# Detektory do fizyki wysokich energii

Sergey Barsuk, IJCLab Orsay, sergey.barsuk@ijclab.inzp

Passage of particles through matter

**Photon detectors** 

Scintillators

Cherenkov light detectors, time-of-flight detectors

**Calorimeters** 

Tracking detectors: silicon and gaseous detectors

Usual disclaimers: Selective and biased introduction by a particle physicist Many simplifications, avoid formalism

Slides of many colleagues used without proper references

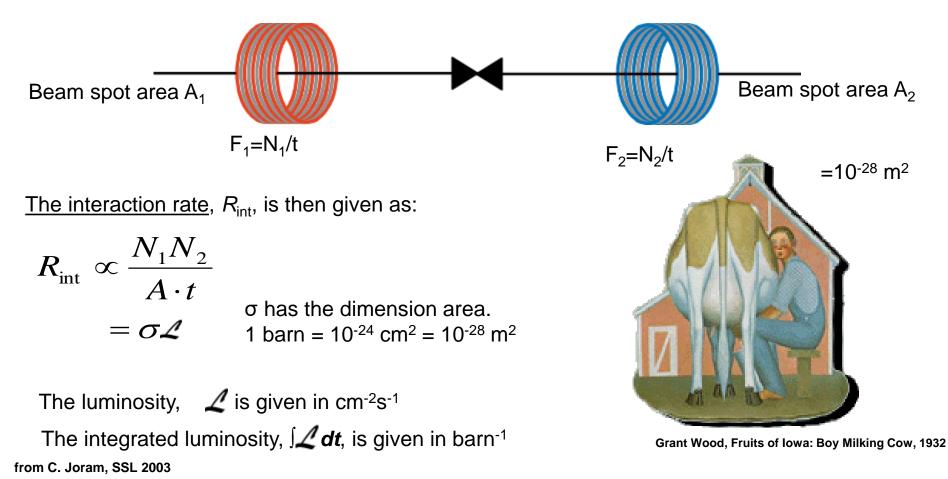




Bezmiechowa Górna, 11-20/07/2024

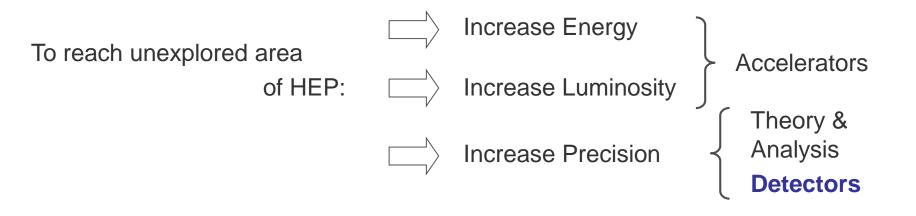
SP-3798

## Some units and conventions

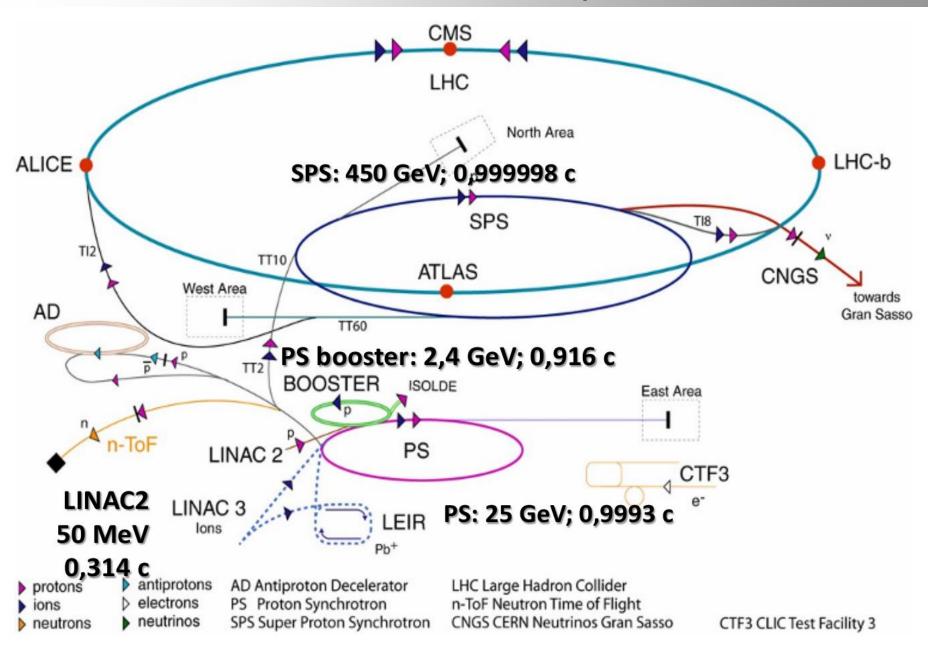

Wanted: particle ID (mass, charge) and particle kinematics (momentum, energy) 

$$E^{2} = p^{2}c^{2} + m_{0}^{2}c^{4}$$
energy  $E$ : measured in  $eV$   
momentum  $p$ : measured in  $eV/c$  or  $eV$   
mass  $m_{0}$ : measured in  $eV/c$  or  $eV$   
 $\beta = \frac{v}{c}$   $(0 \le \beta < 1)$   $\gamma = \frac{1}{\sqrt{1 - \beta^{2}}}$   $(1 \le \gamma < \infty)$   
 $E = m_{0}\gamma c^{2}$   $p = m_{0}\gamma\beta c$   $\beta = \frac{pc}{E}$   
1 eV is a small energy.  
1 eV = 1.6 \cdot 10^{-19} J  
 $m_{bee} = 1g = 5.8 \cdot 10^{32} eV$   
 $v_{bee} = 1 m/s = E_{bee} = 10^{-3} J = 6.25 \cdot 10^{15} eV$   
 $E_{LHC} = 14 \cdot 10^{12} eV$   
However,  
LHC has a total stored beam energy  
 $10^{14}$  protons x  $14 \cdot 10^{12} eV \sim 10^{8} J$   
or, if you like,  
from C. Joram, SSL 2003  
 $n = 100 T$  truck  
at 100 km/h

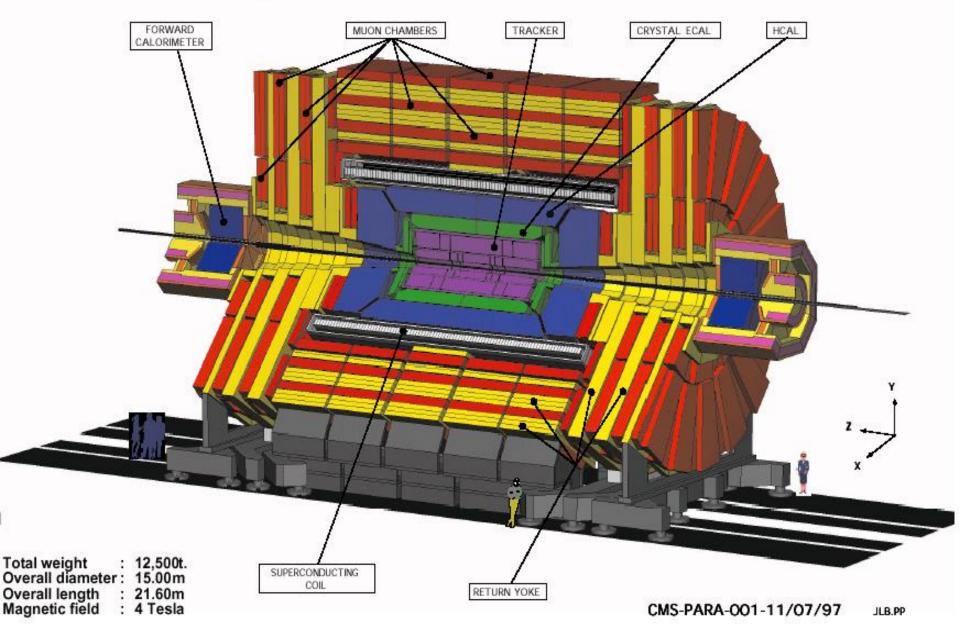
from C. Joram, SSL 2003


## Some units and conventions

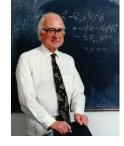
<u>Cross section</u>  $\sigma$  or the differential cross section  $d\sigma/d\Omega$  is an expression of the probability of interactions.




