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Hidden gauge symmetry in a superconductor

Ginzburg–Landau phenomenological description of superconductivity (microscopic:
Bardeen–Cooper–Schrieffer (BCS) theory):

1 there exists an order parameter, the macroscopic “wave function” ψ. It describes a condensate of
correlated electron pairs (the Cooper pairs). We assing it a charge −2e and a mass 2me .

2 Below the critical temperature, the order parameter, |ψ|2 is nonzero, and equal to (half) the
density of superconducting electrons nsc .

3 In general ψ = |ψ| exp(iφ(~x)), with almost constant and nonzero |ψ| in the superconducting
phase.

Figure: Free energy as a function of order parameter below and above critical temperature
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Photon acquires mass inside superconductor

Consider the quantum-mechanical e.m. current associated with ψ in the presence of a static
magnetic field described by a vector potential ~A:

~jem =
−2e
4me i

(
ψ∗(~∇+ 2ie ~A)ψ − ψ((~∇+ 2ie ~A)ψ)∗

)
, ψ = |ψ| exp(iφ(~x)) .

Only the phase φ of the condensate WF has a variation with ~x . We then obtain:

~jem = −
2e2|ψ|2

me

(
~A + ~∇φ

)
, ⇒ ~∇× ~jem = −

2e2|ψ|2

me

~B.

Using the static Maxwell’s equation, we obtain the massive Klein–Gordon equation for the
magnetic field.

~∇× (~∇× ~B) = ~∇× ~jem ⇒ ~∇ 2 ~B =
2e2|ψ|2

me︸ ︷︷ ︸
m2
eff

~B .

within the superconducting material the
magnetic field decays B ∝ exp(−meff |~x |).
The magnetic field is expelled from the
superconductor (Meissner effect).

The photon has effectivly acquired a mass
in the presence of the superconducting
condensate.

Figure: Meissner effect
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Higgs mechanism in the Standard Model

Superconductivity gives a hint how a hidden
symmetry phase can lead to a massive
gauge boson.

We need to generate masses for W±,Z the
photon needs to stay massless.

Introduce a new scalar field, the Higgs field.

Figure: Mexican hat potential

The Higgs field is a complex SU(2)L doublet and has U(1)Y hypercharge Y = 1/2:

φ(x) =

(
φ+(x)
φ0(x)

)
=

(
<e φ+(x) + i=m φ+(x)
<e φ0(x) + i=m φ0(x)

)
.

The components of the Higgs field have charges and weak isospin T3

Q(φ+) = +1, T3(φ+) = + 1
2 Q(φ0) = 0, T3(φ0) = − 1

2 .
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Higgs mechanism

Now, we want to let the Higgs field participate in the electroweak interactions, in a
gauge-invariant way. We simply take the Lagrangian for the complex scalar field and replace
derivatives ∂µ by covariant derivatives Dµ:

LHiggs = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2 , µ2 < 0, λ > 0.

Dµφ = (∂µ + ig
σi

2
W i
µ + ig ′yφBµ)φ.

SSB for µ2 < 0: infinite set of degenerate states minimize the potential. The Higgs field has
a vev:

Higgs vev

|〈0|φ0|0〉| =

√
−µ2

2λ
≡

v
√
2
.

Only the neutral part of the scalar field, φ0 can develop a vev, as charge is conserved and the
vacuum is neutral.
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Higgs mechanism

choosing a particular ground state, we break the SU(2)L × U(1)Y symmetry. There remains
however a U(1)em symmetry intact. This is the subgroup generated by Q = T3 + Y . We
write

SU(2)L ⊗ U(1)Y → U(1)em.

The Goldstone theorem now tells us (?) that because the symmetries generated by three out
of the four generators are broken, we should have three massless Goldstone bosons. There
are no such particles in Nature, so these degrees of freedom should be unphysical.
Let us parametrize the Higgs field as:

φ(x) = exp
(
i
σi

2
θi (x)

) 1
√
2

(
0

v + H(x)

)
.

Now from our previous discussion, we realize that the three real fields θi are the would-be
Goldstone bosons. But we have a local SU(2)L invariance! Hence we can “rotate” the phase
away, or in other words choose the gauge θi (x) ≡ 0, i = 1, 2, 3.

The gauge θi = 0 is called “unitary gauge”. In unitary gauge the Higgs field reads:

φ(x) =
1
√
2

(
0

v + H(x)

)
.
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Gauge boson masses

From the “kinetic piece” of the scalar Lagrangian we obtain in unitary gauge:

(Dµφ)†Dµφ→ 1
2∂µH∂

µH + (v + H)2
(g2

4
W †µWµ +

g2

8 cos2 θW
ZµZ

µ
)
.

The vev v of the scalar field generates a quadratic term for W± and Z . They acquire the
masses (proportional to the vev):

MW = 1
2 vg , MZ =

MW

cos θW
.

In unitary gauge we “lost” the three degrees of freedom θi . But we gained three longitudinal
polarization states of the massive W±,Z . “The Goldstone bosons get eaten by the gauge
bosons.”

There are also couplings between Higgs boson and gauge bosons:

LHWW ,HZZ =
( 1
v
H +

1
2v2 H

2
)(

2M2
WW †µW

µ + M2
ZZ

µZµ
)
.

The Higgs itself is also massive. Its mass is also ∝ v , but depends on the parameter λ of the
potential. In the SM m2

H = 2λv2. There are also triple and quartic Higgs couplings in the
SM. But remember that the exact form of the potential is not important for the SSB
mechanism alone.
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Phenomenology

Because MW = MZ cos θW the Standard Model predicts, that MZ > MW , in agreement with
experiment:

MZ = 91.1876(21) GeV, MW = 80.377(12) GeV .

