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Mixing
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The story starts in 1954
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What is particle mixing? 

• In 1954, Guell-Mann was giving a 
lecture about 𝐾! and "𝐾! (𝜃! and �̅�!) 
and described that these two 
« strange » particles had the same 
decay mode.

• One difference: opposite strangeness 

• Fermi asked him: « If 𝐾! and "𝐾! decay 
to the same final states, what’s the 
difference between them ? »

• Guell-Mann did not have an answer 
but though a lot about it. 
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Superposition
• Guell-Mann teemed up with Pais to realise we have 

to look at 𝐾! and "𝐾! at two pendulums on a 
common string (being their common final states). 

• In quantum mechanics, we see this a superposition 
of quantum states → mixing!

• | ⟩𝐾!  and | ⟩"𝐾!  = Eigenstates of the strong 
interaction hamiltonian, defining the quark content

• | &𝐾"!  and | &𝐾#!  = Eigenstates of the the weak 
interaction hamiltonian, defining the particles 
lifetimes. 

• In the next slide, I will show you how this situation 
leads to matter-antimatter oscillations
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Neutral meson mixing: a bit of history
• Murray Gell-Mann and Abraham Pais wrote this paper in 1955. They concluded that the best way to describe the behavior 

of 𝜃!(𝐾!) and �̅�!()𝐾!) mesons was to see the two particles not as independent entities but as a two-state system.
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Read this beautiful article by James Cronin

“If there is any place where we have a chance 
to test the main principles of quantum 
mechanics in the purest way — does the 
superposition of amplitudes work or doesn’t 
it? — this is it”

Richard Feynman, The Feynman Lectures 
on Physics, Volume III, Chapter 11.
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• Their framework describes the quantum phenomenon of 𝐾! − )𝐾!

mixing, leading to matter-antimatter oscillations over time.

https://physicstoday.scitation.org/doi/pdf/10.1063/1.2915169


Flavour and mass eigenstates

• Mesons have defined flavour eigenstates | ⟩𝑀!  and | ⟩$𝑀! , defining the quark content:

𝐹 | ⟩𝑀!

0
= + | ⟩𝑀!

0
, 𝐹 0

| ⟩$𝑀! = − 0
| ⟩$𝑀!

• But, they also have weak Hamiltonian (ℋ, defining the time evolution of the system) eigenstates, 

with a defined mass 𝑚" and width Γ" (lifetime), and with eigenvalues 𝜆# and 𝜆$:

ℋ | ⟩𝑀#
0

= 𝜆#
| ⟩𝑀#
0

, ℋ 0
| ⟩𝑀$

= 𝜆$
0

| ⟩𝑀$

• Each set is a linear combination of the others: 

| ⟩𝑀#
| ⟩𝑀$

= 𝒬 | ⟩𝑀!

| ⟩$𝑀! , with 𝒬 =
𝑝 𝑞
𝑝 −𝑞 and 𝑝 $ + 𝑞 $ = 1
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𝜆" = 𝑚" − 𝑖Γ"/2

𝜆# = 𝑚# − 𝑖Γ#/2

For instance:
| ⟩𝐾! = �̅�𝑑
| ⟩)𝐾! = 𝑠�̅�



Where is mixing from? 
• The evolution of a quantum state | ⟩𝜉(𝑡)  can be described by the Schrödinger equation:

• Since | ⟩𝑀#  and | ⟩𝑀$  are eigenvectors of ℋ: 

>|𝑀#,$ 𝑡 = >𝑒&"'$,&(|𝑀#,$ 0

• We can change the flavour basis and see the flavour evolution of the system:

| ⟩𝑀!(𝑡)
| ⟩$𝑀!(𝑡)

= 𝒬&# 𝑒&"'$( 0
0 𝑒&"'&(

𝒬
| ⟩𝑀!(0)
| ⟩$𝑀!(0)

=
𝑔)(𝑡)

𝑞
𝑝 𝑔&(𝑡)

𝑝
𝑞 𝑔&(𝑡) 𝑔)(𝑡)

| ⟩𝑀!(0)
| ⟩$𝑀!(0)
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⟩|𝜉 𝑡 = >𝑒&"ℋ(|𝜉 0⟹𝑖
d
d𝑡 |

⟩𝜉 𝑡 = ⟩ℋ|𝜉 𝑡

𝑔± 𝑡 =
𝑒()*!+ ± 𝑒()*"+

2
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Mixing of different systems
• This allows us to get the probability of a initial flavour evolving to another one (particle oscillation or mixing!):

Prob 𝑀! → 1𝑀!, 𝑡 = ⟨𝑀!(𝑡)| ⟩1𝑀! " =
𝑞
𝑝

"
𝑔#(𝑡) " =

𝑞
𝑝

" 𝑒#$%

2
cosh(𝑦Γ𝑡) − cos(𝑥Γt)

where 𝑥 = &!#&"
$

and 𝑦 = $!#$"
"$

, and with Γ = $!'$"
"

.
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System 𝒙 𝒚

𝐾# − %𝐾# −0.946 ± 0.004 0.99650 ± 0.00001

𝐷# − %𝐷# (4.09$#.&'(#.&))×10$* (6.15$#.++(#.+,)×10$*

𝐵# − 3𝐵# −0.769 ± 0.004 (0.1 ± 0.1)×10$-

𝐵.# − 3𝐵.# 26.89 ± 0.07 (12.9 ± 0.6)×10$-

Experimental knowledge of 𝑥 and 𝑦 [HFLAV and PDG]

𝐷! − )𝐷! system 𝐵,! − >𝐵,! system

Small 𝑥 and small 𝑦 Very high 𝑥 (Δm() 

𝐾! − )𝐾! 𝐷! − )𝐷!

