PART III

The Standard Model in the fermion sector

CKM Matrix and CP Violation

Flavour Physics in the Standard Model (SM) in the quark sector:

In the Standard Model, charged weak interactions among quarks are codified in a 3 X 3 unitarity matrix : the **CKM Matrix**.

The existence of this matrix conveys the fact that the quarks which participate to weak processes are a linear combination of mass eigenstates

The fermion sector is poorly constrained by SM + Higgs Mechanism mass hierarchy and CKM parameters

The Standard Model is based on the following gauge symmetry

Weak Isospin (symbol L because only the LEFT states are involved)

(LEFT and RIGHT states)

			I	I_3	Q	Y
	doublet L	$v_{\rm e}$	1/2	1/2	0	-1
		e_{L}	1/2	$-\frac{1}{2}$	-1	-1
Leptons	singlet R	e_R	0	0	-1	-2
		$u_{\rm L}$	1/2	1/2	2/3	1/3
	doublet L	$d_{\rm L}$	1/2	-1/2	-1/3	1/3
	singlet R	u_R	0	0	2/3	4/3
quarks	singlet R	d_R	0	0	-1/3	-2/3

Idem for the other families

Short digression on the mass

$$E^{2} = \overrightarrow{p}^{2} + m^{2} \rightarrow \partial^{\mu}\partial_{\mu} + m^{2}\phi = 0 \leftrightarrow L = \partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} = 0$$
$$(i\gamma^{\mu}\partial_{\mu} - m) = 0 \leftrightarrow L = i\overline{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\overline{\psi}\psi$$

$$m\overline{\psi}\psi = m\overline{\psi}(P_L + P_R)\psi = m\overline{\psi}(P_L P_L + P_R P_R)\psi =$$

$$= m[(\overline{\psi}P_L)(P_L \psi) + (\overline{\psi}P_R)(P_R \psi)]\psi = m(\overline{\psi}_R \psi_L + \overline{\psi}_L \psi_R)$$

The mass should appear in a LEFT-RIGHT coupling

 ψ_{R} : SU(2) singlet

 ψ_L : SU(2) doublet

Adding a doublet

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
 $I = \frac{1}{2}$ $Y = 1$

The mass terms are not gauge invariant under

$$SU(2)_L \times U(1)_Y$$

 ψ_R (I=0,Y=-2) leptoni_R

(I=0,Y=-2/3) quark d_R

(I=0,Y=4/3) quark u_R

 $\psi_{L} \ (I\text{=}1,Y\text{=}\text{-}1) \ leptoni_{L}$

(I=1,Y=1/3) quark d_L

(I=1,Y=1/3) quark u_L

Yukawa interaction : $\overline{\psi}_L \phi \psi_R$

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$$

$$g_e(\overline{\psi}_L\phi\psi_R+\phi^+\overline{\psi}_R\psi_L)$$

(le deuxieme terme est l'hermitien conjuge du premier)

After SSB

$$\frac{g_{e}v}{\sqrt{2}}(\overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L}) + \frac{g_{e}}{\sqrt{2}}(\overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L})H$$

$$m_{\epsilon} = \frac{g_{\epsilon} v}{\sqrt{2}}$$

v/sqrt(2) ~natural mass (g~1)

$$g_{e} = \frac{\sqrt{2}m_{e}}{v}$$

$$m_e = + \frac{m_e}{v} = eeH$$

$$\frac{g_e}{\sqrt{2}} = \frac{m_e}{v}$$
 couplage Hee

$$L_{W} = \frac{g}{2} \overline{Q}_{L_{i}}^{Int.} \gamma^{\mu} \sigma^{a} Q_{L_{i}}^{Int.} W_{\mu}^{a} \qquad a = 1, 2, 3 \qquad Q_{L_{i}}^{Int.} = \begin{pmatrix} u_{L_{i}} \\ d_{L_{i}} \end{pmatrix} L_{L_{i}}^{Int.} = \begin{pmatrix} v_{L_{i}} \\ l_{L_{i}} \end{pmatrix}$$

$$\overline{Q}_{L_i}^{Int.} Q_{L_i}^{Int.} = \overline{Q}_{L_i}^{Int.} 1_{ij} Q_{L_j}^{Int.} \quad \text{universality of gauge interactions}$$