From these values, one would obtain:

sin2 θW = 1−
M2

W

M2
Z

= 0.223 .
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Muon decay, Fermi coupling and the vev

The energy release in the decay
µ− → e−ν̄eνµ is much smaller than MW :

q2 = (pµ − pνµ )2 = (pe + pνe )2 < M2
µ � M2

W

We can therefore neglect q2 in the
W –propagator. In fact it “shrinks to a
point” and we deal with a pointlike
four–fermion interaction with the
dimensionful Fermi coupling GF .

Figure: Weak decay of a muon

g2

M2
W − q2 ≈

g2

M2
W

= 4
√
2GF .

From the muon lifetime

1
τµ

= Γµ =
G2
Fm

5
µ

192π3 f (m2
e /m

2
µ)(1 + δRC)⇒ τµ = 2.197019(21) · 10−6s

we get the Fermi coupling GF = 1.1663 · 10−5 GeV−2, and therefore the vev

v = (
√
2GF )1/2 = 246GeV .

This is the electroweak energy scale.
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Decay modes for W and Z

From tree–level diagrams we get the partial decay widths (neglecting all fermion masses):

Γ(W− → `−ν̄`) =
GFM

3
W

6π
√
2
, Γ(W− → ūidj ) = Nc |Vij |

GFM
3
W

6π
√
2

Γ(Z → f f̄ ) =
GFM

3
W

6π
√
2

(
|vf |2 + |af |2

)
× Nf

Here Nf = 1 for leptons and Nf = Nc = 3 for quarks.

For the W all leptons have the same partial width, quarks involve the mixing factor Vij

(CKM matrix).

For the Z boson each decay mode has a different partial width, but couplings do not
distinguish families.

The total widths obtained from summing over all modes are:

ΓW = 2.09GeV, ΓZ = 2.49GeV .

in good agreement with experiment

ΓW = 2.085(42) GeV, ΓZ = 2.4952(23) GeV

Notice also, that ΓW � MW , ΓZ � MZ , they are very narrow resonances.
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W and Z decay modes vs. experiment

Figure: Tree level diagrams for the decays

The universality of couplings gives equal branching fractions into all lepton channels for the
W :

BR(W− → `−ν̄`) =
1

3 + 2× Nc
= 11.1%

but for the Z boson Γ(Z → `¯̀) = 84.85MeV� ΓZ .

we obtain a very good picture of gauge boson properties predicted by EW theory already at
the tree level:

lepton e µ τ average
BR(W− → `ν̄`) 10.71(16) 10.63(15) 11.38(21) 10.86(9)

Γ(Z → `+`−) [MeV] 83.92(12) 83.99(18) 84.08(22) 83.984(86)
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Fermion mass terms

Previously we could not construct a mass term as it couples left and right handed fermions.
Now we have the isodoublet Higgs field, and L̄φ is an SU(2)L singlet that can be coupled to
a right–handed fermion field.
Let us concentrate on one family only. The gauge invariant Lagrangian reads:

LYuk = −c1Q̄LφdR − c2Q̄Liσ2φ
∗uR − c3 ¯̀

LφeR − c4 ¯̀
Liσ2φ

∗νR .

Here the doublet fields are

QL =

(
u
d

)
L

, `L =

(
νe
e

)
L

, φ =

(
φ+

φ0

)
, iσ2φ

∗ = φc =

(
φ0∗

−φ−
)
.

after symmetry breaking we obtain the very simple form:

LYuk = −
1
√
2

(v + H)(c1d̄d + c2ūu + c3ēe + c4ν̄ν) .

The SSB also can generate fermion masses, again proportional to the vev.

md = c1
v
√
2

mu = c2
v
√
2

me = c3
v
√
2

mν = c4
v
√
2
.

The scale of masses is set by the vev v/
√
2 ≈ 174GeV. The parameters ci are completely

undetermined by theory.
The Yukawa couplings of fermions to the Higgs are also proportional to their masses
H/v · (md d̄d + . . . )
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Masses of SM particles

Masses vary over 5
orders of magnitude (14
orders is neutrinos are
included).

Figure: Fermion masses are a mystery
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Fermion masses – Yukawa couplings

Figure: Yukawa couplings

The Yukawa couplings ci =
√
2mi/v range from ∼ 1 for the top quark to ∼ 3 · 10−6 for the

electron.
Two different mass generation mechanisms in the SM:

1 Masses of gauge bosons are directly related to SSB, they are on the order of the EW scale.
2 Fermion masses depend on Yukawa couplings which are not predicted by the SM. Their large

variation suggests that the fermion masses involve physics beyond the standard model.
While EW gauge boson couplings are universal over families, the Higgs field and Higgs boson
coupling clearly distinguish among families.
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Incompleteness of the Standard Models

(too) many free parameters.

does not predict masses of quarks and leptons and mixing parameters

does not explain origin of CP violation.

amount of CP violation is not sufficient to describe matter–antimatter asymmetry in the
universe

“hierachy problem”: radiative corrections to the Higgs mass grow quadratically with the
cutoff δm2

H ∝ Λ2, so that very large cancellations between “bare mass” and radiative
corrections are required (“fine tuning”).

dark matter? . . .
conceptual problems:

1 Higgs potential gives rise to a vacuum energy density ρH =
M2
Hv2

8 ∼ 108 GeV. About 54 orders
of magnitude bigger than the lower bound derived by cosmologists.

2 no gravity
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