

Unitarity Triangle Formalism

How well we know CKM

The Unitarity Triangle

The CKM is unitary

$$
V V^{\dagger} = V^{\dagger} V = 1
$$

The non-diagonal elements of the matrix products correspond to 6 triangle equations

$$
\begin{array}{c} V_{ud}^* \ V_{us} + V_{cd}^* \ V_{cs} + V_{td}^* \ V_{ts} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{ub}^* \ V_{ud} + V_{cb}^* \ V_{cd} + V_{tb}^* \ V_{td} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{us}^* \ V_{ub} + V_{cs}^* \ V_{cb} + V_{ts}^* \ V_{tb} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{ud}^* \ V_{td} + V_{cs}^* \ V_{cb} + V_{ts}^* \ V_{tb} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{ud}^* \ V_{td} + V_{us}^* \ V_{ts} + V_{ub}^* \ V_{tb} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{td}^* \ V_{cd} + V_{ts}^* \ V_{cs} + V_{tb}^* \ V_{cb} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{ud}^* \ V_{cd} + V_{us}^* \ V_{cs} + V_{ub}^* \ V_{cb} = 0 \qquad \lambda \ \lambda \ \lambda \ \\ V_{ud}^* \ V_{cd} + V_{us}^* \ V_{cs} + V_{ub}^* \ V_{cb} = 0 \qquad \lambda \ \lambda \ \lambda \ \end{array}
$$

Remember that:

$$
\begin{vmatrix}\n1-\lambda^2/2-\lambda^4/8 & \lambda & A\lambda^3(\rho-i\eta) \\
-\lambda+\frac{A^2\lambda^5}{2}(1-2\rho)-iA^2\lambda^5\eta & 1-\lambda^2/2-\lambda^4(\frac{1}{8}+\frac{A^2}{2}) & A\lambda^2 \\
A\lambda^3(1-(1-\lambda^2/2)(\rho+i\eta)) & -A\lambda^2(1-\lambda^2/2)(1+\lambda^2(\rho+i\eta)) & 1-\frac{A^2\lambda^4}{2}\n\end{vmatrix}
$$

$$
\rho(\eta) = (1 - \lambda^2 / 2) \rho(\eta)
$$

$$
V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0
$$

$$
V_{ud} V_{ub}^* = A \lambda^3 (\overline{\rho} + i \overline{\eta}) \qquad V_{cd} V_{cb}^* = -A \lambda^3 \qquad V_{td} V_{tb}^* = A \lambda^3 (1 - \overline{\rho} - i \overline{\eta})
$$

$$
\overline{p} + i \overline{\eta}
$$

$$
\overline{p}
$$

 $$

$$
\overline{AB} = \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = \sqrt{(1-\overline{\rho})^2 + \overline{\eta}^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right| \quad \overline{AC} = \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = \sqrt{\overline{\rho}^2 + \overline{\eta}^2} = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|
$$

Each of the angles of the unitarity triangle is the relative phase of two adjacent sides (a part for possible extra π and minus sign)

$$
\beta = \arg \left(\frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right) = \tan \left(\frac{\overline{\eta}}{(1 - \overline{\rho})} \right)
$$

$$
\gamma = \arg \left(\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right) = \tan \left(\frac{\overline{\eta}}{\overline{\rho}} \right)
$$

$$
\alpha + \beta + \gamma = \pi
$$

The reason of making the arg of the ratio of two legs is simple

$$
x = |x|e^{i\theta}; y = |y|e^{ix} \qquad x/y = (|x|/|y|)e^{i(\theta - x)}
$$

\n
$$
\rightarrow \arg(x/y) = (\theta - \gamma) \qquad \text{so the relative phase}
$$

4

 $\alpha + \beta + \gamma = \pi$

$$
\overline{AB} = \left| \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} \right| = \sqrt{(1-\rho)^2 + \eta^2} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \sim \frac{1}{\lambda} \left| \frac{V_{td}}{V_{ts}} \right|
$$
\n
$$
\overline{AC} = \left| \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right| = \sqrt{\rho^2 + \eta^2} = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right|
$$
\n
$$
\beta = \arg \left(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} \right) = \arctan \left(\frac{\overline{\eta}}{(1-\overline{\rho})} \right)
$$
\n
$$
\gamma = \arg \left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right) = \arctan \left(\frac{\overline{\eta}}{\rho} \right)
$$

You have to measure B decays b→**c and b** → **c transitions**

You have to measure B meson oscillations More precisely you have to measure Oscillation frequency