□ At early LHC in 100 days of operation per year:  $\int \mathcal{L} dt \sim 10 \text{ fb}^{-1}$  for  $\mathcal{L} \sim 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ □ Next e<sup>+</sup>e<sup>-</sup> machines → few 10 x ab<sup>-1</sup>


Instrumentation

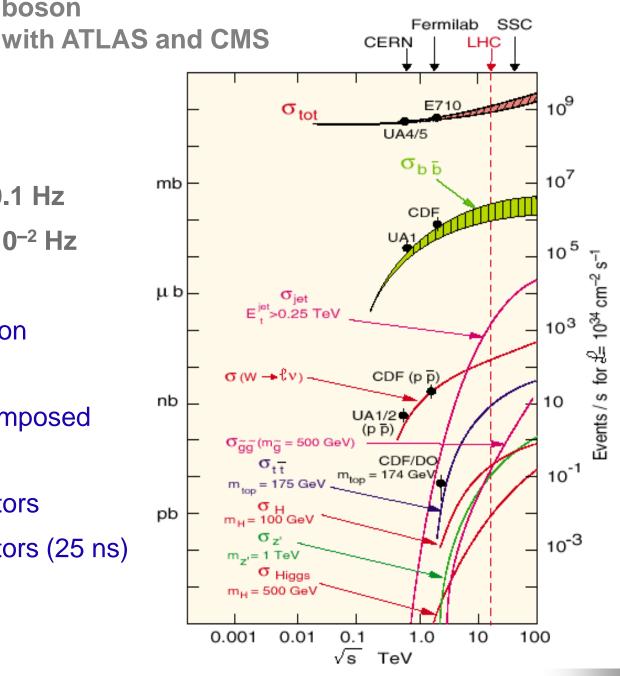



### The CERN accelerator complex



# CMS A Compact Solenoidal Detector for LHC




# **Discovery of**



boson

- Inelastic: 10<sup>9</sup> Hz
- Higgs (100 GeV/c<sup>2</sup>): 0.1 Hz
- Higgs (600 GeV/c<sup>2</sup>): 10<sup>-2</sup> Hz
- Selection : 1:10<sup>10–11</sup>
- Operate in high radiation environment
- **Resolve MANY superimposed** events per BX
- High granularity detectors
- Fast electronics/detectors (25 ns)

Energy scale crucial



Measure stable and quasi-stable particles (e,  $\gamma$ ,  $\mu$ ,  $\pi$ , K, p, n, v) :

Kinematics (momentum and/or energy)

The way particle interacts with / passes through detectors

All other particles reconstructed via their decays to (quasi-) stable particles : Invariant mass of the system of daughter particles

+ Decay vertex separated from production vertex for some particles decaying via weak interaction

Main goal of instrumentation for HEP :

Precisely/fast measure kinematics of (quasi-) stable particles

Unambiguously/fast identify them

For that :

We study how particles interact with the matter

and

We choose the **detector technologies** that match the physics tasks

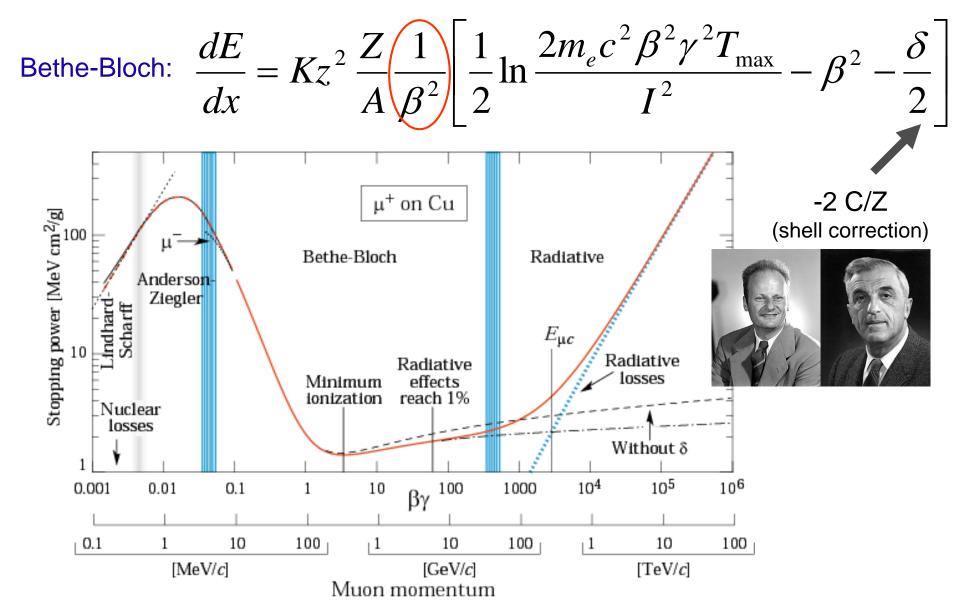
Instrumentation

## **General statements**

- ➔ Any device that is to detect a particle must interact with it in some way.
- ➔ If the particle is to pass through essentially undeviated, this interaction must be a soft electromagnetic one.

Energy (kinetic) loss by Coulomb interaction with the atoms/electrons :

 Excitation : the atom (or molecule) is excited to a higher level atom\* → atom + γ low energy photons of de-excitation
 → light detection


Ionization : the electron is ejected from the atom electron / ion pair

→ charge detection

Instead of ionization/excitation real photon can be produced under certain conditions

## Cherenkov or Transition radiation

Contribute very little to the energy loss (< 5%), can be neglected but they are used for particle ID

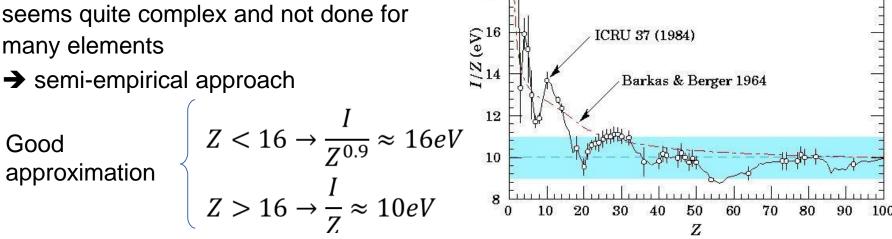


Stopping power (-<dE/dx>) for positive muons in copper as a function of  $\beta \gamma = p/Mc$  over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power.

$$K = -4\pi N_A r_e^2 m_e c^2 \approx 0.307 MeV. g^{-1}. cm^2$$

Maximum kinetic energy that can be imparted to a free electron in a single collision :

$$T_{\rm max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$


22

20

18

I/Z~10 eV

I : Ionization constant or mean excitation potential, takes into account properties of electronic orbitals. Theoretical calculation seems quite complex and not done for many elements



