

Unitarity Triangle Formalism

How well we know CKM

The Unitarity Triangle

The CKM is unitary

$$VV^{\dagger} = V^{\dagger}V = 1$$

The non-diagonal elements of the matrix products correspond to 6 triangle equations

$$V_{ud}^{*} V_{us} + V_{cd}^{*} V_{cs} + V_{td}^{*} V_{ts} = 0 \qquad \lambda \lambda \lambda^{5}$$

$$V_{ub}^{*} V_{ud} + V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{us}^{*} V_{ub} + V_{cs}^{*} V_{cb} + V_{ts}^{*} V_{tb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{td} + V_{us}^{*} V_{ts} + V_{ub}^{*} V_{tb} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{ud}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{td}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

Remember that :

$$\begin{array}{ccc} 1 - \lambda^2 / 2 - \lambda^4 / 8 & \lambda & A \lambda^3 (\rho - i\eta) \\ -\lambda + \frac{A^2 \lambda^5}{2} (1 - 2\rho) - i A^2 \lambda^5 \eta & 1 - \lambda^2 / 2 - \lambda^4 (\frac{1}{8} + \frac{A^2}{2}) & A \lambda^2 \\ A \lambda^3 (1 - (1 - \lambda^2 / 2)(\rho + i\eta)) & -A \lambda^2 (1 - \lambda^2 / 2)(1 + \lambda^2 (\rho + i\eta)) & 1 - \frac{A^2 \lambda^4}{2} \end{array} \right)$$

$$V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$$

$$V_{ud} V_{ub}^* = A\lambda^3 (\overline{\rho} + i\overline{\eta}) \qquad V_{cd} V_{cb}^* = -A\lambda^3 \qquad V_{td} V_{tb}^* = A\lambda^3 (1 - \overline{\rho} - i\overline{\eta})$$

$$A = (\overline{\rho}, \overline{\eta})$$

$$\overline{\rho} + i\overline{\eta} \qquad 1 \qquad \overline{\rho} + i\overline{\eta}$$

$$C = (0,0) \qquad 1 \qquad B = (1,0)$$

$$\overline{AB} = \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = \sqrt{(1-\overline{\rho})^2 + \overline{\eta}^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right| \quad \overline{AC} = \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = \sqrt{\overline{\rho}^2 + \overline{\eta}^2} = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|$$

Each of the angles of the unitarity triangle is the relative phase of two adjacent sides (a part for possible extra π and minus sign)

$$\beta = \arg\left(\frac{V_{ud}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{(1-\overline{\rho})}\right)$$

$$\gamma = \arg\left(\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{\overline{\rho}}\right)$$

$$\alpha + \beta + \gamma = \pi$$

$$A = (\overline{\rho}, \overline{\eta})$$

$$B = (1.0)$$

The reason of making the arg of the ratio of two legs is simple

$$x = |x|e^{i\vartheta}; y = |y|e^{i\chi} \qquad x/y = (|x|/|y|)e^{i(\vartheta-\chi)}$$

$$\rightarrow \qquad \arg(x/y) = (\vartheta - \chi) \qquad \text{So the relative phase}$$

4

 $\alpha+\beta+\gamma=\pi$

$$\overline{AB} = \left| \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} \right| = \sqrt{(1-\rho)^2 + \eta^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right|$$
$$\overline{AC} = \left| \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right| = \sqrt{\rho^2 + \eta^2} = \left(1 - \frac{\lambda^2}{2} \right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|$$
$$\beta = \arg\left(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} \right) = \operatorname{atan}\left(\frac{\eta}{(1-\rho)} \right)$$
$$\gamma = \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right) = \operatorname{atan}\left(\frac{\eta}{\rho} \right)$$

You have to measure B decays $b \rightarrow c$ and $b \rightarrow c$ transitions

give acces to Vts abd Vtd

12

-0.5

-0.5

0

0.5

ρ

$$\overline{AB} = \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = \sqrt{(1-\overline{\rho})^2 + \overline{\eta}^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right|$$

$$\propto (1-\overline{\rho})^2 + \overline{\eta}^2$$

Circle around (1,0) in the ρ - η plane

You have to measure B meson oscillations More precisely you have to measure Oscillation frequency

Introduction to mixing and CP phenomena

Pairs of self-conjugate mesons that can be transformed to each other via flavour changing weak interaction transitions are:

 $|\mathbf{K}^{0}\rangle = |\overline{\mathbf{s}}d\rangle$ $|\mathbf{D}^{0}\rangle = |\mathbf{c}\overline{u}\rangle$ $|\mathbf{B}^{0}_{d}\rangle = |\overline{\mathbf{b}}d\rangle$ $|\mathbf{B}^{0}_{s}\rangle = |\overline{\mathbf{b}}s\rangle$

They are **flavour eigenstates** with definite quark content

useful to understand particle production and decay

Apart from the flavour eigenstates there are mass eigenstates:

- eigenstates of the Hamiltonian
- states of definite mass and lifetime

 $\ket{\textit{B}_{\!\scriptscriptstyle L}}$, $\ket{\textit{B}_{\!\scriptscriptstyle H}}$