Introduction to mixing and CP phenomena

Pairs of self-conjugate mesons that can be transformed to each other via flavour changing weak interaction transitions are:

> = $\langle A^{0} \rangle = \left| \overline{s}d \right\rangle \hspace{1cm} \left| D^{0} \right\rangle = \left| c\overline{u} \right\rangle \hspace{1cm} \left| \overline{B^{0}_{d}} \right\rangle = \left| \overline{b}d \right\rangle \hspace{1cm} \left| \overline{B^{0}_{s}} \right\rangle = \langle \overline{b}d \rangle$ $\left|B_{\textrm{s}}^{0}\right\rangle =\left| \overline{b}\textbf{s}\right\rangle$

They are **flavour eigenstates** with definite quark content

■ useful to understand particle production and decay

Apart from the flavour eigenstates there are **mass eigenstates**:

- eigenstates of the Hamiltonian
- states of definite mass and lifetime

 $\left\langle B_{\scriptscriptstyle L} \right\rangle$, $\left\| B_{\scriptscriptstyle H} \right\|$

 $\left| B^{0}\right\rangle _{I}\text{ }\left| \overline{B}\right\rangle$

 $0 \qquad - \frac{1}{2}$ $0 \qquad -\frac{1}{6}$ $\langle B_{L}\rangle = p\,|\,B^{\mathrm{o}}\rangle + q\,|\,B$ $\ket{B_H} = p \ket{B^{\rm o}} - q \ket{B}$ $0 \setminus |_{\overline{D}} 0$ $\ket{B^{\scriptscriptstyle 0}}$, $\ket{B^{\scriptscriptstyle 0}}$: flavour eigenstates $\langle L \rangle$, $\vert B_{\!H} \rangle$: mass eigenstates $|B^0\rangle$, $|\overline{B}^0$
tates: $|B_{\iota}\rangle$, $|B_{\iota}\rangle$, $|B_{\iota}\rangle$.
B, \rangle , $|B_{\iota}\rangle$: mass eigenstations

Since flavour eigenstates are not mass eigenstates, the flavour eigenstates are mixed with one another as they propagate through space and time

: the flavour state of a B meson that was a B^0 (B^0) at $t=0$. $\left| B^{0}(t)\right\rangle$ ($\left| \bar{B}^{0}(t)\right\rangle$)

Schrödinger equation governs time evolution of the B^0 - B^0 System:

$$
i\frac{d}{dt}\left(\left|\frac{B^{0}(t)}{B^{0}(t)}\right\rangle\right)=\left(\frac{M-\frac{i}{2}\Gamma\right)\left(\left|\frac{B^{0}(t)}{B^{0}(t)}\right\rangle\right)
$$

=> *H* (effective Hamiltonian) Mass states are eigenvectors of *H*

 $0 \setminus$ $1/\lambda A$: $12 \pi \lambda$ ll D^0 $0 \setminus$ $1/\lambda A$ $1/\lambda T$ $\lambda |D0$ $(M, -i/2\Gamma)$ $(M_{H} - i / 2\Gamma_{H}) | B_{H}^{0} \rangle$ *L L L L H H H H* $H(B_{i}^{o}) = (M_{i} - i/2\Gamma_{i})||B$ $H(B_{ii}^0) = (M_{ii} - i/2\Gamma_{ii})B_{ii}$ $= (M_i - i / 2)$ $=$ $(M_{\odot} - i/2\Gamma)$

eigenvalues

T conservation	→	<i>F</i>
CP conservation	→	<i>F</i>
CPT conservation	→	<i>F</i>

- $H_{21}| = |H_{12}|$
- $H_{21}| = |H_{12}|$, $H_{11} = H_{22}$
- $H_{11} = H_{22}$

$$
\Delta m_B \equiv M_H - M_I \approx 2 | M_{12} |
$$

\n
$$
\Delta \Gamma_B \equiv \Gamma_H - \Gamma_L = 2 \text{Re} (M_{12} \Gamma_{12}^*) / | M_{12} |
$$

\n
$$
m_B \equiv \frac{M_H + M_L}{2}
$$

\n
$$
\frac{q}{p} \equiv -\sqrt{\frac{H_{21}}{H_{12}}} = \frac{\Delta m_B + i \Delta \Gamma_B / 2}{2M_{12} - i \Gamma_{12}}
$$

The time evolution of the mass eigenstates is governed by their eigenvalues :

$$
\left|B_{H,L}(t)\right>=e^{-i\left(M_{H,L}-i\frac{\Gamma_{H,L}}{2}\right)t}\left|B_{H,L}(t=0)\right\rangle \qquad+\qquad \frac{\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\overline{B}^{0}\right\rangle}{\left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\overline{B}^{0}\right\rangle}
$$