𝐵! − >𝐵! 𝐵,! − >𝐵,!

https://hflav.web.cern.ch/
https://pdglive.lbl.gov/Viewer.action


𝐵!" mixing: One or the most beautiful LHCb plot
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How to see charm mixing?
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• Idea: Look at two important decays: 𝐷! → 𝐾"𝜋# and 𝐷! → 𝐾#𝜋"

• These decays have very different probabilities, because of the CKM mechanism:

𝑅$ =
ℬ(𝐷! → 𝐾#𝜋")
ℬ(𝐷! → 𝐾"𝜋#) = 0.344 ± 0.002 %

𝐷! → 𝐾?𝜋@: Cabibbo favoured 𝐷! → 𝐾@𝜋?: Doubly Cabibbo-suppressed



!! !!""

Cabibbo-favoured

"!!Mix Doubly-Cabibbo-suppressed

!
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*$%#, !, , "#, ̅!, ̅,

First evidence of charm mixing
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• However: I just showed you that 𝐷! can also mix to a $𝐷! before decaying. Therefore, the 
possibilities will look like this: 

𝐷! → 𝐾?𝜋@ !! !!""

Doubly Cabibbo-suppressed

"!!Mix Cabibbo favoured

𝐷! → 𝐾@𝜋?

• The presence of this mixing path implies that 𝐷! → 𝐾"𝜋# and 𝐷! → 𝐾#𝜋" will have slightly 
different lifetimes! 

!
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First evidence of charm mixing

• Strategy: Measure the ratio of decay time distributions

𝑅(𝑡) =
Γ(𝐷!(𝑡) → 𝐾)𝜋&)
Γ(𝐷!(𝑡) → 𝐾&𝜋))

= 𝑅H + 𝑅H𝑦
𝑡
𝜏H
+ 𝒪

𝑡
𝜏H

$

• Hence, with no mixing 𝑅(𝑡) is compatible with a straight line 𝑅 𝑡 = 𝑅H. However, the 
presence of mixing through 𝑦 makes this ratio depart from a straight line!

15 July 2024 Guillaume Pietrzyk, TESHEP 2024 13* It is not exactly 𝑦 but 𝑦! = 𝑦cosδ − 𝑥sin𝛿, but I do not 
want to swarm you with such things

• This is what BaBar (SLAC, California) did in 2007, 
leading to the first evidence of charm mixing!

𝑅
𝑡
[%
]

BaBar
Phys. Rev. Lett. 98, 211802

https://arxiv.org/abs/hep-ex/0703020


New results by LHCb 

• LHCb is now a leader in this way of measuring 
charm mixing, we can resolve 𝑅(𝑡) 15 times more 
precisely! 

• We can also separate matter and antimatter 𝑅(𝑡) 
distributions. Their subtraction is a measurement 
of CP violation! 
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See a presentation of this new result

https://indico.cern.ch/event/1355805/


CP Violation
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A few words on CP violation
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• CP violation (CPV) is one of the three Sakharov conditions needed to explain 
the asymmetry between matter and antimatter in the Universe.    
• CPV was first observed in 1964 in the decays of neutral K mesons by James 

Cronin and Val Fitch. 
• In 1973, Makoto Kobayashi and Toshihide Maskawa postulated a third 

generation of quarks to incorporate CPV within the Standard Model. 
They introduced a unitary matrix, now called the CKM matrix, which has 

4 free parameters : 3 mixing angles and one CP-violating phase 𝛿.



A few words on CP violation in the charm sector

• The CKM matrix is unitary matrix that can be visualised as a unitary 
triangle, described (especially in B physics) that the following relation:

𝑉IJ∗ 𝑉IL + 𝑉MJ∗ 𝑉ML + 𝑉(J∗ 𝑉(L = 0

• The area of the triangle is proportional to the amount of CP violation 
in the Standard Model!

• In charm systems, another relation is used
𝑉MJ∗ 𝑉IJ + 𝑉MN∗𝑉IN + 𝑉ML∗ 𝑉IL = 0

• This relation leads to an extremely squashed unitary triangle, inducing 
reduced CP violation w.r..t the B system!
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𝜆 = 𝑉23 ~0.23

Not to scale!



• The charm sector encompasses the only up-type quark decays of neutral mesons in 
which CP-violation (CPV) can be probed.

• CPV in SM is predicted to be (very) small (~10"% − 10"&).