 $|B^{0}\rangle$, $|\overline{B}^{0}\rangle$

 $|B_L\rangle = p |B^0\rangle + q |\overline{B}^0\rangle |B_L\rangle, |B_H\rangle: \text{ mass eigenstates}$ $|B_H\rangle = p |B^0\rangle - q |\overline{B}^0\rangle |B^0\rangle, |\overline{B}^0\rangle: \text{ flavour eigenstates}$

Since flavour eigenstates are not mass eigenstates, the flavour eigenstates are mixed with one another as they propagate through space and time

 $|B^{0}(t)\rangle$ ($|\overline{B}^{0}(t)\rangle$) : the flavour state of a *B* meson that was a $B^{0}(\overline{B}^{0})$ at t=0.

Schrödinger equation governs time evolution of the $B^0 - \overline{B^0}$ System:

$$i\frac{d}{dt}\left(\begin{vmatrix}B^{0}(t)\rangle\\\\|\overline{B}^{0}(t)\rangle\end{vmatrix}\right) = \underbrace{\left(M - \frac{i}{2}\Gamma\right)}_{P}\left(\begin{vmatrix}B^{0}(t)\rangle\\\\|\overline{B}^{0}(t)\rangle\end{vmatrix}\right)$$

=> *H* (effective Hamiltonian)

 $H | B_{L}^{0} \rangle = (M_{L} - i / 2\Gamma_{L}) | B_{L}^{0} \rangle$ $H | B_{H}^{0} \rangle = (M_{H} - i / 2\Gamma_{H}) | B_{H}^{0} \rangle$

eigenvalues

T conservation *CP* conservation *CPT* conservation

Mass states are eigenvectors of *H*

- → $|H_{21}| = |H_{12}|$
- $\Rightarrow |H_{21}| = |H_{12}|, H_{11} = H_{22}$

 $\bullet \quad H_{11} = H_{22}$

The time evolution of the mass eigenstates is governed by their eigenvalues :

$$|B_{H,L}(t)\rangle = e^{-i\left(M_{H,L}-i\frac{\Gamma_{H,L}}{2}\right)t}|B_{H,L}(t=0)\rangle + \frac{|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle}{|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle}$$

Time evolution of the physical states $|B^{0}(t)\rangle$ ($|\overline{B}^{0}(t)\rangle$)

$$\left| B^{0}(t) \right\rangle = g_{+}(t) \left| B^{0} \right\rangle + \frac{q}{p} g_{-}(t) \left| \overline{B}^{0} \right\rangle \quad g_{+}(t) = e^{-i \left(m_{B} - i \frac{\Gamma_{H}}{2} \right) t} \left[\cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2} - i \sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2} \right]$$

$$\left| \overline{B}^{0}(t) \right\rangle = \frac{p}{q} g_{-}(t) \left| B^{0} \right\rangle + g_{+}(t) \left| \overline{B}^{0} \right\rangle \quad g_{-}(t) = e^{-i \left(m_{B} - i \frac{\Gamma_{H}}{2} \right) t} \left[-\sinh \frac{\Delta \Gamma t}{4} \sin \frac{\Delta m t}{2} + i \cosh \frac{\Delta \Gamma t}{4} \cos \frac{\Delta m t}{2} \right]$$

More general formulae

When
$$\Delta\Gamma$$
 is small they simplify to :

$$\left| B^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma_{B}t/2} \left(\cos \frac{\Delta m_{B}t}{2} \left| B^{0} \right\rangle + i \frac{q}{p} \sin \frac{\Delta m_{B}t}{2} \left| \overline{B}^{0} \right\rangle \right)$$
$$\left| \overline{B}^{0}(t) \right\rangle = e^{-im_{B}t} e^{-\Gamma_{B}t/2} \left(\cos \frac{\Delta m_{B}t}{2} \left| \overline{B}^{0} \right\rangle + i \frac{p}{q} \sin \frac{\Delta m_{B}t}{2} \left| B^{0} \right\rangle \right)$$

$$\Delta m_B \equiv M_H - M_L$$

$$\Delta \Gamma_B \equiv \Gamma_H - \Gamma_L$$

$$m_B \equiv \frac{M_H + M_L}{2}$$

$$\Gamma_B \equiv \frac{\Gamma_H + \Gamma_L}{2}$$

$$\frac{q}{p} = \frac{\Delta m + i\Delta\Gamma/2}{2M_{12} - i\Gamma_{12}}$$

Probability to observe in the state $f \in B^0$ produced at time t=0:

 $P(B^{0}(0) \rightarrow f) = \left| \langle f | H | B^{0}(t) \rangle \right|^{2}$

Probability to observe in the state \overline{f} a B⁰ produced at time t=0:

$$P\left(\overline{B}^{0}(0) \rightarrow f\right) = \left|\left\langle f \mid H \mid \overline{B}^{0}(t)\right\rangle\right|^{2}$$

