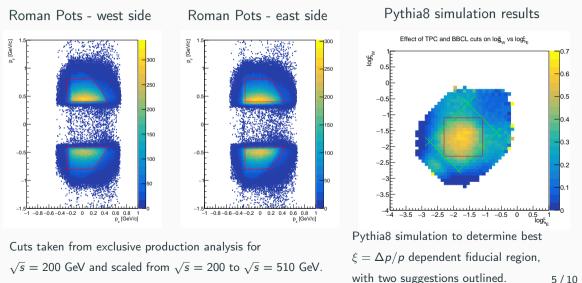


ED

Roman Pot collision scheme

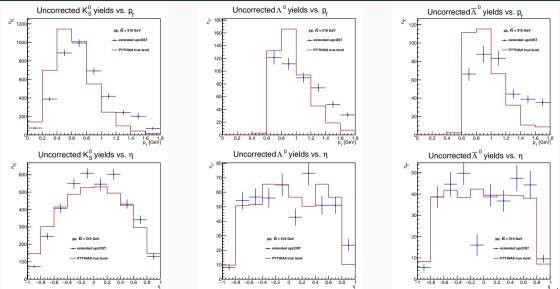
Structure and placement of Roman Pot detectors

Cuts and simulations



5/10

Towards diffractive crossection

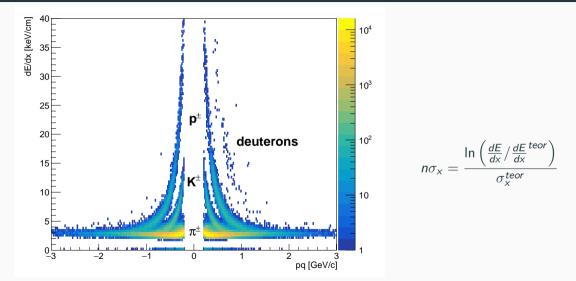


6/10

- Current comparison with Pythia8 generator results show good agreement
- Differences should get smaller after taking into consideration detector efficiencies
- Further possibilities include investigating particle identification through energy loss and timing-based methods

Backup slides

Particle identification through energy loss



Energy loss of particles used in reconstruction

Particle identification through time-of-flight difference

- TOF detector provides both trigger and timing information
- Unfortunately, very small part of the data has full timing information
- So I make do with what I have

$$\begin{cases} t_1 - t_0 = \frac{L_1}{c} \sqrt{1 + \frac{m_1^2 c^2}{p_1^2}} \\ t_2 - t_0 = \frac{L_2}{c} \sqrt{1 + \frac{m_2^2 c^2}{p_2^2}} \\ \downarrow m_1 = m_2 = m \\ t_1 - t_2 = L_1 \sqrt{1 + \frac{m^2 c^2}{p_1^2}} - L_2 \sqrt{1 + \frac{m^2 c^2}{p_2^2}} \\ \downarrow \\ A(m^2)^2 + Bm^2 + C = 0 \end{cases}$$