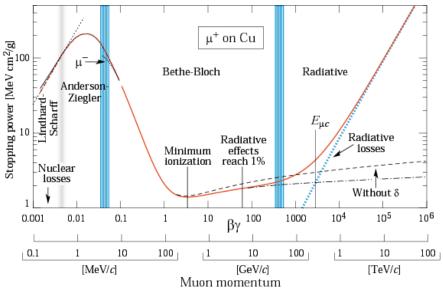
Bethe-Bloch with corrections yields few % accuracy for energy losses in Cu like material for the "Bethe-Bloch" region

Bethe-Bloch at Low energy :

C/Z : shell correction to account for atomic binding. At low energy the incident particles have less chance to interact with the electronic inner orbits. For copper ~1% at  $\beta\gamma$ =0.3

 0.01 < β < 0.05 : phenomenological fitting, Andersen and Ziegler</li>
 β < 0.01 ("velocity" of outer atomic electrons) : electronic stopping power ~ β, Lindhard
 at very low energy (e.g. < 100 eV protons) : non-ionizing energy loss dominates

□ Bethe-Bloch with corrections → precise at ~1% level down to  $\beta$ ~0.05 (~1 MeV for protons)


# **Bethe-Bloch at High energy: density effect**

At high energies, the electric field extends, and distant-collision contribution increases as Inβγ

Relativistic rise ~2lnβγ

 $\delta(\beta\gamma)/2$ : charge density effect
 correction, comes from polarization
 of the atoms along incoming particle
 => screening effect of the field,
 decreases loss at high energy.

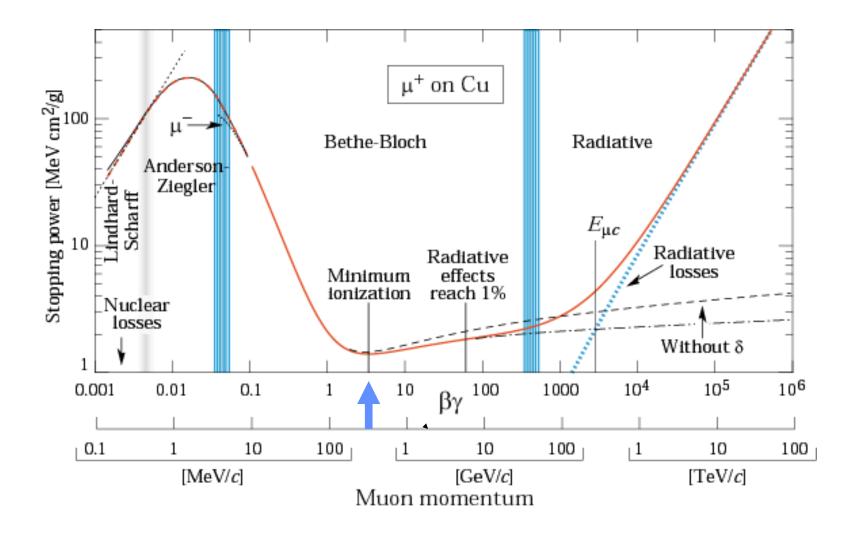
At very high energies:  $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$ 



# **Bethe-Bloch at High energy: density effect**

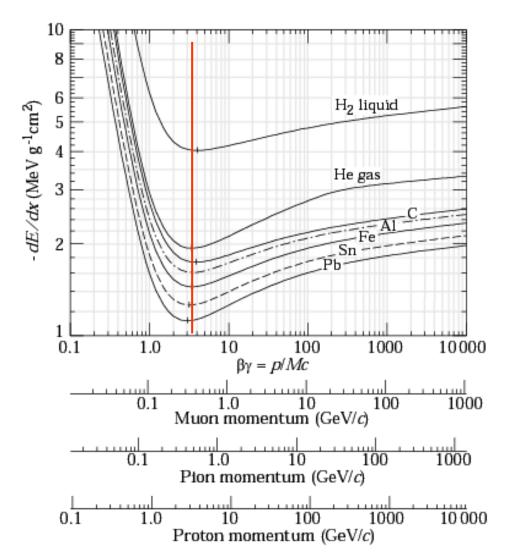
At very high energies:  $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$ 

Remaining relativistic rise from the  $\beta^2 \gamma$  growth of T<sub>max</sub>, due to (rare) large energy transfers to a few electrons


When these events are excluded

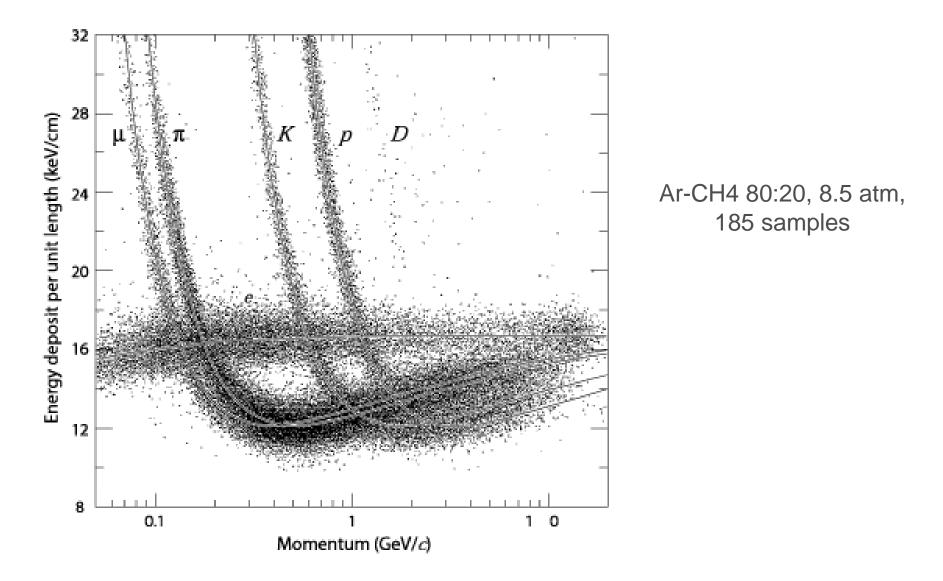
➔ Fermi plateau




Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

## **Minimum Ionizing Particle :**

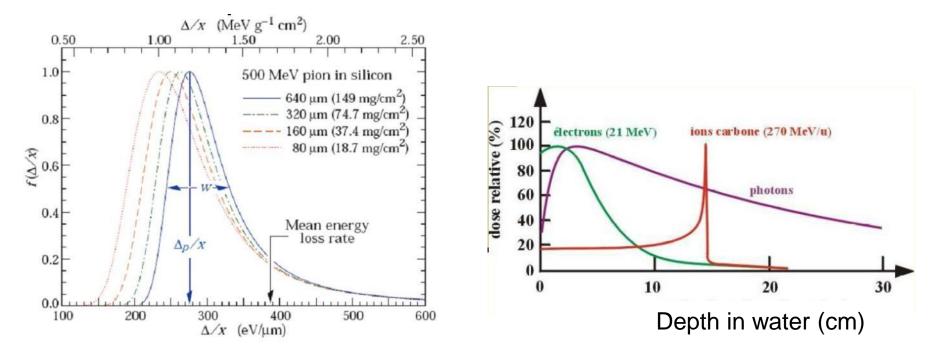



The minimum is approximately independent of the material

Minimum at βγ ~ 3 ... 4
 Similar for all elements ~2 MeV/(g/cm<sup>2</sup>)



Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.