Room for new physics enhancements.

• These predictions are dominated by long distance contributions.

Experimental measurements are crucial to improve theoretical predictions.

CP-violation in the charm sector

Short Distance Contributions: 
Heavily suppressed!

Long Distance Contributions: 
Large theoretical uncertainties! 

• Charm data samples are huge: ~ a few billion 𝐷! decays to be analysed at LHCb with Run 1 + Run 2 data.

𝒖 𝒄 𝒕

)𝒖 - 𝐷! -

>𝒄 )𝐷! - -

�̅� - - -

𝒅 𝒔 𝒃
)𝒅 - 𝐾! 𝐵!
>𝒔 )𝐾! - 𝐵,!

)𝒃 >𝐵! >𝐵,! -



Interference
mixing-decay

𝜙*+ = arg
𝑞�̅�-
𝑝𝐴-

≠ 0

CP-violation in the charm sector

Decay
𝐴' ≠ |�̅�'̅|

Mixing
𝑞 ≠ |𝑝| Still no 

evidence of 
CPV

CPV in the decay 
observed at 5.3𝜎

by the LHCb
collaboration in 
March 2019! 🍾
[PhysRevLett.122.211803]

DIRECT

INDIRECT

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.211803


The Large Hadron Collider
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• Collider with a circumference of 
27km

• Can collide protons and heavy 
ions.

• Biggest machine ever built!
• Collisions up to 13.6 TeV
• Four interaction points = Four big 

experiments



The LHC experiments
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The LHC experiments
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The LHCb detector
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The LHCb geometry
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Red region is LHCb acceptance

• Most 𝑏>𝑏 and 𝑐 ̅𝑐 pairs are produced from gluon fusion in the forward 

(and backward) region

• Since LHCb specialises in the study of 𝐵 (beauty) and 𝐷 (charm) 

hadrons, its detector elements are placed in the forward region!



Charm numbers

15 July 2024 Guillaume Pietrzyk, TESHEP 2024 25



The LHCb detector: Tracking system
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• The LHCb tracking system consists of:

1. The Vertex Locator (VELO)

2. The Trackers (TT + T1-3)

3. A 4 Tm dipole magnet

• Basic idea: Charged particles leave hits 

in the VELO and the tracking stations, 

allowing to determine the particles’ 

trajectory with dedicated 

reconstruction algorithms. 

• Excellent performances: 

• 𝜎(𝑡) ≈ 45fs

• 𝜎(𝑝)/𝑝 ≈ 0.5%

1

3

2

2



The VELO detector
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• Silicon micro-strip detector placed at the 𝑝𝑝 interaction 
point

• Main task: Locate the Primary Vertex (PV, the collision 
point) and the Secondary Vertex (SV) with high precision

• 21 circular modules which can measure either the 𝑟 or 𝜑 
position of charged particle hits. 

• 𝜎 𝐼𝑃 = 12 + 24/𝑝O [μm] (𝑝O in GeV)

!∗± $$

!%/'!%

(), +)

+,-.± (= +1±)

(3, +3

PV

SV

𝐷∗/ → 𝐷!𝜋/



Boost
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Average 𝛽𝛾:
• LHCb: 𝒪 10
• Belle: 𝒪 1

• Charm particles fly a few mm before decaying
• First material at ~5𝑚𝑚 perpendicular to z-direction
• Charm time resolution ~0.1𝜏_



The Trackers
• Positioned before and after the 4Tm dipole magnet

• TT: Silicon detector placed before the magnet → important to 
remove ghost tracks: fake tracks obtained by connecting particle hits 
not coming from the same particle. 

• T1-T3: Gaseous straw tube detector.
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The LHCb detector: Particle identification system
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• The LHCb particle identification system 

consists of:

1. The Ring Imaging Cherenkov (RICH) 

detectors

2. The Calorimeter system

3. The Muon system

• The tracking system only gives info on 

the momentum of particles, but not 

on their mass (defining their identity)

• For instance, crucial to know if we see 

in our detector 𝐷! → 𝐾(𝐾/, 𝐷! →

𝐾(𝜋/ or 𝐷! → 𝜋(𝜋/

1

3
2

1



The RICH system
• Cherenkov effect: when a charged particle of velocity 𝑣 goes through a medium (of refraction index 
𝑛) faster than the speed of light in this medium, it emits a cone of light with angle 𝜃:

cos𝜃 =
𝑐
𝑛𝑣

• We got 𝑝 from the tracking system → we now get 𝑚 (the particle identity)

• 𝑒 and 𝜇 are not suited for the RICH system: they need their own system (CALO + muon chambers)
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RICH 1: 𝑝 ∈ [1, 60]GeV/𝑐 RICH 2: 𝑝 ∈ [50, 100]GeV/𝑐



The calorimeter system

• Calorimeters are heavy detectors whose job is to 
completely stop incoming particles to measure 
their energy. 

