PART Il

The Standard Model
INn the fermion sector

CKM Matrix and CP Violation



In the Standard Model, charged weak interactions among quarks

are codified in a 3 X 3 unitarity matrix:  the CKM Matrix.

~ half of the
Standard Model

The existence of this matrix conveys the fact that the quarks

which participate to weak processes are a linear combination
of mass eigenstates

The fermion sector is poorly constrained by SM + Higgs Mechanism

mass hierarchy and CKM parameters



The Standard Model 1s based on the following gauge symmetry

SU(2), x U(1)y

2 N\

Weak Isospin (symbol L because Weak Hypercharge :

only the LEFT states are involved )
(LEFT and RIGHT states )

I I, Q Y

doublet L V, A L5 0 -1
E‘L' l'/Z -2 - l - l
, _ Idem for the
Leptons |singlet R e~ 0 0 -1 -2 other families
Uy Ya Ya 2/3 1/3
doublet L l 1/ 1/ 1/3 1/3
C L 2 =-/2 B

singlet R Uy 0

0
quarks |singletR d, 0 0 -1/3 -2/3




Short digression on the mass
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myy  =my(P, + By =my(P,F, + BF, )y =

=m[(yB,)(B,y) + (W Pe) (Pl

The mass should appear in a LEFT-RIGHT coupling

Vi SU(2) singlet
v, : SU(2) doublet
ve ([=0,Y=-2) leptonip

Adding a doublet (I=0,Y=-2/3) quark dg

(¢ 1
¢_(¢“] T3

(I=0,Y=4/3) quark uy

Y=1

vy (I=1,Y=-1) leptoni;
(I=1,Y=1/3) quark d,

(I=1,Y=1/3) quark u

= m{:ERVIL + ;Lyf}?)
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The mass terms are not gauge invariant under

SU(2); x U(1)y
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/' h(I=1/2,Y=1)
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Yukawa mteraction : 1/ Lgﬁl// P 4
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After SSB %(WLWR + YRy _%[WLWE + YRy JH
g.u
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—Im u L

— & Q y Cl' Qfm Wﬁ' q = l_, 2,3 in‘-n‘. — i Lim _

—Ini. — Int.
Int. __ Int.
Q Q =0, IUQ universality of gauge 1nteractions

The SM quantum numbers are |, and Y

u ¢t e i - The gauge interactions are

_ VW & i

H o E -1 1 Flavour blind

e I T
- - . - ~ . . - 1‘. .
In this basis the Yukawa interactions has the tollowmg form: — win 4 =ioc, ¢ _| ol
—Int. —Int. To be manifestly invariant under SU(2)
__yd Int. U Int. I r Int.
Y, QL; Qﬁdﬂj +Y; QL; @tﬂj +7Y L gfﬁ Y, complex

< Two matrices are needed

SSB" < ¢O >= v/\/i; Re(g}ﬂ) — (v +H0)/\/5 to give a mass term to the
\L_l_-type and d-type quarks

—Int. =Int. —Int. We made the choice of having the
d Int. I ) Int. =
L = M d}: ] d " + MH ?,IL U ] ] " Mass Interaction diagonal
M ) J Rj y J Rj
where M7 =(/2)Y7 H W4 er
. . ..............
uR d.R

* SSB=Spontaneous Symmetry Breaking R 161



To have mass matrices diagonal and real, we have defined: w

The mass eigenstates are:

rd Int. . 174 Int.
dj:jF =V )y‘dij ) d}::,. =(Iy )gdﬁ.j
— (T4 Int. . (U Int.
i, = (V; HHLJ X iy = (V5 U-HRj
— (179 Int. . — (174 Int.
L= s L =,

_ 7l Int. L . ) . S
VJ:,- = (IL)HVLj VL;- arbitrary (assuming v massless)

In this basis the Lagrangian for the gauge interaction is:

L, = %z_fﬁy’“(ﬁ? Vitd, Wi +he.