In this basis the Yukawa interactions has the following form: $\psi_{\text{with:}} = i\sigma_2 \phi^* = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \phi^*$

$$L_{Y} = Y_{ij}^{d} \overline{Q}_{L_{i}}^{Int.} \phi d_{R_{j}}^{Int.} + Y_{ij}^{u} \overline{Q}_{L_{i}}^{Int.} \phi u_{R_{j}}^{Int.} + Y_{ij}^{l} \overline{L}_{L_{i}}^{Int.} \phi l_{R_{j}}^{Int.}$$

$$V_{ij} \text{ complex}$$

$$Y_{ij} \text{ complex}$$

u-type and d-type quarks

 $L_{M} = M_{ij}^{d} \overline{d}_{L_{i}}^{Int.} d_{R_{i}}^{Int.} + M_{ij}^{u} \overline{u}_{L_{i}}^{Int.} u_{R_{i}}^{Int.} + M_{ij}^{l} \overline{l}_{L_{i}}^{Int.} l_{R_{i}}^{Int.}$

We made the choice of having the Mass Interaction diagonal

where
$$M^f = (v/\sqrt{2})Y^f$$

 ^{*} SSB=Spontaneous Symmetry Breaking

To have mass matrices diagonal and real, we have defined:

The mass eigenstates are:

$$\begin{split} d_{L_{i}} &= (V_{L}^{d})_{ij} \, d_{L_{j}}^{Int.} & ; \qquad d_{R_{i}} &= (V_{R}^{d})_{ij} \, d_{R_{j}}^{Int.} \\ u_{L_{i}} &= (V_{L}^{u})_{ij} \, u_{L_{j}}^{Int.} & ; \qquad u_{R_{i}} &= (V_{R}^{u})_{ij} \, u_{R_{j}}^{Int.} \\ l_{L_{i}} &= (V_{L}^{d})_{ij} \, l_{L_{j}}^{Int.} & ; \qquad l_{R_{i}} &= (V_{R}^{d})_{ij} \, l_{R_{j}}^{Int.} \\ v_{L_{i}} &= (V_{L}^{l})_{ij} \, v_{L_{i}}^{Int.} & v_{L_{i}} & \text{arbitrary (assuming } v \text{ massless)} \end{split}$$

In this basis the Lagrangian for the gauge interaction is:

$$L_{w} = \frac{g}{2} \overline{u}_{L_{i}} \gamma^{\mu} (V_{L}^{u} V_{L}^{d\dagger}) d_{L_{j}} W_{\mu}^{a} + h.c.$$

The coupling is not anymore universal

Unitary matrix

Two different way of seeing the charged interactions among quarks

In the basis where : the masses are real and diagonal

In the basis where :
charged interactions are just
between members of the same family
and CKM is diagonal

If a similar procedure is applied to the lepton sector

Now the neutrino have a mass, it exists a similar matrix in the lepton sector with mixing a CP violation

For the Z⁰

$$\begin{split} L_{W} &= \frac{g}{2} \overline{\mathcal{Q}}_{L_{i}}^{Int.} \gamma^{\mu} \sigma^{a} \mathcal{Q}_{L_{i}}^{Int.} W_{\mu}^{a} \qquad a = 1, 2, 3 \\ -L_{B} &= g' [\frac{1}{6} \overline{\mathcal{Q}}_{L_{i}}^{Int.} \gamma^{\mu} 1_{ij} \mathcal{Q}_{L_{j}}^{Int.} + \frac{2}{3} \overline{u}_{R_{i}}^{Int.} \gamma^{\mu} 1_{ij} u_{R_{j}}^{Int.} - \frac{1}{3} \overline{d}_{R_{i}}^{Int.} \gamma^{\mu} 1_{ij} d_{R_{j}}^{Int.}] B_{\mu} \\ \text{for the } Z^{0} \qquad Z^{\mu} &= \cos \theta_{W} W_{3}^{\mu} - \sin \theta_{W} B^{\mu} \quad ; \quad \tan \theta_{W} &= g' / g \\ \text{in the mass basis (example for } d_{L}) \\ -L_{Z} &= \frac{g}{\cos \theta_{W}} (-\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{W}) \overline{d}_{L_{i}} \gamma^{\mu} (V_{dL}^{\dagger} V_{dL}) d_{L_{i}} Z_{\mu} &= \frac{g}{\cos \theta_{W}} (-\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{W}) \overline{d}_{L_{i}} \gamma^{\mu} d_{L_{i}} Z_{\mu} \end{split}$$

The neutral currents stay universal, in the mass basis: we do not need extra parameters for their complete description

NEUTRAL CURRENTS with ZO.