### The PEP4/9 – TPC data: dE/dx



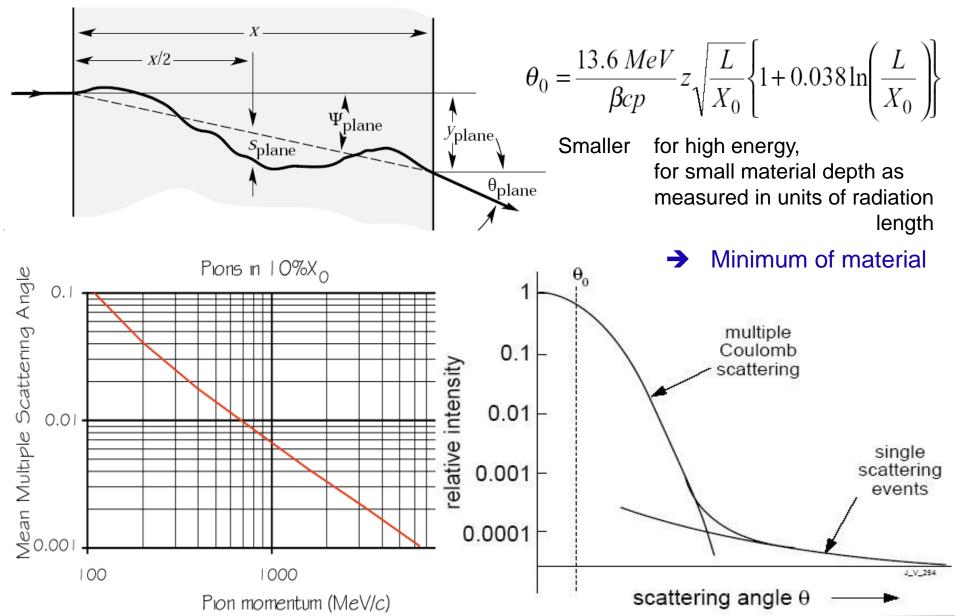
Particle ID relying on dE/dx depends on p (and  $\delta p$ ) and particle\_hypothesis\_1,2

Bethe Bloch describes the average energy loss. For moderate thickness absorber fluctuations on this energy loss described by a Landau distribution. For thin absorber (small dx) fluctuations become large The energy loss is larger at small *E*, i.e. end of the path in matter

Bragg peak Not used in HEP but is basic for medical application, hadron therapy

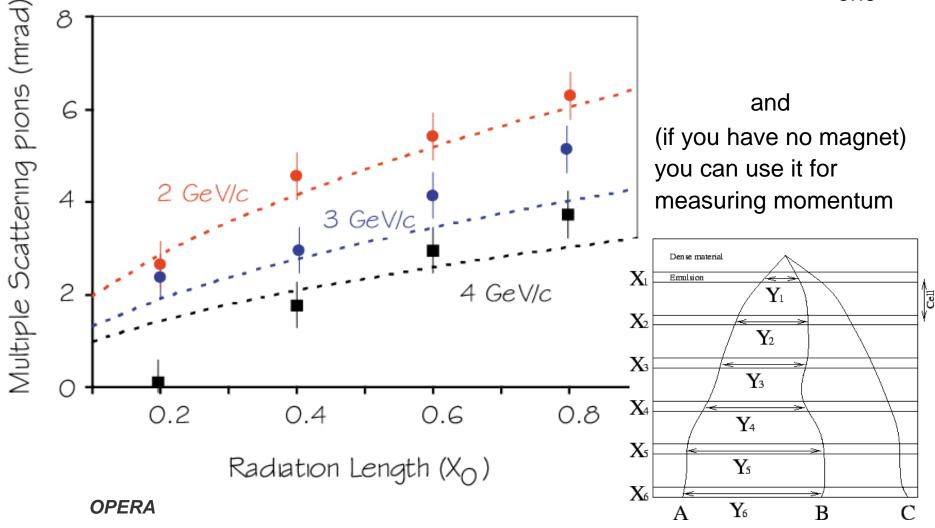


Energy loss of a 10 GeV muon in 1 cm of plastic scintillator ( $\gamma = 1$ ) or a gas chamber ( $\gamma = 0.001$ ) ?


Muons can be considered as a MIP with 2 MeV/(g/cm<sup>2</sup>)
→ 2 MeV in 1 cm scintillator
→ 2 keV in 1 cm of gas
To stop a 450 GeV muon beam, will need 900 m of concrete (density 2.5) !

How many meters of air to stop an  $\alpha$  particle of 2 MeV ?

Particle with very low  $\beta$  (below the minimum ionization) dE/dx around 700 MeV /(g/cm<sup>2</sup>) and  $\rho = 1g/l \rightarrow 0.7$  MeV/cm Can stop  $\alpha$  in 2-3 cm of air


## **Multiple scattering**

□ A charged particle traversing a medium is deflected by many small-angle scatters mainly due to Coulomb scattering from nuclei → multiple scattering. Affects precision of tracking performance



## **Multiple scattering**

Effect of "0" if averaged for many particles, and seen as a fluctuation on a given one



.. not the best means for measuring momentum though.

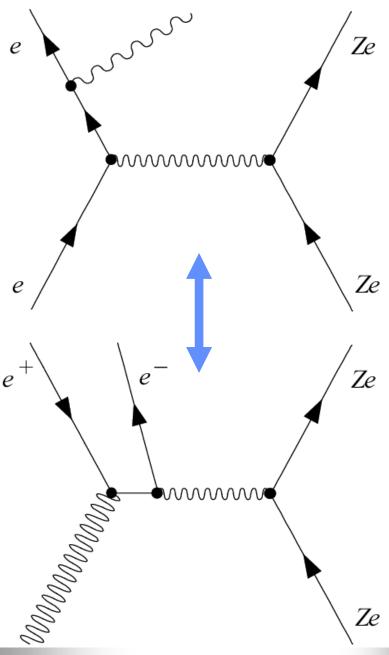
## Electrons (and positrons) are different as they are light.

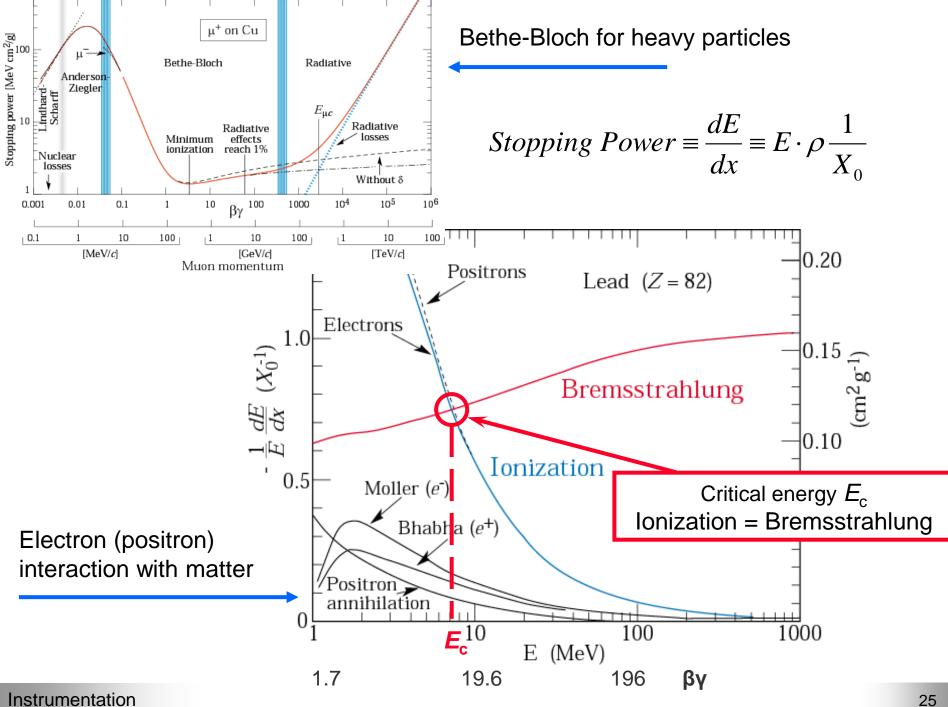
Energy loss for electrons/positrons involve mainly two different physics mechanisms:

- Excitation/ionization
   But collision between identical particles + electron is now deflected
- Bremsstrahlung: emission of photon by scattering with the nucleus electrical field

At high energies radiative processes dominate

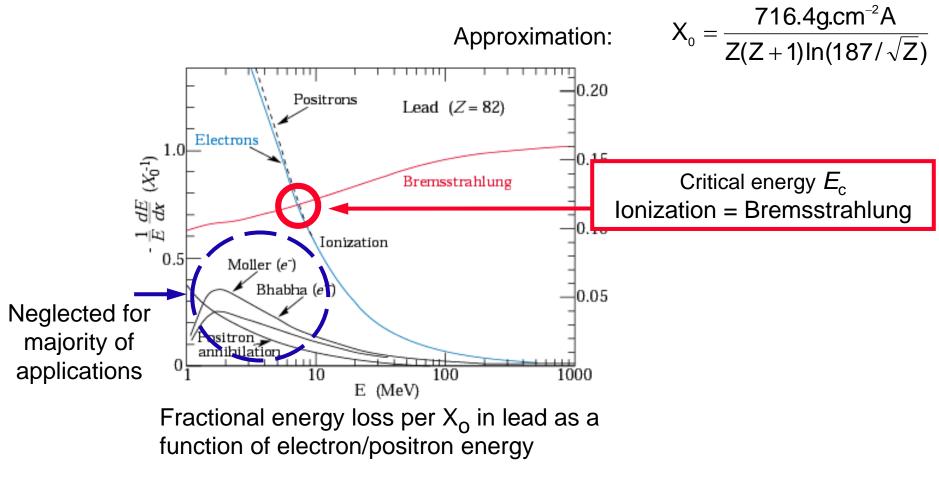
# Bremsstrahlung


Bremsstrahlung is the emission of photons by a charged particle accelerated in the Coulomb field of a nucleus.


➔ we now have an additional photon

# Pair production

Creation of an electron/positron pair in the field of an atom.


➔ we now have e+e- pair instead of initial photon





# Define Radiation Length $X_0$ as the Radiative Mean Path : $\frac{1}{X_0} \equiv \frac{1}{E} \frac{dE}{\rho dx}$

i.e. the distance over which the energy of electron/positron is reduced by a factor *e* by Bremsstrahlung. Measured in units of [g/cm2]



No simultaneous description of Ec for solids and gases (density effect) → fits to the data 400 200 100  $\frac{610 \text{MeV}}{\text{Z}+1.24}$ 710 MeV  $E_c$  (MeV) Solid : Z + 0.92610 MeV 50 Z+1.24  $\frac{710 \text{MeV}}{\text{Z} + 0.92}$ Gas : **1** E<sub>c</sub> + Solids 20 Gases 10Li Be B CNO Ne Sn He Fe 5 2 5 1020 50 100Ζ

Figure 27.13: Electron critical energy for the chemical elements, using Rossi's definition [4]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed with code supplied by A. Fassó.)

#### Instrumentation

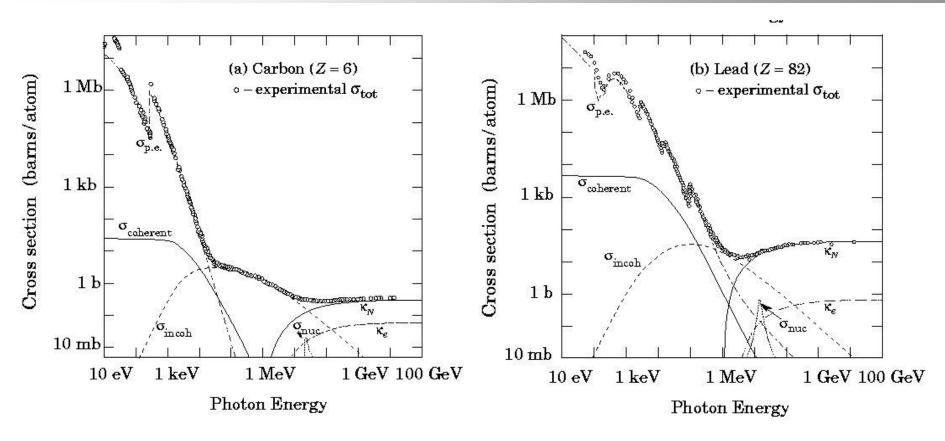
## **Energy loss for photons**

Energy loss for photons  $\rightarrow$  three major physics mechanisms :

Photo electric effect : absorption of a photon by an atom ejecting an electron

$$\sigma = Z^{5} \alpha^{4} \left(\frac{m_{e}c^{2}}{E_{\gamma}}\right)^{n} n = 7/2 \text{ for } E \ll m_{e}c^{2} \text{ and } \rightarrow 1 \text{ for } E \gg m_{e}c^{2}$$

Strong dependence with Z, dominant at low photon energy


Compton scattering  $\sigma_c^e \propto \frac{lnE_{\gamma}}{E\gamma}$  and atomic compton = Z  $\sigma_c^e$ 

Pair creation (similar to Bremsstrahlung) : dominant for E >>  $m_e c^2$ 

$$\sigma_{\text{pair}} \approx 4\alpha r_{\text{e}}^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right) = \frac{A}{N_{\text{A}}} \left(\frac{7}{9} \frac{1}{X_0}\right) \text{ Independent of energy !}$$

Probability of pair creation in 1  $X_0$  is e<sup>-7/9</sup>, mean free path of a photon before creating a e<sup>+</sup>e<sup>-</sup> pair is  $\Lambda_{pair} = 9/7 X_0$ 

## **Energy loss for photons**

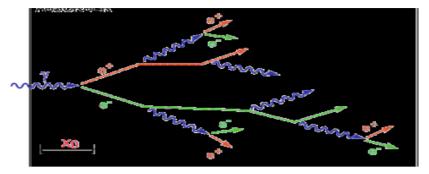


 $\begin{aligned} \sigma_{\text{p.e.}} &= \text{Atomic photoelectric effect (electron ejection, photon absorption)} \\ \sigma_{\text{Rayleigh}} &= \text{Rayleigh (coherent) scattering-atom neither ionized nor excited} \\ \sigma_{\text{Compton}} &= \text{Incoherent scattering (Compton scattering off an electron)} \\ \kappa_{\text{nuc}} &= \text{Pair production, nuclear field} \\ \kappa_{e} &= \text{Pair production, electron field} \\ \sigma_{\text{g.d.r.}} &= \text{Photonuclear interactions} \end{aligned}$ 