The coupling 1s not Unitary matrix
anymore universal
k‘ __umuuciect bt

~d s bds bd s b



In the basis where :
the masses are real
and diagonal

In the basis where :
charged interactions are just
between members of the same family
and CKM is diagonal



If a similar procedure 1s applied to the lepton sector

-
Since the ngutrino are (were) massless the matrix which
w G ¢ K T e o .
o change thé basis from int-> mass 1s in principle arbitary
T We can always choose Y = V!
Ve Vu Vi L 'L

Now the neutrino have a mass. 1t exists a similar matrix in the
lepton sector with mixing a CP violation



_ =

—Inr.
Int. -
L, = EQLI_ Yo QMWL a=12.3

~L, = [lém 4 :;QM +%sz 7“1, u —igim, “1, d‘r’” 1B

[
J :

for the Z° Z" =cos$, W) —sin SWBJ“ S tand, =g /g

i the mass basis (example for d,)

(——+lsm 19];,,)64’L als f )d Z, = (——+lsm 15‘];,,)64’L }”“d Z,

L, =
cos&‘ 2 3 cos&‘ 2 3

The neutral currents stay universal, in the mass basis :

we do not need extra parameters for their complete
description
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[
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SUMMARY The mass 1s a LEFT-RIGHT coupling and has to
respect the gauge invariance SU(2), x U(1)y
/ @ 2
/ = J =
K4 h (I 1/2"{ 1) W G, . ¢t e p T
—el -1
d s b v, v, v,
MD (DIIDIZDB) MU (U11U12U13) _, _; -
= | D D22Dx = | Un U2 Uz d 77 3t T 27 "y Int.
D31 Do D Ut U U L,=M;d, a’ + My, ul+ MUFL F

049 Complex parameters

ol DU ol DU+

Moy- ¥ M (V)

L A

+ arameters
V(CKM) =V, (V) = (‘}jﬁ’p.n

|

To have mass matrices diagonal and real,

we have defined: _ w

The mass eigeustates are:

— ('Vd) df?‘-'f : _ ('Vd) dﬂif

The Lagrangian for the gauge interaction is:

L, = %5% y VEVEYd, WE +he.
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Pattern IV,,S| Vual Vcﬂl
(Exp. 022) | (Exp.0.0036) (Exp. 0.040)
1 0 my |, |my mm, iy, No (7,)
MM, 0 m, m, nm, n,
x
(0.17, 0.28) 0.0023 0.040
2 0 m |m, ﬁ[fﬂ+’ﬂ} m, , [m, No (V. 7,)
. + +
M, M, : m, m, m, |\ m, i, m, m,
(0.17.0.28) | (0.0011, 0.0058) (0.022, 0.10)
3 * m, m, m, OK
M, M, 0 " m ™
#
0.22 0.0036 0.040 Patizm b |V..,| (Exp. 022} |Vﬂ| (Exp. 0.0036) |V=,| (Exp. 0.040)
4 0 my | |m, n’ m, No (V. 7,) ! * 0 0 mm m, m, w (o
* m_ \m M. M, = = 0 J “\m m
M, M, a s mm, m, - M, : ] m !
* * 0 (0.17.028) 0.0036 0.0036
(0.17,0.28) 0.00021 0.0036
: * 0 0 m, m, oM o
5 * my |, m, m, m, No (V) M, M, = * = m, m, m\m,
M,, M. * L ™, m * 0 * 022 0.0036 (0.036,0.043)
* 3
(0.22,0.23) 0.0036 0.0036 (0 e man M m % V)
M, M, = =+ 0 ", 2 \m, ",
* * = om (0.0013,0.0085) 0.0036
4 0y [(0 * m [ mm, , [ m, W (V. V)
M. M, s {]s = o] [ym \m " \mm | \m,
* = * (017,028 (0.0047, 0.0051) 0.0036
; 00 0| fm, [m | [m m, .
M, M, of [+ = <[ [{mTm |{m m,
* 0 * (022,0.23) 0.0036 0.040
o = 0 o m, , |2m, m, m o [m, Ty
M. M, MR m "\ m, m, m "~ \m,
* 0 * (022,0.23) 0.0036 (0.022,010)
7 + 0 & m, o, o m: m, Mo (M)
M. M, of||= * m, m - \mm, m,
= = = 022 (©.0140.021) 0.040
: 0 0 * ﬂi m, 2 m;: + [P, "y o Vo
M., M, 0 Y * m, m, man, O\ mm, ",
* = * ©.17.028) (0.015,0.020) 0.040
’ (o= |, | [ [ | [, [ L 18)
M. M, o B R m o, mon, ~\mm, |\
= = ® {0.17,0.28) {0.015,0.020) (0.022,0.10)