DO NOT CHANGE THE FLAVOUR

Flavour Changing Neutral Current (FCNC) occurs with W exchange.

THEY ARE SUPPRESSED IN THE SM SINCE OCCURS AT SECOND ORDER.

SUMMARY

The mass is a LEFT-RIGHT coupling and has to respect the gauge invariance $SU(2)_L \times U(1)_V$

$$M = \begin{pmatrix} D_{11} D_{12} D_{13} \\ D_{21} D_{22} D_{23} \\ D_{31} D_{32} D_{33} \end{pmatrix} M = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} D_{11} D_{12} D_{13} \\ D_{21} D_{22} D_{23} \\ D_{31} D_{32} D_{33} \end{pmatrix} M = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} D_{11} D_{12} D_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$D = \begin{pmatrix} U_{11} U_{12} U_{13} \\ U_{21} U_{22} U_{23} \\ U_{31} U_{32} U_{33} \end{pmatrix}$$

$$L_{M} = M_{ij}^{d} \overline{d}_{L_{j}}^{Int.} d_{R_{j}}^{Int.} + M_{ij}^{u} \overline{u}_{L_{j}}^{Int.} u_{R_{j}}^{Int.} + M_{ij}^{l} \overline{l}_{L_{j}}^{Int.} l_{R_{j}}^{Int.}$$

$$M_{DIAG}^{D,U} = V_{L}^{D,U} M^{D,U} (V_{R}^{D,U})^{+}$$

$$M_{DIAG}^{D} = \begin{pmatrix} m_{d} & \\ m_{s} & \\ m_{b} \end{pmatrix} M_{DIAG}^{U} = \begin{pmatrix} m_{u} & \\ m_{c} & \\ m_{t} \end{pmatrix}$$

The mass eigenstates are:

$$d_{L_i} = (V_L^d)_{ij} d_{L_j}^{Int.}$$
; $d_{R_i} = (V_R^d)_{ij} d_{R_j}^{Int.}$

$$V(CKM) = V_L^{U}(V_L^{D})^{+} = \begin{pmatrix} 4 \text{ parameters} \\ \lambda_i A_i \rho_i \eta \end{pmatrix}$$
The Lagrangian for the gauge interaction is:
$$L_W = \frac{g}{2} \overline{u}_{L_i} \gamma^{\mu} (V_L^u V_L^{d\dagger}) d_{L_j} W_{\mu}^a + h.c.$$

Pattern	U	D	$ V_{us} $	$ V_{ub} $	$ V_{cb} $	
			(Exp. 0.22)	(Exp. 0.0036)	(Exp. 0.040)	
1 M_7, M_3	(0 * 0 * * 0 0 0 *	0 * 0 * * * 0 * *	$\sqrt{\frac{m_d}{m_z}} \pm \sqrt{\frac{m_u}{m_c}}$	$\sqrt{\frac{m_d m_u}{m_b m_c}}$	$\sqrt{rac{m_d}{m_b}}$	No (V_{ub})
			(0.17, 0.28)	0.0023	0.040	
M_8, M_3	0 * 0 * 0 * 0 * 0	0 * 0 * *	$\sqrt{rac{m_d}{m_z}} \pm \sqrt{rac{m_u}{m_c}}$	$\sqrt{\frac{m_u}{m_c}} \left[\sqrt{\frac{m_c}{m_t}} \pm \sqrt{\frac{m_d}{m_b}} \right]$	$\sqrt{\frac{m_c}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$	No (V_{ub}, V_{cb})
	(0 * *)	(0 * *)		(0.0011, 0.0058)	(0.022, 0.10)	
M_6, M_3	0 0 * 0 * 0 * 0 *	(0 * 0)	$\sqrt{\frac{m_d}{m_s}}$	$\sqrt{\frac{m_u}{m_t}}$	$\sqrt{\frac{m_d}{m_b}}$	OK
	(* 0 *)	(0 * *)	0.22	0.0036	0.040	
M_3, M_7	(0 * 0)	(0 * 0)	$\sqrt{\frac{m_d}{m_\varepsilon}} \pm \sqrt{\frac{m_u}{m_\varepsilon}}$	$\sqrt{\frac{m_u^2}{m_e m_t}}$	$\sqrt{\frac{m_u}{m_t}}$	No (V_{ub}, V_{cb})
	(0 * *)	(0 0 *)	(0.17,0.28)	0.00021	0.0036	
M_2, M_7	0 0 *	0 * 0	$\sqrt{\frac{m_d}{m_z}} \pm \frac{m_u}{m_c}$	$\sqrt{\frac{m_u}{m_r}}$	$\sqrt{\frac{m_u}{m_t}}$	No (V _{cb})
	(* * *)	(0 0 *)	(0.22,0.23)	0.0036	0.0036	