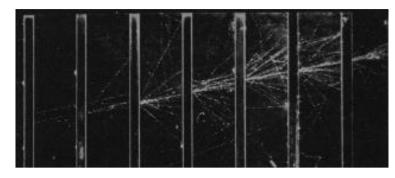
Instrumentation

## **Related numbers**

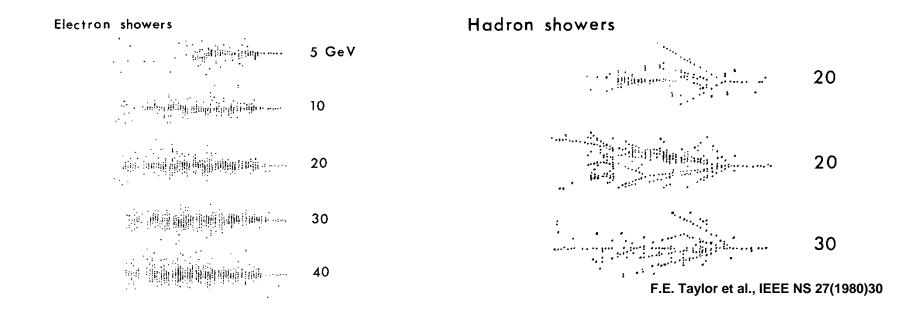
### 6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS


Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

| Material              | Z  | A          | $\langle Z/A \rangle$ |                   | Nuclear <sup>a</sup><br>interaction | $\frac{dE}{dx} _{\min}$                | <sup>b</sup> Radiat | ion length $G_{X_0}$ | ${ m Density} \ \{{ m g/cm}^3\}$ | Liquid<br>boiling | Refractive index $n$  |
|-----------------------|----|------------|-----------------------|-------------------|-------------------------------------|----------------------------------------|---------------------|----------------------|----------------------------------|-------------------|-----------------------|
|                       |    |            |                       |                   | length $\lambda_I$                  | Mev                                    | fa /am <sup>2</sup> | $^{2} \{ cm \}$      |                                  | 1.11.000          | $((n-1)\times 10^6)$  |
|                       |    |            |                       | 131631 E.E.       | SURGE 100                           | $\left\{ {\mathrm{g/cm}^{2}} \right\}$ | {g/cm               | 1 feml               | $(\{g/\ell\}$                    |                   | 38.8 S                |
|                       |    |            |                       | $\{{ m g/cm}^2\}$ | $\{{ m g/cm}^2\}$                   | 3 S                                    |                     |                      | for gas)                         | 1 atm(K)          | for gas)              |
| H <sub>2</sub> gas    | 1  | 1.00794    | 0.99212               | 43.3              | 50.8                                | (4.103)                                | $61.28 \ ^{d}$      | (731000)             | (0.0838)[0.0899]                 |                   | [139.2]               |
| H <sub>2</sub> liquid | 1  | 1.00794    | 0.99212               | 43.3              | 50.8                                | 4.034                                  | $61.28 \ ^{d}$      | 866                  | 0.0708                           | 20.39             | 1.112                 |
| $D_2$                 | 1  | 2.0140     | 0.49652               | 45.7              | 54.7                                | (2.052)                                | 122.4               | 724                  | 0.169[0.179]                     | 23.65             | 1.128[138]            |
| He                    | 2  | 4.002602   | 0.49968               | 49.9              | 65.1                                | (1.937)                                | 94.32               | 756                  | 0.1249[0.1786]                   | 4.224             | 1.024 [34.9]          |
| Li                    | 3  | 6.941      | 0.43221               | 54.6              | 73.4                                | 1.639                                  | 82.76               | 155                  | 0.534                            |                   |                       |
| Be                    | 4  | 9.012182   | 0.44384               | 55.8              | 75.2                                | 1.594                                  | 65.19               | 35.28                | 1.848                            |                   | 1 <del>1</del>        |
| С                     | 6  | 12.011     | 0.49954               | 60.2              | 86.3                                | 1.745                                  | 42.70               | 18.8                 | 2.265 <sup>e</sup>               |                   |                       |
| $N_2$                 | 7  | 14.00674   | 0.49976               | 61.4              | 87.8                                | (1.825)                                | 37.99               | 47.1                 | 0.8073[1.250]                    | 77.36             | 1.205[298]            |
| $O_2$                 | 8  | 15.9994    | 0.50002               | 63.2              | 91.0                                | (1.801)                                | 34.24               | 30.0                 | 1.141[1.428]                     | 90.18             | 1.22[296]             |
| $F_2$                 | 9  | 18.9984032 | 0.47372               | 65.5              | 95.3                                | (1.675)                                | 32.93               | 21.85                | 1.507[1.696]                     | 85.24             | [195]                 |
| Ne                    | 10 | 20.1797    | 0.49555               | 66.1              | 96.6                                | (1.724)                                | 28.94               | 24.0                 | 1.204[0.9005]                    | 27.09             | 1.092[67.1]           |
| Al                    | 13 | 26.981539  | 0.48181               | 70.6              | 106.4                               | 1.615                                  | 24.01               | 8.9                  | 2.70                             |                   |                       |
| Si                    | 14 | 28.0855    | 0.49848               | 70.6              | 106.0                               | 1.664                                  | 21.82               | 9.36                 | 2.33                             |                   | 3.95                  |
| Ar                    | 18 | 39.948     | 0.45059               | 76.4              | 117.2                               | (1.519)                                | 19.55               | 14.0                 | 1.396[1.782]                     | 87.28             | 1.233[283]            |
| Ti                    | 22 | 47.867     | 0.45948               | 79.9              | 124.9                               | 1.476                                  | 16.17               | 3.56                 | 4.54                             |                   |                       |
| Fe                    | 26 | 55.845     | 0.46556               | 82.8              | 131.9                               | 1.451                                  | 13.84               | 1.76                 | 7.87                             |                   | 8 <del>7. 3</del> 6   |
| Cu                    | 29 | 63.546     | 0.45636               | 85.6              | 134.9                               | 1.403                                  | 12.86               | 1.43                 | 8.96                             |                   | 9 <del>11 - 1</del> 0 |
| Ge                    | 32 | 72.61      | 0.44071               | 88.3              | 140.5                               | 1.371                                  | 12.25               | 2.30                 | 5.323                            |                   | 1 <u>7 - 1</u> 7      |
| Sn                    | 50 | 118.710    | 0.42120               | 100.2             | 163                                 | 1.264                                  | 8.82                | 1.21                 | 7.31                             |                   | Street, second        |
| Xe                    | 54 | 131.29     | 0.41130               | 102.8             | 169                                 | (1.255)                                | 8.48                | 2.87                 | 2.953[5.858]                     | 165.1             | [701]                 |
| W                     | 74 | 183.84     | 0.40250               | 110.3             | 185                                 | 1.145                                  | 6.76                | 0.35                 | 19.3                             |                   | 100-101               |
| Pt                    | 78 | 195.08     | 0.39984               | 113.3             | 189.7                               | 1.129                                  | 6.54                | 0.305                | 21.45                            |                   |                       |
| Pb                    | 82 | 207.2      | 0.39575               | 116.2             | 194                                 | 1.123                                  | 6.37                | 0.56                 | 11.35                            |                   | 9 <u>20</u> 97        |
| U                     | 92 | 238.0289   | 0.38651               | 117.0             | 199                                 | 1.082                                  | 6.00                | $\approx 0.32$       | pprox 18.95                      |                   | 3                     |

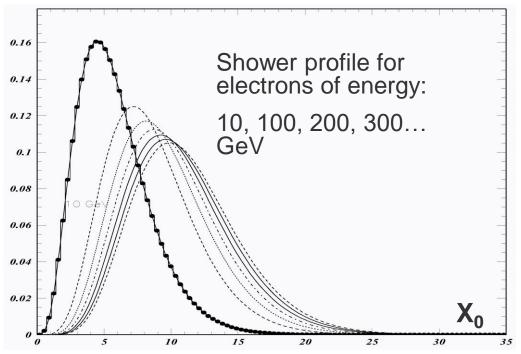

Instrumentation

## **Electromagnetic showers**


A high energy electron or photon incident on a thick absorber, initiates an EM cascade as pair production and Bremsstrahlung generate more electrons and photons with lower energy.