• It has 5 components:
• Scintillating Pad Detector (SPD): discrimate charged from 

neutral particles (and give a estimation on number of 
tracks)

• A Lead converter

• Preshower detetector (PS): to separate hadronic from 
electromagnetic showers

• Electromagnetic Calorimeter (ECAL): measures energy 
and position of hits of light particles (electrons, gammas)

• Hadronic Calorimeter (ECAL): measures energy and 
position of hits of heavier particles (kaons, protons, pions)
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The muon system

• Gaseous detector which contain 80 cm thick iron 
absorbers to select incoming muons. 

• 5 big detectors:

• M1: positioned before the calorimeters, used 
primarily for triggering purposes. 

• M2-M5: The most distant LHCb detectors

• Muons have a large lifetime (𝑐𝜏 = 700𝑚) and have 
a low cross-section with matter → they’re the only 
charged particles (in good number) that can reach 
the end of LHCb without being absorbed or 
decaying.  
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The LHCb trigger system (2011-2018) [EASY VERSION]

• LHCb: 40M 𝑝𝑝 collisions per second → 1TB/s 
(impossible!)

• Solution: Have a trigger system to select only the physics 
processes of interest for analysts!

• Stages of the trigger system: 
• 𝐿0: hardware trigger → fast system that takes direct electronic 

information from detectors → keep only events with highly 
energetic signals in the calorimeter and muon systems.

• HLT system: use computing farms to perform a track 
reconstruction and a selection of interesting events for physics. 

• Hence, out of the 40×10d collisions per second we kept 
only 12×10e!
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40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram



Small Masterclass work

https://lhcb-d0.web.cern.ch/
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• Let us learn how we select 𝐷" mesons at LHCb! 

https://lhcb-d0.web.cern.ch/


Challenges of charm at LHCb 

• At LHCb, we have collected HUGE data samples!

• This plot shows you 519M 𝐷∗) → 𝐷! → 𝐾&𝜋) 𝜋) 
decays fully selected and reconstructed between 
2015 and 2018!

• Question: what challenges do you see with this? 
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Personal selected choice of cool charm analyses

1. Observation of CP violation in charm decays [LHCb-
PAPER-2019-006]

2. Observation of the mass difference between neutral 
charm-meson eigeinstates [LHCb-PAPER-2021-009]
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https://cds.cern.ch/record/2668357
https://cds.cern.ch/record/2668357
https://cds.cern.ch/record/2772062


Observation of CP violation in charm decays 
[LHCb-PAPER-2019-006]
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https://cds.cern.ch/record/2668357


Direct CP violation

• One can write a decay amplitude 𝐴' and as �̅�' as:

𝐴' =J
)

𝐴') 𝑒
*+)
*
𝑒*,)

*
, �̅�' =J

)

�̅�') 𝑒
*+)
*
𝑒"*,)

*

• The most straightforward way of measuring direct CPV is to see differences 
between the amplitudes 𝐴' = ⟨𝑓|ℋ| ⟩𝐷!  and �̅�' = ⟨𝑓|ℋ| ⟩P𝐷! :

𝐴'
-
− �̅�'

-
∝ sin(𝛿'. − 𝛿'-)cos(𝜙'. − 𝜙'-)

• Hence, to observe direct CPV, you need both weak and strong phases to differ!

• We generally access  direct CPV through the the time-integrated asymmetry: 

𝐴/0(𝑓) =
Γ 𝐷! → 𝑓 − Γ P𝐷! → 𝑓
Γ 𝐷! → 𝑓 + Γ P𝐷! → 𝑓

=
𝐴'

- − �̅�'
-

𝐴'
-
+ �̅�'

-
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𝑘: amplitude order

𝛿/0 : strong phase (does not change sign under CP)

𝜙/0 : weak phase (changes sign under CP)

If 𝐴PQ(𝑓) ≠ 0 → CPV!

𝑓: final state. In this talk 𝑓 = 𝐾(𝐾$ and 𝜋(𝜋$



Measurement of CPV in charm decays – Data samples
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• Comparison of the two Cabibbo-suppressed (CS) decays 𝐷! → 𝐾@𝐾? and 𝐷! →
𝜋@𝜋? (referred to as 𝐷! → ℎ@ℎ?). 

Prompt decays: 
𝐷∗@ → (𝐷! → ℎ@ℎ?) 𝜋@
𝜋/ is used for flavour tagging

𝑝 𝑝

PV

𝐷∗/

ℎ/
ℎ(

𝜋/𝐷!

𝑝 𝑝

PV

ℎ/
ℎ(

𝐷!

>𝐵
𝜇(
�̅�0

Χ

Semileptonic 𝐵 decays: 
B𝐵 → 𝐷! → ℎ@ℎ? 𝑋 �̅�k 𝜇?

𝜇( is used for flavour tagging

[PhysRevLett.122.211803]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.211803


The charm Δ𝐴#$ measurement – Asymmetries

• Without additional correction, we observe 𝐴RST 𝑓 instead of the wanted 𝐴PQ 𝑓 :
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𝐴lmn 𝑓 =
N 𝐷! → 𝑓 − N "𝐷! → 𝑓
N 𝐷! → 𝑓 + N "𝐷! → 𝑓

= 𝐴op 𝑓 + 𝐴q(𝑓) + 𝐴q tag + 𝐴p + 𝒪(𝐴e)

• 𝐴H(𝑓) is the detection asymmetry of the 𝐾)𝐾& or 𝜋)𝜋& final state. 𝐴H 𝑓 = 0 since 𝑓 is equal 
for 𝐷! and $𝐷! 