Pattern	U	D	V (Exp. 0.22)		V _{eb} (Exp. 0.040)	
1 M ₁ , M ₇	0 * * * * * * * *	0 * 0 * * 0 0 0 *	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$\sqrt{\frac{m_u}{m_t}}$ 0.0036	$\sqrt{\frac{m_{_{c}}}{m_{_{t}}}}$ 0.0036	No (V _{cb})
2 M ₂ , M ₃	0 0 * 0 * * * * *	0 * 0 * * * 0 * *	$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_u}{m_t}}$ 0.0036	$\sqrt{\frac{m_d}{m_b}} \pm \sqrt{\frac{m_u}{m_t}}$ (0.036,0.043)	OK
	0 0 * 0 * * * * *		$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_e m_s}{2m_b^2}} \pm \sqrt{\frac{m_e}{m_t}}$ (0.0013,0.0085)	$\sqrt{\frac{m_{\omega}}{m_t}}$ 0.0036	No (V _{eb})
4 M ₃ , M ₄	0 * 0 * * * 0 * *	0 * * * * 0 * 0 *	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$\sqrt{\frac{m_u m_u}{2m_b^2}} \pm \sqrt{\frac{m_u^2}{m_c m_t}}$ (0.0047, 0.0051)	$\sqrt{\frac{m_{\omega}}{m_{\epsilon}}}$ 0.0036	No (V_{ub}, V_{eb})
5 M ₄ , M ₃	(0 * * * * 0 * 0 *)	0 * 0 * * * 0 * *	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_t}}$ (0.22,0.23)	$\sqrt{\frac{m_u}{m_t}}$ 0.0036	$\sqrt{\frac{m_d}{m_b}}$ 0.040	OK
6 M ₅ , M ₃	0 * * * 0 * * * *	0 * 0 * * * 0 * *	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{2m_u}{m_t}}$ $(0.22,0.23)$	$\sqrt{\frac{m_u}{m_t}}$ 0.0036	$\sqrt{\frac{m_e}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$ (0.022,0.10)	? (V _{cb})
7 M ₆ , M ₁	0 0 * 0 * 0 * 0 *	(0 * * * * * * * *	$\sqrt{\frac{m_d}{m_s}}$ 0.22	$\sqrt{\frac{m_u}{m_t}} \pm 2\sqrt{\frac{{m_d}^2}{m_i m_b}}$ (0.014,0.021)	$\sqrt{\frac{m_d}{m_b}}$ 0.040	No (V_{ub})
8 M ₇ , M ₁	0 * 0 * * 0 0 0 *	(0 * * * * * * * *	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$2\sqrt{\frac{{m_d}^2}{m_a m_b}} \pm \sqrt{\frac{m_d m_u}{m_b m_e}}$ (0.015,0.020)	$\sqrt{\frac{m_d}{m_b}}$ 0.040	No (V_{ub})
M_{8}, M_{1}	0 * 0 * 0 * 0 * *	(0 * *) * * * * * *)	$\sqrt{\frac{m_d}{m_s}} \pm \sqrt{\frac{m_u}{m_e}}$ (0.17,0.28)	$2\sqrt{\frac{{m_d}^2}{m_z m_b}} \pm \sqrt{\frac{m_d m_u}{m_b m_c}}$ (0.015,0.020)	$\sqrt{\frac{m_e}{m_t}} \pm \sqrt{\frac{m_d}{m_b}}$ (0.022,0.10)	No $(V_{ub} 13_b)$