<u>9</u>

Time evolution of the physical states $\left|B^{0}(t)\right\rangle$ $\left\langle \left|\bar{B}^{0}(t)\right\rangle \right\rangle$

$$
\left|B^{0}(t)\right\rangle = g_{+}(t)\left|B^{0}\right\rangle + \frac{q}{p}g_{-}(t)\left|\overline{B}^{0}\right\rangle \quad g_{+}(t) = e^{-i\left(m_{B}-i\frac{\Gamma_{H}}{2}\right)t}\left[\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} - i\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2}\right]
$$

$$
\left|\overline{B}^{0}(t)\right\rangle = \frac{p}{q}g_{-}(t)\left|B^{0}\right\rangle + g_{+}(t)\left|\overline{B}^{0}\right\rangle \quad g_{-}(t) = e^{-i\left(m_{B}-i\frac{\Gamma_{H}}{2}\right)t}\left[-\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} + i\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2}\right]
$$

More general formulae

 $\Delta m^{}_{\!B} \equiv M^{}_{\!H} - M^{}_{\!L}$

 $\equiv \frac{1}{2}$

 $=\frac{\Delta m + i\Delta\Gamma/2}{2M_{12}-i\Gamma_{12}}$

B

B

2

 $^+$

M M

H L

2

H L

/ 2

When
$$
\Delta \Gamma
$$
 is small, they simplify to:

$$
\left|B^{0}(t)\right\rangle = e^{-im_{B}t}e^{-\Gamma_{B}t/2}(\cos\frac{\Delta m_{B}t}{2}|B^{0}\rangle + i\frac{q}{p}\sin\frac{\Delta m_{B}t}{2}|\overline{B}^{0}\rangle) \qquad \left|\begin{array}{c} \Delta\Gamma_{B} \equiv \Gamma_{H} - \Gamma_{L} \\ m_{B} \equiv \frac{M_{H} + M}{2} \\ m_{B} \equiv \frac{M_{H} + M}{2} \\ \Gamma_{B} \equiv \frac{\Gamma_{H} + \Gamma_{L}}{2} \end{array}\right|
$$

Probability to observe in the state *f* a B⁰ produced at time t=0:

 $\left(B^{0}(0) \rightarrow f \right)=\left|\langle f \left| H \right| B^{0}(t)\right\rangle \right|^2$ $P \, (B^{\rm o}(0) \rightarrow f) = |\langle f \, | \, H \, | \, B^{\rm o}(t) \rangle|$

Probability to observe in the state \bar{f} a B⁰ produced at time t=0:

$$
P\left(\overline{B}^0(0) \to f\right) = \left| \langle f | H \left| \overline{B}^0(t) \right\rangle \right|^2
$$

The two master formulae (having however neglected $\Delta \Gamma$:

$$
P(B^{0}(0) \rightarrow f) = \frac{e^{-\Gamma t}}{2} \{(1 + \cos \Delta mt) \left|\langle f|H|B^{0}\rangle\right|^{2} + (1 - \cos \Delta mt) \left|\frac{q}{p}\right|^{2} \left|\langle f|H\right|B^{0}\rangle\right|^{2}
$$

-2 sin $\Delta mt \times \text{Im}\left(\frac{q}{p}\langle f|H|B^{0}\rangle\langle f|H|B^{0}\rangle^{*}\right)\}$

$$
P(\overline{B}^0(0) \to f) = \frac{e^{-\Gamma t}}{2} \{(1 + \cos \Delta m t) \left| \sqrt{f} |H|\overline{B}^0 \right|^2 + (1 - \cos \Delta m t) \left| \frac{p}{q} \right|^2 \left| \sqrt{f} |H|\overline{B}^0 \right|^2
$$

-2 sin $\Delta m t \times \text{Im} \left(\frac{p}{q} \times \langle f |H|\overline{B}^0 \rangle \langle f |H|\overline{B}^0 \rangle^* \right)\}$

Considering only the mixing :

Starting from a B⁰

$$
\left| \left\langle B^{0} \left| H \right| B^{0} \left(t \right) \right\rangle \right|^{2} = \frac{e^{-\Gamma t}}{2} (1 + \cos \Delta m t)
$$