• 𝐴H(tag) is the detection asymmetry of the tagging tracks (𝜋)(𝜇&) versus 𝜋&(𝜇))) 𝐴H(tag) ≠ 0
since 𝜋) and 𝜋& interact differently with the detector.

• 𝐴Q is the asymmetry between the production of 𝐷∗)( Z𝐵) and 𝐷∗&(𝐵) mesons. 𝐴Q ≠ 0 since 
𝐷∗(𝐵) are produced through 𝑝𝑝 collisions that are not CP-symmetric.

Experimental asymmetries



Experimental strategy

• 𝐴q 𝜋  and 𝐴r(𝐷∗) are challenging to access experimentally. 

• Solution: By equalising the kinematic distributions of 𝐷! → 𝐾)𝐾& and 𝐷! → 𝜋)𝜋&, 

𝐴H 𝜋  and 𝐴U 𝐷∗  becomes equal for both final states. One can then measure:

ΔΑPQ = 𝐴RST 𝐾)𝐾& − 𝐴RST 𝜋)𝜋&

= 𝐴PQ 𝐾)𝐾& + 𝐴H 𝜋 + 𝐴U 𝐷∗ − 𝐴PQ 𝜋)𝜋& − 𝐴H 𝜋 − 𝐴U 𝐷∗

= 𝐴PQ 𝐾)𝐾& − 𝐴PQ 𝜋)𝜋&

• The strong interaction U-spin symmetry imposes that 𝐴PQ 𝐾)𝐾& = −𝐴PQ 𝜋)𝜋& , 

implying that observing ΔΑPQ ≠ 0 is a direct sign of CP violation in charm! 
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Equalising the kinematic distributions of 𝐷! → 𝐾"𝐾# and 𝐷! → 𝜋"𝜋#

• The kinematics of both decays are equalised through by weighting the kinematics of 𝐷! →
𝐾)𝐾& to the ones of 𝐷! → 𝜋)𝜋&.

• Reweighting of 3 variables: 𝑝O 𝐷∗ , 𝑝(𝐷∗) and ϕ(𝐷∗) (use 𝐷! for 𝐵 decays)
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Fiducial selection
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LHCb « from above »
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• For some regions of phasespace, the soft pion of a 
specific charge gets kicked out of the detector by the 𝐵 
field. 

• These regions exhibit very high values of 𝐴RST → we 
remove them!    



Obtaining values of 𝐴%&' 𝐾(𝐾)  and 𝐴%&' 𝜋(𝜋)

• Separate 𝐷! and $𝐷! fits to get the corresponding 

signal yields to measure 𝐴RST

• Prompt: Fit 𝑚(𝐷!𝜋)) distribution. Background 

expected to be random association of particle 

tracks: « combinatorial background »
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𝐷! → 𝐾#𝐾" 𝐷! → 𝜋#𝜋"

44Μ 14Μ

9Μ 3Μ

• Semileptonic: Fit 𝑚(𝐷!) distribution.

Question: What is the background that is not 

« combinatorial background » ?   



The charm Δ𝐴#$ measurement – Systematic uncertainties
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Evolution of the measurements of Δ𝐴#$
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The charm Δ𝐴#$ measurement – Results

• Run 2 (2015-2018) results: 
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Δ𝐴op prompt = −18.2 ± 3.2 ± 0.9 × 10?s

Δ𝐴op(semileptonic) = (−9 ± 8 ± 5) × 10?s

• Combination of both production modes + Run 1 
(2011-2012) results [JHEP 07 (2014) 041] [PRL 116 
(2016) 191601]: 

Δ𝐴$% = −15.4 ± 2.9 × 10#&

CPV in charm decays observed for the 
first time at a significance of 5.3𝜎!

[PhysRevLett.122.211803]

https://link.springer.com/article/10.1007/JHEP07(2014)041
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.191601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.191601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.211803


Search for time-dependent CPV in 
𝐷! → 𝐾"𝐾# and 𝐷! → 𝜋"𝜋#

decays
[LHCB-PAPER-2020-045]
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https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2020-045.html


Observation of the mass difference 
between neutral charm-meson 

eigeinstates [LHCb-PAPER-2021-009]
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(a.k.a  « Observation of 𝑥 ≠ 0 »)

https://cds.cern.ch/record/2772062


Use the magic 𝐷" → 𝐾*"(→ 𝜋(𝜋))𝜋(𝜋)

• 𝐷! → 𝐾V!𝜋)𝜋& has a rich resonant structure. For instance:  
• 𝐷! → 𝐾∗((→ 𝐾1!𝜋()𝜋/: Cabibbo favoured (CF)