**EM** shower development




Lead absorbers in cloud chamber



## **EM** showers

# Longitudinal profile



# Transverse profile

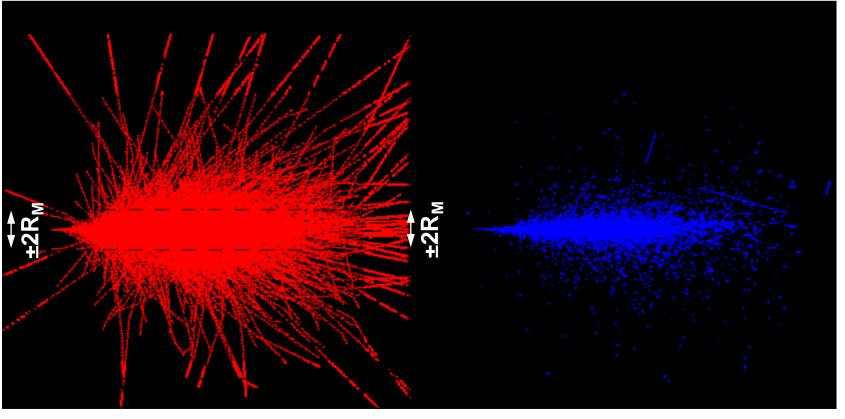
 Multiple scattering for electrons
 Photons with energies in the region of minimal absorption travel away from shower axis

→ Molière radius sets transverse shower size, it gives the average lateral deflection of critical energy electrons after traversing 1X<sub>0</sub>

$$R_{\rm M} = \frac{21 {\rm MeV}}{E_{\rm C}} X_0 \left( Z >> 1 \right)$$

Transverse shower containment: 90% E<sub>0</sub> within 1R<sub>M</sub>, 95% within 2R<sub>M</sub>, 99% within 3.5R<sub>M</sub>

From M. Diemoz, Torino 3-02-05


Instrumentation

### **EM** showers

□ EM shower development in liquid Krypton (Z=36, A=84)

**Photons created** 

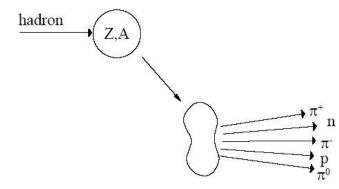
**Charged particles created** 



**27X**<sub>0</sub>

27X<sub>0</sub>

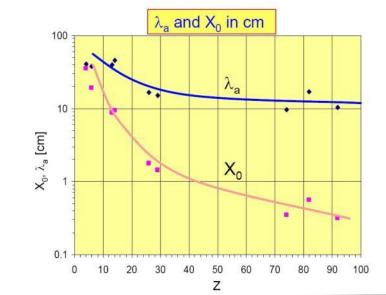
GEANT simulation: 100 GeV electron shower in the NA48 liquid Krypton calorimeter


From D. Cockerill

Instrumentation

0

Interaction of energetic hadrons (charged/neutral) through matter involves nuclear interaction :


excitation and nucleus break up => production of secondary particles + fragment



Number of particle produced ~ln (E) with average transverse p of 0.35 GeV/c

For E > 1 GeV,  $\sigma \sim \sigma_0 A^{0.7}$ , with  $\sigma_0$ = 35 mb and independent of particle type  $\pi$ ,p,K,... Convenient to introduce the hadronic interaction (absorption) length :

$$\lambda_{I(a)} = \frac{A}{N_A \sigma}_{\text{total(inel)}} \propto A^{1/3} \text{ , } N = N_0 e^{-\frac{x}{\lambda_a}}$$



Instrumentation

Bezmiec

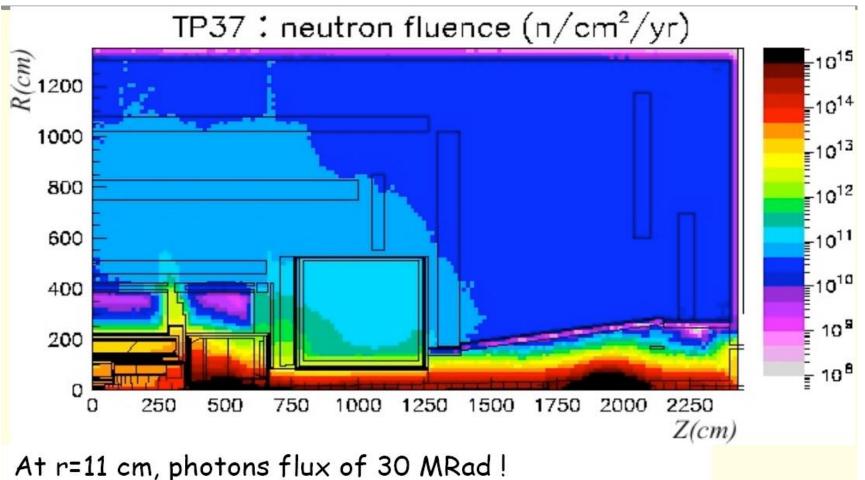
### 6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at  $20^{\circ}$ C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