The matrix (VuLVJL} is the mixing matrix for 2 quark generations. It is a 2 x 2
unitary matrix. As such, it generally contains 4 parameters, of which one can be

chosen as a real angle, f¢, and 3 are phases:

_ ) "
t,_ [ cos Oc e'™ sinf¢ €'
Worta) = (— sinfc €7 cosf el—ati+) | (4.11)
By the transformation
(VuLVi,) = V = Pu(Var V), ) Pi (4.12)

with

e—ta 1
P, = —iv | Py = sil-ath) | ° (4.13)

we eliminate the three phases from the mixing matrix. (We redefine the mass
eigenstates uy g — Pyup g and d g — Pydp g, so that the mass matrices remain
unchanged. In particular, they remain real.) Notice that there are three inde-
peudgnt phése differences between the elements of P, and those of P, and three
phases in-[VuLVJL). Consequently, there are no physically meaningful phases in V,

and hence no C P violation:”

cos 6 sin @
V= ( ¢ ‘3) . | (4.14)

—sinflc cosfo

For two generations, V is called the Cabibbo matrix [1]. If sin ¢ of (4.14) is dif-

ferent from zero, then the W interactions mediate generation-changing currents.
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LSM = I—Kinetic + I—Higgs + LYukawa Reca p
- + |
d I I gp I u
—Ly = Yy (u,dy); ( 0] dg; + W
o ) | ===
g ~qr ., 9 0T I
I—ineic:_ui}/#\/\/di dlyﬂ\Nu|+ d
Kinet x/E L u L \/E Li L
Diagonalize Yukawa matrix Y d' d
- Mass terms S' 5V
- Quarks rotate | b
- Off diagonal terms in charged current couplings b b

—_ - = md
u ~L \tass = (d,s’b)L[[ m H
W <
_____ L KM — i #W_Vu 1-
dsh cm = Uy J( 7/)

Q_crmo_

LSM —




M(diag) is unchanged if 7. f— pf V’Lf D Ve f_ pf VRf V(CKM) = PV (CKM ") P'*

Pf = phase matrix

—igy —iy —ile—7,) o —ila-x,)
V[I/;l ng] e 0 (V*U V'u] e 0 ) (Ve T Ve
Vy Vs 0 e )\V'y V'yJlo ™ v g n) V', g 1)

e
i —> ue™ v, ete I choose ¢ —y such than 7], real
Redifine the quark field

I choose ¢, —y, such than 7V, real
I choose @,—y such than 7, real

| cannot play the same game with all four fields
but only with 3 over 4

(2n-1) irreducible phases
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APPENDIX

JARSLOG
DISCRIMINANT



UT area and condition for CP violation (formal)

The standard representation of the CKM matrix is:

7 ;P ;P i g —id
Iud us Iub CIECIB ‘512613 ’SlE‘p“E3 c
7|17 g g N R . , ig o ig i
V=TV, Vo Vi |=| =S —Cp5ysis€ C1aCa3 = 515C535)5€ S23C73 S
4 7 ra . ig o L e is i
Va Ve Vs 12853 T O 0355€ C1aS73 = 515C353€ €303

However, many representations are possible. What are the invariants under re-phasing?