The matrix $(V_{uL}V_{dL}^{\dagger})$ is the mixing matrix for 2 quark generations. It is a 2×2 unitary matrix. As such, it generally contains 4 parameters, of which one can be chosen as a real angle, θ_C , and 3 are phases:

$$(V_{uL}V_{dL}^{\dagger}) = \begin{pmatrix} \cos\theta_C \ e^{i\alpha} & \sin\theta_C \ e^{i\beta} \\ -\sin\theta_C \ e^{i\gamma} & \cos\theta_C \ e^{i(-\alpha+\beta+\gamma)} \end{pmatrix}. \tag{4.11}$$

By the transformation

$$(V_{uL}V_{dL}^{\dagger}) \to V = P_u(V_{uL}V_{dL}^{\dagger})P_d^*, \tag{4.12}$$

with

$$P_{u} = \begin{pmatrix} e^{-i\alpha} \\ e^{-i\gamma} \end{pmatrix}, \quad P_{d} = \begin{pmatrix} 1 \\ e^{i(-\alpha+\beta)} \end{pmatrix}, \quad (4.13)$$

we eliminate the three phases from the mixing matrix. (We redefine the mass eigenstates $u_{L,R} \to P_u u_{L,R}$ and $d_{L,R} \to P_d d_{L,R}$, so that the mass matrices remain unchanged. In particular, they remain real.) Notice that there are three independent phase differences between the elements of P_u and those of P_d , and three phases in $(V_{uL}V_{dL}^{\dagger})$. Consequently, there are no physically meaningful phases in V, and hence no CP violation:

$$V = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix}. \tag{4.14}$$

For two generations, V is called the Cabibbo matrix [1]. If $\sin \theta_C$ of (4.14) is different from zero, then the W^{\pm} interactions mediate generation-changing currents.

$$L_{SM} = L_{Kinetic} + L_{Higgs} + L_{Yukawa}$$

$$-L_{Yuk} = Y_{ij}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}})_{i} \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} d_{Rj}^{I} + \dots$$

$$L_{Kinetic} = \frac{g}{\sqrt{2}} \overline{u_{Li}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{Li}^{I} + \frac{g}{\sqrt{2}} \overline{d_{Li}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{I} + \dots$$

Diagonalize Yukawa matrix Y_{ij}

- Mass terms
- Quarks rotate
- Off diagonal terms in charged current couplings

$$\begin{pmatrix} d^I \\ s^I \\ b^I \end{pmatrix} \to V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$u$$
 d,s

$$L_{CKM} = \frac{g}{\sqrt{2}} \overline{u_i} \gamma^{\mu} W_{\mu}^{-} V_{ij} \left(1 - \gamma^5\right) d_j + \frac{g}{\sqrt{2}} \overline{d_j} \gamma^{\mu} W_{\mu}^{+} V_{ij}^{*} \left(1 - \gamma^5\right) u_i + \dots$$

$$L_{SM} = L_{CKM} + L_{Higgs} + L_{Mass}^{15}$$

M(diag) is unchanged if
$$V_L^{'f} = P^f V_L^f$$
; $V_R^{'f} = P^f V_R^f$ $V(CKM') = P^u V(CKM') P^{*d}$
 $P^f = \text{phase matrix}$

$$V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} = \begin{pmatrix} e^{-i\varphi_1} & 0 \\ 0 & e^{-i\varphi_2} \end{pmatrix} \begin{pmatrix} V'_{11} & V'_{12} \\ V'_{21} & V'_{22} \end{pmatrix} \begin{pmatrix} e^{-i\chi_1} & 0 \\ 0 & e^{-i\chi_2} \end{pmatrix} = \begin{pmatrix} V'_{11} e^{-i(\varphi_1 - \chi_1)} & V'_{12} e^{-i(\varphi_1 - \chi_2)} \\ V'_{21} e^{-i(\varphi_2 - \chi_1)} & V'_{22} e^{-i(\varphi_2 - \chi_2)} \end{pmatrix}$$

$$u
ightarrow u e^{i\phi_{\!\!11}} \qquad \qquad V_{11} e^{i\phi_{\!\!11}} e^{-i(\phi_{\!\!1} - \chi_1)}$$
 Redifine the quark field