• 𝐷! → 𝐾∗/(→ 𝐾1!𝜋/)𝜋(: Cabibbo suppressed (CS)

• We study the decay in Dalitz coordinates:

For 𝐷!: u
𝑚/
# = 𝑚#(𝐾1!𝜋/)

𝑚(
# = 𝑚#(𝐾1!𝜋()

 

• +𝑏 region: decays dominated by CF decays

•  −𝑏 region: decays dominated by CS decays

• Can we use this to study charm mixing?
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CS

CF

!! !∗""#

Cabibbo-favoured

"!!Mix Cabibbo-suppressed

• Remember, I showed you how you use 𝑅 𝑡 to measure mixing:

𝑅 𝑡 =
Γ 𝐷! 𝑡 → 𝐾/𝜋(

Γ 𝐷! 𝑡 → 𝐾(𝜋/ =
𝑁(𝐶𝑆, 𝑡)
𝑁(𝐶𝐹, 𝑡)

• Here, we’re doing the same but in the Dalitz plane!

• Slight subtlety: data is binned in Dalitz coordinates where the 

binning scheme is chosen to have approximately constant 

strong-phase differences (8 different regions). 

!! !∗""#

Cabibbo-suppressed

"!!Mix Cabibbo-favoured
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CS

CF

!! !∗""#

Cabibbo-favoured

"!!Mix Cabibbo-suppressed

• We measure, as a function of 𝑡, the number of decays occuring 

at the bottom right over the ones at the top left:

𝑅2
± 𝑡 ≈ 𝑟2 − 𝑟2 1 − 𝑟2 𝑐2𝑦 − 1 + 𝑟2 𝑠2𝑥 t/𝜏3

• We can access both mixing parameters 𝑥 and 𝑦!!

• 𝑟2 ≡ 𝑅2(𝑡 = 0) and 𝑐2 and 𝑠2 are related to the strong phase 

differences between opposing regions (based on external 

inputs).

!! !∗""#

Cabibbo-suppressed

"!!Mix Cabibbo-favoured



Samples selection of 𝐷" → 𝜋(𝜋) decays

• Run 2 data from 2015-2018

• 𝐾�! → 𝜋@𝜋? reconstructed in two ways:

• Long tracks: 𝐾1! decays inside the VELO

• Downstreak tracks: 𝐾1! decays outside of the VELO

• Signal yields determined by fitting

Δm = m 𝐷∗@ −m(𝐷!)

• Very pure sample!

15 July 2024 Guillaume Pietrzyk, TESHEP 2024 54

140 142 144 146 148 150

]2
c [MeV/m∆

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

610×

2
c

C
an

d
id

at
es

 p
er

 0
.1

 M
eV

/

 
LHCb

-1Data 5.4 fb

Fit

Background

 
31M signal 
candidates!



!∗" !!

!#

""

"$

"%&'"
!

"" "$

#(#

!!

!∗± + #
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#!

$"
$#

$$%&"

!!, !",…

IP(&#)

!

%'!

$" $#

Treatment of secondary decays
• The samples are contaminated by the presence of secondary 𝐷! decays coming from 𝐵 meson decays.

• Decay times are measured as: 𝑡 = 𝑙2+
3+

where the decay length 𝑙 is measured w.r.t the PV. For secondary decays, 
𝑡 will be estimated as significantly larger than the proper 𝐷! decay time (𝜏4 ≈ 4𝜏$,).

• Prompt decays have IP 𝐷! ≈ 0μm whereas secondary decays can have non-zero IP 𝐷! → the requirement 
IP 𝐷! < 50μm is applied to remove a large fraction of secondary decays.

15 July 2024

Prompt decays Secondary decays
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Results

• Show the ratio 𝑅L(t) for each region 𝑏.

• Compare to predictions of 𝑥 = 0 

• We can clearly see that the data fit is 
not compatible with 𝑥 = 0!

• The fit gives
𝑥 = 3.98&!.XY)!.XZ × 10&[

that is more than 5𝜎 away from zero!

• This is an observation of 𝑥 ≠ 0, 
showing that in our data 𝐷! oscillated 
to $𝐷!, and vice-versa!
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Effect of this measurement on the knowledge of charm mixing
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"⃗($!) "⃗($!)

"⃗∗(&#)

"⃗∗ &$
= − "⃗∗ &#

"⃗∗()#)

"⃗∗ &$
= − "⃗∗ )#

CENTRE-OF-
MASS FRAME

"" ""

• Challenging measurement: Fit decay-time ratio of 𝐷! → 𝑓 (𝑓 = 𝐾"𝐾# and 𝜋"𝜋#)  over 𝐷! → 𝐾"𝜋# to obtain 𝑦: 

𝑅' 𝑡 =
𝑁 𝐷! → 𝑓, 𝑡

𝑁 𝐷! → 𝐾"𝜋#, 𝑡 ∝ 𝑒"56/8+,
𝜀 𝑓, 𝑡

𝜀 𝐾"𝜋#, 𝑡

• Complicated measurement: need to carefully equalise the efficiencies 𝜀(ℎ"ℎ9#, 𝑡) to make them cancel out.