*Simplest: U_. = |V _.[? is independent of quark re-phasing
*Next simplest: Quartets: Q ., =V, V; V" V" with a#fand iz
—“Each quark phase appears with and without *”
*\/"V=1: Unitarity triangle: V,, V., + V, V. *+V,, V%=
—Multiply the equation by V. * V. and take the imaginary part:
=Im (V" Vee Vg Veg') == Im (V™ Vi Vi Vi)
=J=ImQu.=-1mQ
—The imaginary part of each Quartet combination is the same (up to a sign)
—In fact it is equal to 2x the surface of the unitarity triangle
Area =% |V ||V, | h ; h=[V ||V, Isinarg(-V V.V, *V,*)I
=1/2 |Im(V V V., * Vo, ¥) )
oIm[V, VsV, *V;"]=15¢,,, &, wherel/isthe universal Jarlskog invariant
*Amount of CP Violation is proportional to J

ubcs
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The Amount of CP Violation

Using Standard Parametrization of CKM:
—i&
C€13 S12€13 513€ o
= i i Gy = €08 Qj
= | 751263 T C1253515€ C12€23 — $12023515€ $23€13 5. =sind
i i6 /A g
S12523 7 €12€53515€ —C12823 T 512023513€ €363

I - s 2y (o o)

(The maximal value J might have = 1/(6v/3) ~ 0.1)

C. Jarlskog, Phys. Rev. Lett.55, 1039 (1985)

A=(p,n)
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More details
CP Violation at the Lagrangian level

o —

J"H 3 /V 3
Int. . - L; | L; }
[ _ EQ _}""CTRQIHI'W.I:J a= ]__2_1_1 QIm. _ | L.Fnr. _ |
L L; H L; L
2 \dz, ) I, )
—Int. —Int. —Int.
_aqd Int. S Int. gl Int. ik . LY P o rf
L,=M:d, dn,- +Miu, u, + M1, Ii‘.__ where M7 =(v/+2)Y

Accept that (or verify) the most general CP transformation which leave the lagrangian invariant is

Int. o 3t ® Int. yrd v gInt*
Int. Tr Int * . Int. i e It
u, —>W,Cu; : uy —>WyCug
(C=iy'y’ woW. FFT unitarity matrices)

In order to have L,, to be invariant under CP, the M matrices should satisfy the following relations :

wiM WY =M. WIH W, =H, where H, =M M and W} =MW,
WM, W, =M, WiH,W, =H,

where H,=M_,M)and W =MW,
in this form, these conditions are of little use. A way of doing is : T g

Y g w/H HW, =H'H!
Wl H H W, =H'HT

*The existence of charged current contrains u ,d, to trasform in the same way under CP while the absence of right charged current allow u_,d,
to tranform differentely under CP
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More details
Substracting these two equations

W [H,H,W, =-[HH]T

If one evaluates the traces of both sides, they vanish identically and no constraints is obtained. In order
to obtain no trivial contrain, we have to multiply the previous equation a odd number of times :

WiH, HIW, =—{(HHTY (- odd)

Taking the traces one obtain :

T{H,H,] =0

For n=1, and n=2 the previous equations are automatically satified for harbitrary hermitian H matrices
(it is the same as the counting of the physical phase of the CKM matrix). For n=3 or larger the previous eq.
provides non trivial contraints on the H matrix. It can be shown that for n=3 it implies
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CP Violation in the Standard Model

Requirements for CP violation

(i —mg km; —m; fmZ —m;)

x(mﬁ —mﬁImj —mjlmj —rnj)x Jop # 0

where

Jarlskog

Jop = IMV,V, VoV, (i # jior = B)| - determinan

™ jpYIBY ja

Using above parameterizations

Jop = 8,,5,35,,C,C,:C,, SINS = L'A’n = O(IO‘5 )‘

=) CP violation is small in the Standard Model
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