I choose $\varphi_1 - \chi_1$ such than V_{11} real

I choose $\varphi_1 - \chi_2$ such than V_{12} real

I choose $\varphi_2 - \chi_1$ such than V_{21} real

BUT:
$$(\varphi_2 - \chi_2) = (\varphi_2 - \chi_1) + (\varphi_1 - \chi_2) - (\varphi_1 - \chi_1)$$

I cannot play the same game with all four fields but only with 3 over 4

(2n-1) irreducible phases

APPENDIX

JARSLOG DISCRIMINANT

UT area and condition for CP violation (formal)

The standard representation of the CKM matrix is:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \qquad c_{ij} \equiv \cos\theta_{ij}$$

$$s_{ij} \equiv \sin\theta_{ij}$$

However, many representations are possible. What are the invariants under re-phasing?

- •Simplest: $U_{ci} = |V_{ci}|^2$ is independent of quark re-phasing
- •Next simplest: Quartets: $Q_{\alpha i\beta j} = V_{\alpha j} V_{\beta j} V_{\alpha j}^* V_{\beta j}^*$ with $\alpha \neq \beta$ and $i \neq j$
 - -"Each quark phase appears with and without *"
- $V^{\dagger}V=1$: Unitarity triangle: $V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0$
 - -Multiply the equation by $V_{us} * V_{cs}$ and take the imaginary part:

$$-Im(V_{us}^* V_{cs} V_{ud} V_{cd}^*) = -Im(V_{us}^* V_{cs} V_{ub} V_{cb}^*)$$

$$-J = Im Q_{udcs} = -Im Q_{ubcs}$$

- -The imaginary part of each Quartet combination is the same (up to a sign)
- -In fact it is equal to 2x the surface of the unitarity triangle

Area =
$$\frac{1}{2} |V_{cd}| |V_{cb}| h$$
; h= $|V_{ud}| |V_{ub}| \sin arg(-V_{ud}V_{cb}V_{ub}^*V_{cb}^*)|$
= $\frac{1}{2} |Im(V_{ud}V_{cb}V_{ub}^*V_{cb}^*)|)|$

- • $Im[V_{ci}\ V_{\beta j}\ V_{cj}\ ^*\ V_{\beta i}\ ^*] = J\sum \varepsilon_{\alpha\beta\gamma}\ \varepsilon_{ijk}$ where J is the universal Jarlskog invariant
- Amount of CP Violation is proportional to J

The Amount of CP Violation

Using Standard Parametrization of CKM:

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \qquad c_{ij} \equiv \cos\theta_{ij}$$

$$J \equiv c_{12}c_{23}c_{13}^2s_{12}s_{23}s_{13}\sin\delta = (3.0 \pm 0.3) \times 10^{-5} = \lambda^6 A^2 \eta \qquad (eg.: J=Im(V_{us} V_{cb} V_{ub}^* V_{cs}^*))$$

(The maximal value J might have = $1/(6\sqrt{3}) \sim 0.1$)

CP Violation at the Lagrangian level

$$L_{W} = \frac{g}{2} \overline{Q}_{L_{i}}^{Int.} \gamma^{\mu} \sigma^{a} Q_{L_{i}}^{Int.} W_{\mu}^{a} \qquad a = 1, 2, 3 \qquad Q_{L_{i}}^{Int.} = \begin{pmatrix} u_{L_{i}} \\ d_{L_{i}} \end{pmatrix} L_{L_{i}}^{Int.} = \begin{pmatrix} v_{L_{i}} \\ l_{L_{i}} \end{pmatrix}$$

$$L_{M} = M_{ij}^{a} \overline{d}_{L_{i}}^{Int.} d_{R_{i}}^{Int.} + M_{ij}^{u} \overline{u}_{L_{i}}^{Int.} u_{R_{i}}^{Int.} + M_{ij}^{l} \overline{l}_{L_{i}}^{Int.} d_{R_{i}}^{Int.} \qquad \text{where} \quad M^{f} = (v / \sqrt{2}) Y^{f}$$