• Many methods tried and abandoned. Best solution was to develop a kinematic matching procedure to place both 
decays in the same kinematic phasespace.

Other cool measurements: High precision measurement of 𝑦
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Other cool measurements: High precision measurement of 𝑦
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Phys. Rev. D 105, 092013

𝑦 = (6.46 ± 0.24)×10(4

• Improvement of 𝑦 by a factor of 2!
• Question: What would the two bottom slopes look like with no 

mixing? 

𝑅- 𝑡 =
𝑁 𝐷! → 𝑓, 𝑡

𝑁 𝐷! → 𝐾(𝜋/, 𝑡 ∝ 𝑒(5+/7,-
≈

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.092013


Other cool measurements: Search for time-dependent CPV

• Search for indirect CPV using the slope of the time-dependent 𝐷! − $𝐷! asymmetry Δ𝑌\:
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𝐴lmn 𝑓, 𝑡 =
𝑁 𝐷! → 𝑓, 𝑡 − 𝑁 "𝐷! → 𝑓, 𝑡
𝑁 𝐷! → 𝑓, 𝑡 + 𝑁 "𝐷! → 𝑓, 𝑡

Time-dependent nuisance asymmetries: Removed by reweighting 𝐷! to 
1𝐷! kinematics  

= 𝐴op
decay 𝑓 + Δ𝑌�

𝑡
τq>

+ 𝐴q 𝑓, 𝑡 + 𝐴p(𝑓, 𝑡)

Δ𝑌� ≈ 𝑥𝜙�? − 𝑦
𝑞
𝑝
− 1

CPV in the mixing-decay interference CPV in the mixing

• If Δ𝑌' ≠ 0 → CP violation in charm decays!
• SM expectation: 𝒪(2×10":) Kagan, Silvestrini (2020), Li, Umeeda, Xu, Yu (2020)
• Current best experimental precision: ~2×10"&

𝐷! 𝑓

CS

)𝐷! CSmix

𝑓 = 𝐾/𝐾(, 𝜋/𝜋(

HFLAV

https://inspirehep.net/literature/1776611
https://inspirehep.net/literature/1775245
https://hflav-eos.web.cern.ch/hflav-eos/charm/ICHEP20/results_mixing.html


Other cool measurements: Search for time-dependent CPV
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Δ𝑌�@�A = (−2.3 ± 1.5 ± 0.3)×10?s Δ𝑌�@�A = (−4.0 ± 2.8 ± 0.4)×10?s

Systematic uncertainties (units of 10(8)

• Δ𝑌;-;. and Δ𝑌<-<. agree with each other within 
0.5𝜎 and are compatible with zero within 2𝜎.  

• Systematic uncertainties are at the level of a few 
10":: less than 20% of the statistical uncertainty. 
Very promising for future LHCb measurements!



Other cool measurements: Search for time-dependent CPV
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°40 °20 0 20 40 60 80

¢Y [10°4]

BaBar 2012
–8.8 ± 25.5 ± 5.8

CDF 2014
+12.0 ± 12.0

LHCb 2015 µ° tag (3 fb°1)
+12.5 ± 7.3

Belle 2016
+3.0 ± 20.0 ± 7.0

LHCb 2017 D§+ tag (3 fb°1)
+1.3 ± 2.8 ± 1.0

LHCb 2020 µ° tag (5.4 fb°1)
+2.9 ± 3.2 ± 0.5

LHCb 2021 D§+ tag (6 fb°1)
–2.7 ± 1.3 ± 0.3

World average
–0.9 ± 1.1 ± 0.3

Our estimated new world average value:
Δ𝑌 = −0.9 ± 1.1 ± 0.3 × 10de

Standard Model prediction:
Δ𝑌 ≈ 𝒪(2 × 10df)

Kagan & Silvestrini 2020
Li, Umeeda, Xu, Yu 2020

Compatible with CP conservation hypothesis

This measurement!

Previous world average value: Δ𝑌 = +3.1 ± 2.0 ± 0.5 × 10(8

https://arxiv.org/abs/2001.07207
https://arxiv.org/abs/2001.04079


Evolution of our knowledge of indirect CPV and mixing (2010)
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Evolution of our knowledge of indirect CPV and mixing
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• The LHCb Run 2 data has allowed to make amazing improvement in the charm sector
• 𝑥 and 𝑦 and now far away from zero by more than 5σ → charm mixing very well established
• However, we still do not have a clear evidence of indirect CPV → need more data!