The two master formulae (having however neglected $\Delta\Gamma$:

$$P\left(B^{0}(0) \rightarrow f\right) = \frac{e^{-\Gamma t}}{2} \left\{ (1 + \cos \Delta m t) \left| \left\langle f \right| H \right| B^{0} \right\rangle \right|^{2} + (1 - \cos \Delta m t) \left| \frac{q}{p} \right|^{2} \left| \left\langle f \right| H \right| \overline{B}^{0} \right\rangle \right|^{2}$$
$$-2 \sin \Delta m t \times \mathrm{Im} \left(\frac{q}{p} \left\langle f \right| H \right| \overline{B}^{0} \right) \left\langle f \right| H \left| B^{0} \right\rangle^{*} \right\}$$

$$P\left(\overline{B}^{0}(0) \to f\right) = \frac{e^{-\Gamma t}}{2} \left\{ (1 + \cos \Delta m t) \left| \left\langle f \right| H \right| \overline{B}^{0} \right\rangle \right|^{2} + (1 - \cos \Delta m t) \left| \frac{p}{q} \right|^{2} \left| \left\langle f \right| H \right| B^{0} \right\rangle \right|^{2}$$
$$-2 \sin \Delta m t \times \operatorname{Im} \left(\frac{p}{q} \times \left\langle f \right| H \right| B^{0} \right) \left\langle f \right| H \left| \overline{B}^{0} \right\rangle^{*} \right) \right\}$$

Considering only the mixing :

Starting from a B⁰

$$\left|\left\langle B^{0}\left|H\right|B^{0}\left(t\right)
ight
angle
ight|^{2}=rac{e^{-\Gamma t}}{2}\left(1+\cos\Delta mt
ight)$$

CP violation is neglected : q/p=1

Starting from $a B^0$

$$\left|\left\langle \overline{B}^{0}\left|H\right|B^{0}\left(t\right)\right\rangle \right|^{2}=\frac{e^{-\Gamma t}}{2}\left(1-\cos\Delta mt\right)$$

If one does not neglect Δ_{β} (useful for charm or B_s) the previous formulae become $-\Gamma t$

$$\frac{e^{-\Gamma t}}{4} \underbrace{(e^{\frac{\Delta \Gamma}{2}t} + e^{-\frac{\Delta \Gamma}{2}t} \pm 2\cos\Delta mt)}_{\cosh\left(\frac{\Delta \Gamma}{2}t\right)}$$

So that one finds for the time dependent mixing asymmetry:

$$A_{\rm mix}(t) \equiv \frac{N({\rm unmixed}) - N({\rm mixed})}{N({\rm unmixed}) + N({\rm mixed})}(t) = \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

Mixed : $B^0 \rightarrow B^0 \text{ or } B^0 \rightarrow B^0$ UnMixed : $B^0 \rightarrow B^0 \text{ or } B^0 \rightarrow B^0$ UnMixed : $B^0 \rightarrow B^0 \text{ or } B^0 \rightarrow B^0$

Oscillations are characterized by ∆m which is related to Vtd and Vts

The probability that the meson B⁰ produced (by strong interaction) at t = 0 transforms (weak interaction) into B⁰ (or stays as a B⁰) at time *t* is given by :

$$P_{B_q^0 \to B_q^0(\overline{B_q^0})} = \frac{1}{2} e^{-t/\tau_q} \left(1 \pm \cos \Delta m_q t\right)$$

 Δm_q is the oscillation frequency : 1 ps⁻¹ = 6.58 10⁻⁴ eV

If we can access to the imaginary part of the ampliutude involving $V_{td} \rightarrow access$ to β angle

$$\beta = \arg\left(\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{(1-\overline{\rho})}\right)$$

If we can access to the imaginary part of the amplitude involving $V_{ub} \rightarrow access$ to γ angle

$$\gamma = \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = \operatorname{atan}\left(\frac{\overline{\eta}}{\overline{\rho}}\right)$$

Angles are accessible through CP violating measurements

In the double-slit experiment, there are two paths to the same point on the screen.

that both a B^0 and a B^0 can decay into. We perform the B experiment twice (starting from B^0 and from B^0). We then compare the results.

Three types of CP violation

CP violation in the decay

CP-co amplitu

P-conjugated
plitudes:
$$\begin{cases} A_{f} = A(B \to f) \\ \overline{A}_{f} = A(\overline{B} \to \overline{f}) \\ \overline{A}_{f} = \sum_{j} a_{j} \cdot e^{i\theta_{j}} e^{-i\phi_{j}} \\ \overline{A}_{f} = \sum_{j} a_{j} \cdot e^{i\theta_{j}} e^$$

Direct *CP* violation requires at least two amplitudes with different weak and strong phases

In this case weak phase difference : γ

Need to have modes for which D^0 and D^0 are undistinguishable ...

Direct CP violation occurs because there are two different ways of reaching the same final state

What happened since....

Many new (or more precise) measurements to constraint UT parameters and test New Physics

Global Fit within the SM

Coherent picture of FCNC and CPV processes in SM

All the constraints Look compatibles !

CKM matrix is the dominant source of flavour mixing and CP violation

Inclusive vs Exclusive