Accept that (or verify) the most general CP transformation which leave the lagrangian invariant is

$$\begin{split} d_L^{Int.} -> W_L C d_L^{Int.*} &; \qquad d_R^{Int.} -> W_R^d C d_R^{Int.*} \\ u_L^{Int.} -> W_L C u_L^{Int.*} &; \qquad u_R^{Int.} -> W_R^u C u_R^{Int.*} \\ (C = i \gamma^2 \gamma^0 & W_L^{}, W_R^u^{}, W_R^d & \text{unitarity matrices}) \end{split}$$

In order to have L_M to be invariant under CP, the M matrices should satisfy the following relations :

$$\begin{array}{lll} W_L^\dagger M_u \, W_R^u &= M_u^* & W_L^\dagger H_u \, W_L &= H_u^* & \text{where} \quad H_u = M_u M_u^\dagger \, \text{and} \quad W_R^u = M_u^\dagger W_L \\ W_L^\dagger M_d \, W_R^d &= M_d^* & W_L^\dagger H_d \, W_L &= H_d^* & \text{where} \quad H_d = M_d M_d^\dagger \, \text{and} \quad W_R^d = M_d^\dagger W_L \end{array}$$

in this form, these conditions are of little use. A way of doing is : $W_L^\dagger H_u \, H_d W_L = H_u^T H_d^T$ $W_L^\dagger H_d H_u \, W_L = H_d^T H_u^T$

[•] The existence of charged current contrains u_L , d_L to trasform in the same way under CP while the absence of right charged current allow u_R , d_R to tranform differentely under CP

Substracting these two equations

$$W_L^{\dagger}[H_u H_d] W_L = -[H_u H_d]^T$$

If one evaluates the traces of both sides, they vanish identically and no constraints is obtained. In order to obtain no trivial contrain, we have to multiply the previous equation a odd number of times:

$$W_L^{\dagger}[H_u H_d]^r W_L = -\{[H_u H_d]^r\}^T$$
 (r odd)

Taking the traces one obtain:

$$Tr[H_u H_d]^r = 0$$

For n=1, and n=2 the previous equations are automatically satisfied for harbitrary hermitian H matrices (it is the same as the counting of the physical phase of the CKM matrix). For n=3 or larger the previous eq. provides non trivial contraints on the H matrix. It can be shown that for n=3 it implies

$$Tr[H_u H_d]^3 = 6\Delta_{21}\Delta_{31}\Delta_{32} \operatorname{Im} Q$$

$$\Delta_{21} = (m_s^2 - m_d^2) \times (m_c^2 - m_u^2)$$

$$\Delta_{31} = (m_b^2 - m_d^2) \times (m_t^2 - m_u^2)$$

$$\Delta_{32} = (m_b^2 - m_s^2) \times (m_t^2 - m_c^2)$$

CP violation vanish in the limit where any two quarks of the same charge become degenerate. But it does not necessarily vanish in the limit where one quark is massless $(m_u=0)$ or even in the chiral limit $(m_u=m_d=0)$

CP violation vanish if the triangle has area equal to 0

CP Violation in the Standard Model

Requirements for CP violation

$$(m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2) \times (m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2) \times J_{CP} \neq 0$$

where

$$J_{CP} = \left| \operatorname{Im} \left\{ V_{i\alpha} V_{j\beta} V_{i\beta}^* V_{j\alpha}^* \right\} \right| \left(i \neq j, \alpha \neq \beta \right)$$

Jarlskog determinant

Using above parameterizations

$$m{J}_{CP} = m{s}_{12} m{s}_{13} m{s}_{23} m{c}_{12} m{c}_{23} m{c}_{13} \sin \delta = \lambda^6 m{A}^2 m{\eta} = m{O} m{1} 0^{-5} m{)}$$

CP violation is small in the Standard Model