Charm mixing and indirect CPV: prospects for future LHCb measurements
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Prospects for Run 4 and Run 5 at LHCb

300b(" predictions reach the SM expectations of 𝐴9 ≈ 𝒪(2 × 10(:)

Recap: Δ𝑌 ≈ −𝐴9

*Current plan shifted by a year due to Covid-19 

Charm mixing parameters

arXiv:1808.08865

https://arxiv.org/abs/1808.08865


BACKUP
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Measurement of the time-integrated 
CP asymmetry in 𝐷! → 𝐾"𝐾# decays 

[LHCb-PAPER-2022-024]

https://cds.cern.ch/record/2826530


Measurement of the time-integrated CP asymmetry in 𝐷! → 𝐾&𝐾) decays [LHCb-PAPER-2022-024]
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𝐴op 𝐾𝐾 =
∫ 𝜀 𝑡 [ Γ 𝐷! → 𝐾?𝐾@)(𝑡 − Γ "𝐷! → 𝐾@𝐾?)(𝑡 ]d𝑡
∫ 𝜀 𝑡 [ Γ 𝐷! → 𝐾?𝐾@)(𝑡 + Γ "𝐷! → 𝐾@𝐾?)(𝑡 ]d𝑡

= 𝑎��� +
𝑡 ��
𝜏q

Δ𝑌��

• 𝑎^^J ≈ 1 −
̅̀;;
`;;

probes CPV in the decay.

• Δ𝑌 ^ ≈ 𝑥𝜙 − 𝑦 a
U
− 1 probes CPV in the mixing + interference between mixing and decay.

• CPV has been observed in ΔAPQ = 𝐴PQ 𝐾𝐾 − 𝐴PQ 𝜋𝜋 = (−15.4 ± 2.9)×10&Y.

• Strategy: Measure 𝐴PQ 𝐾𝐾 and then retrieve 𝑎^^J and 𝑎bbJ using ΔAPQ and
Δ𝑌 [Phys. Rev. D 104, 072010] results.

• Dataset: Run 2 (2015-2018, 6l&#).

Credit: Lison 
Bernet

Phys. Rev. Lett. 122 
(2019) 211803

https://cds.cern.ch/record/2826530
https://doi.org/10.1103/PhysRevD.104.072010
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1103/PhysRevLett.122.211803
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!∗± !!

!#/#!#

$$

$%

%&'(±

• )𝐷! → 𝐾(𝐾/obtained from prompt 𝐷∗± → )𝐷!𝜋+<=
± . Charge of 𝜋+<=

± tags 𝐷! flavour.

• We experimentally measure: 

𝐴 𝐾𝐾 =
𝑁 𝐷∗/ → 𝐷!𝜋+<=

± − N 𝐷∗( → )𝐷!𝜋+<=(

𝑁 𝐷∗/ → 𝐷!𝜋+<=
± + N 𝐷∗( → )𝐷!𝜋+<=( = 𝐴>? 𝐾𝐾 + 𝐴? 𝐷∗/ + 𝐴3 𝜋+<=/

• Strategy to treat nuisance asymmetries: use Cabibbo-favoured 𝐷!/𝐷(,)/ decays (where CPV≈ 0):

• 𝐷/ method (𝐶3.): 

𝐴>? 𝐾𝐾 = +𝐴 𝐷∗± → 𝐷! → 𝐾(𝐾/ 𝜋+<=
± − 𝐴 𝐷∗± → 𝐷! → 𝐾(𝜋/ 𝜋+<=

±

• 𝐷,/ method (𝐶3/., gain of ~40% precision on final result): 

𝐴>? 𝐾𝐾 = +𝐴 𝐷∗± → 𝐷! → 𝐾(𝐾/ 𝜋+<=
± − 𝐴 𝐷∗± → 𝐷! → 𝐾(𝜋/ 𝜋+<=

±

what we want

+𝐴 𝐷/ → 𝐾(𝜋/𝜋/ − [𝐴 𝐷/ → )𝐾!𝜋/ − 𝐴()𝐾!)]

+𝐴 𝐷,/ → 𝜙𝜋/ − [𝐴 𝐷,/ → )𝐾!𝐾/ − 𝐴()𝐾!)]

Neutral Kaon asymmetry: 
detection + mixing + CPV

* Particles with same colour are weighted to have 
identical kinematic distributions

~45M!

(

(

(

(

Prompt = produced at 𝑝𝑝 interaction point

[LHCb-PAPER-2022-024]

Production asymmetry of 𝐷∗' Detection asymmetry of 𝜋012'

https://cds.cern.ch/record/2826530
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A new precise measurement of CPV in the decay!

𝐶$-:  𝐴/0 𝐾𝐾 = 13.6 ± 8.8(stat) ± 1.6(sys) ×10"&, 
𝐶$3-:  𝐴/0 𝐾𝐾 = 2.8 ± 6.7(stat) ± 2.0(sys) ×10"&.

Final results:

Combination: 

𝐴PQ 𝐾𝐾 = 6.8 ± 5.4(stat) ± 1.6(sys) ×10&Y.
Using Δ𝐴>? result, we get: 

𝑎^^J = 7.7 ± 5.7 ×10&Y

𝑎bbJ = 23.2 ± 6.1 ×10&Y
𝜌(𝑎BBC , 𝑎DDC ) = 0.88

First evidence of CP violation in 𝐷! → 𝜋"𝜋# decays at 3.8𝜎!

LHCb prospects [arXiv:1808.08865] (stat uncertainties only)

[LHCb-PAPER-2022-024]

𝜌 = 0.06

We do better than our 
own propects for Run1-2!
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