CP violation is neglected : q/p=1

Starting from a B⁰

$$
\left| \left\langle \overline{B}^0 \middle| H \middle| B^0 \left(t \right) \right\rangle \right|^2 = \frac{e^{-\Gamma t}}{2} (1 - \cos \Delta m t)
$$

of one does not neglect $\Delta \wp$ (useful for charm or B_s) t

$$
\frac{e^{-\Gamma t}}{2} (e^{\frac{\Delta \Gamma}{2} t} + e^{-\frac{\Delta \Gamma}{2} t} \pm 2 \cos \Delta t)
$$

If one does not neglect $\Delta \wp$ (useful for charm or B_s) the previous formulae become

$$
\frac{e^{-\Gamma t}}{4} (e^{\frac{\Delta \Gamma}{2}t} + e^{-\frac{\Delta \Gamma}{2}t} \pm 2 \cos \Delta mt)
$$
\n
$$
\cosh \left(\frac{\Delta \Gamma}{2}t\right)
$$

So that one finds for the time dependent mixing asymmetry:

$$
A_{mix}(t) = \frac{N(unmixed) - N(mixed)}{N(unmixed) + N(mixed)}(t) = \frac{\cos(\Delta mt)}{\cosh(\Delta \Gamma t/2)}
$$

Mixed : $\overline{B^0} \rightarrow B^0$ or $B^0 \rightarrow B^0$ Mixed : $\overline{B}^0 \to B^0$ or $B^0 \to \overline{B}^0$
UnMixed : $B^0 \to B^0$ or $B^0 \to \overline{B}^0$ 12

Oscillations are characterized by m which is related to Vtd and Vts

The probability that the meson B^0 produced (by strong interaction) at $t = 0$ transforms (weak interaction) into B^{o-}(or stays as a B⁰) at time *t* is given by :

$$
\boxed{P_{B_q^0 \to B_q^0(\overline{B_q^0})} = \frac{1}{2} e^{-t/\tau_q} (1 \pm \cos \Delta m_q t)}
$$

m^q is **the oscillation frequency : 1 ps-1 = 6.58 10-4 eV**

If we can access to the imaginary part of the ampliutude involving $V_{td} \rightarrow$ access to β angle

$$
\beta = \arg\left(\frac{V_t(V_{tb}^*)}{V_{cd}V_{cb}^*}\right) = \arctan\left(\frac{\overline{\eta}}{(1-\overline{\rho})}\right)
$$

If we can access to the imaginary part of the amplitude involving $V_{ub} \rightarrow$ access to γ angle

$$
\gamma = \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = \arctan\left(\frac{\overline{\eta}}{\rho}\right)
$$

Angles are accessible through CP violating measurements

In the double-slit experiment, there are two paths to the same point on *We perform the B experiment twice* (starting from *B*⁰ and from *B*⁰). We then compare the results.

Three types of CP violation

CP violation in the decay

CP-con amplitu

Conjugated
\nplitudes:

\n
$$
\begin{cases}\nA_f = A(B \rightarrow f) & A_f = \sum_j a_j \cdot e^{i\theta_j} e^{i\phi_j} \\
\overline{A}_f = A(\overline{B} \rightarrow \overline{f}) & \overline{A}_f = \sum_j a_j \cdot e^{i\theta_j} e^{-i\phi_j} \\
\theta_j & \text{(weak phase)} \\
\theta_j & \text{(strong phase)}\n\end{cases}
$$
\n
$$
A_{CP} = \frac{\Gamma(\overline{B} \rightarrow \overline{f}) - \Gamma(B \rightarrow f)}{\Gamma(\overline{B} \rightarrow \overline{f}) + \Gamma(B \rightarrow f)} = \frac{|\overline{A}_f|^2 - |A_f|^2}{|\overline{A}_f|^2 + |A_f|^2} \quad\nA_{CP} = \frac{\sum_j a_j a_j \cdot \sin(\theta_j - \theta_j) \cdot \sin(\phi_j - \phi_j)}{\sum_j a_j a_j \cdot \cos(\theta_j - \theta_j) \cdot \cos(\phi_j - \phi_j)}
$$

Direct *CP* violation requires at least two amplitudes with different weak *and* strong phases

In this case weak phase difference : γ

Need to have modes for which D^0 and D^0 are undistinguishable ...

Direct CP violation occurs because there are two different ways of reaching the same final state

What happened since....

Many new (or more precise) measurements to constraint UT parameters and test New Physics

Global Fit within the SM

Coherent picture of FCNC and CPV processes in SM

All the constraints Look compatibles !

CKM matrix is the dominant source of flavour mixing and CP violation

Inclusive vs Exclusive