| Material              | Ζ  | A          | $\langle Z/A \rangle$ | Nuclear <sup>a</sup><br>collision<br>length $\lambda_T$<br>{g/cm <sup>2</sup> } | interaction | $\frac{dE/dx _{\min}}{\left\{rac{\mathrm{MeV}}{\mathrm{g/cm}^2} ight\}}$ |                | ion length <sup>c</sup><br>X <sub>0</sub><br><sup>2</sup> } {cm} | Density<br>$\{g/cm^3\}$<br>$(\{g/\ell\}$<br>for gas) | Liquid<br>boiling<br>point at<br>1 atm(K) | $\begin{array}{c} \text{Refractive} \\ \text{index } n \\ ((n-1) \times 10^6 \\ \text{for gas}) \end{array}$ |
|-----------------------|----|------------|-----------------------|---------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|----------------|------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| H <sub>2</sub> gas    | 1  | 1.00794    | 0.99212               | 43.3                                                                            | 50.8        | (4.103)                                                                   | $61.28 \ ^{d}$ | (731000)                                                         | (0.0838)[0.0899]                                     |                                           | [139.2]                                                                                                      |
| H <sub>2</sub> liquid | 1  | 1.00794    | 0.99212               | 43.3                                                                            | 50.8        | 4.034                                                                     | $61.28 \ ^{d}$ | 866                                                              | 0.0708                                               | 20.39                                     | 1.112                                                                                                        |
| $D_2$                 | 1  | 2.0140     | 0.49652               | 45.7                                                                            | 54.7        | (2.052)                                                                   | 122.4          | 724                                                              | 0.169[0.179]                                         | 23.65                                     | 1.128 [138]                                                                                                  |
| He                    | 2  | 4.002602   | 0.49968               | 49.9                                                                            | 65.1        | (1.937)                                                                   | 94.32          | 756                                                              | 0.1249[0.1786]                                       | 4.224                                     | 1.024 [34.9]                                                                                                 |
| Li                    | 3  | 6.941      | 0.43221               | 54.6                                                                            | 73.4        | 1.639                                                                     | 82.76          | 155                                                              | 0.534                                                |                                           | - i -                                                                                                        |
| Be                    | 4  | 9.012182   | 0.44384               | 55.8                                                                            | 75.2        | 1.594                                                                     | 65.19          | 35.28                                                            | 1.848                                                |                                           | 15-16                                                                                                        |
| С                     | 6  | 12.011     | 0.49954               | 60.2                                                                            | 86.3        | 1.745                                                                     | 42.70          | 18.8                                                             | $2.265 \ ^{e}$                                       |                                           |                                                                                                              |
| $N_2$                 | 7  | 14.00674   | 0.49976               | 61.4                                                                            | 87.8        | (1.825)                                                                   | 37.99          | 47.1                                                             | 0.8073[1.250]                                        | 77.36                                     | 1.205[298]                                                                                                   |
| $O_2$                 | 8  | 15.9994    | 0.50002               | 63.2                                                                            | 91.0        | (1.801)                                                                   | 34.24          | 30.0                                                             | 1.141[1.428]                                         | 90.18                                     | 1.22[296]                                                                                                    |
| $F_2$                 | 9  | 18.9984032 | 0.47372               | 65.5                                                                            | 95.3        | (1.675)                                                                   | 32.93          | 21.85                                                            | 1.507[1.696]                                         | 85.24                                     | [195]                                                                                                        |
| Ne                    | 10 | 20.1797    | 0.49555               | 66.1                                                                            | 96.6        | (1.724)                                                                   | 28.94          | 24.0                                                             | 1.204[0.9005]                                        | 27.09                                     | 1.092[67.1]                                                                                                  |
| Al                    | 13 | 26.981539  | 0.48181               | 70.6                                                                            | 106.4       | 1.615                                                                     | 24.01          | 8.9                                                              | 2.70                                                 |                                           |                                                                                                              |
| Si                    | 14 | 28.0855    | 0.49848               | 70.6                                                                            | 106.0       | 1.664                                                                     | 21.82          | 9.36                                                             | 2.33                                                 |                                           | 3.95                                                                                                         |
| Ar                    | 18 | 39.948     | 0.45059               | 76.4                                                                            | 117.2       | (1.519)                                                                   | 19.55          | 14.0                                                             | 1.396[1.782]                                         | 87.28                                     | 1.233[283]                                                                                                   |
| Ti                    | 22 | 47.867     | 0.45948               | 79.9                                                                            | 124.9       | 1.476                                                                     | 16.17          | 3.56                                                             | 4.54                                                 |                                           |                                                                                                              |
| Fe                    | 26 | 55.845     | 0.46556               | 82.8                                                                            | 131.9       | 1.451                                                                     | 13.84          | 1.76                                                             | 7.87                                                 |                                           | 20 <u>1 - 10</u> 5                                                                                           |
| Cu                    | 29 | 63.546     | 0.45636               | 85.6                                                                            | 134.9       | 1.403                                                                     | 12.86          | 1.43                                                             | 8.96                                                 |                                           |                                                                                                              |
| Ge                    | 32 | 72.61      | 0.44071               | 88.3                                                                            | 140.5       | 1.371                                                                     | 12.25          | 2.30                                                             | 5.323                                                |                                           | 1/2                                                                                                          |
| Sn                    | 50 | 118.710    | 0.42120               | 100.2                                                                           | 163         | 1.264                                                                     | 8.82           | 1.21                                                             | 7.31                                                 |                                           |                                                                                                              |
| Xe                    | 54 | 131.29     | 0.41130               | 102.8                                                                           | 169         | (1.255)                                                                   | 8.48           | 2.87                                                             | 2.953[5.858]                                         | 165.1                                     | [701]                                                                                                        |
| W                     | 74 | 183.84     | 0.40250               | 110.3                                                                           | 185         | 1.145                                                                     | 6.76           | 0.35                                                             | 19.3                                                 |                                           | 10-10-000-000-000-000-000-000-000-000-0                                                                      |
| Pt                    | 78 | 195.08     | 0.39984               | 113.3                                                                           | 189.7       | 1.129                                                                     | 6.54           | 0.305                                                            | 21.45                                                |                                           |                                                                                                              |
| Pb                    | 82 | 207.2      | 0.39575               | 116.2                                                                           | 194         | 1.123                                                                     | 6.37           | 0.56                                                             | 11.35                                                |                                           | 9 <u>4 19</u> 9                                                                                              |
| U                     | 92 | 238.0289   | 0.38651               | 117.0                                                                           | 199         | 1.082                                                                     | 6.00           | $\approx 0.32$                                                   | $\approx 18.95$                                      |                                           |                                                                                                              |

### Instrumentation

Neutron has no charge, can be detected only through charged particle produced in (weak or) strong interaction => short range => very penetrating

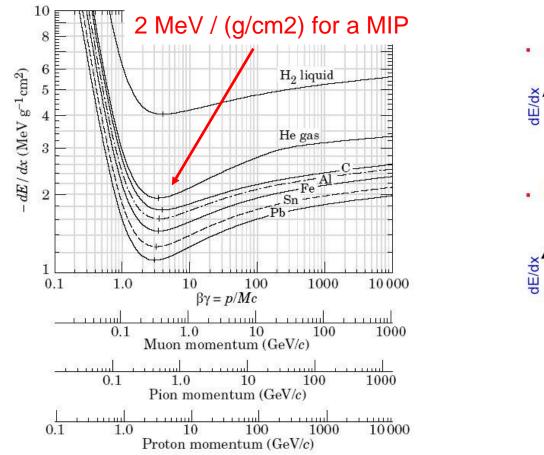

Conversion and elastic scattering for E < 1 GeV. For instance</li>
 n + <sup>6</sup>Li → α +<sup>3</sup>H, n+<sup>3</sup>He→p+<sup>3</sup>H E < 20 MeV</li>
 n + p → n + p E < 1 GeV</li>
 Hadronic cascade for E > 1 GeV

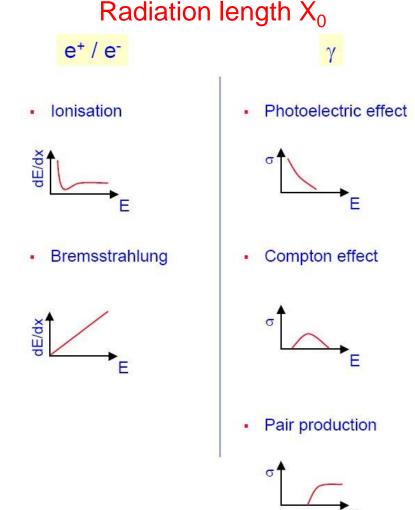
Neutrons can travel sometimes for more than 1 µs in detectors
 Outside electronics readout window

A lot of low energy neutrons produced in LHC experiments
 Interactions in the whole cavern ...

Radiation levels in ATLAS (rad/year)

L. Serin





100 Rad ~ 6.2410<sup>12</sup> MeV/kg deposited energy (1J/kg)

Strong constraint on detector technology and electronics : ageing in gaseous detectors light loss (transparency) in scintillators/cerenkov, atom displacement in solid detectors

- Only weak interaction
- ↓ v + n → l<sup>-</sup> + p or anti v + p → l<sup>+</sup> + n → detect the charged lepton and the nucleon recoil
- Detection efficiency in  $\sim 1$  m iron about 6.10<sup>-17</sup>...
- Whatever technological improvement, neutrinos detector can only be huge detector
- In e+e- collider experiment, indirect detection :
  - "Fully" hermetic detector (!)
  - Sum all visible energy/momentum
  - Use beam energy constraint → neutrino(s) are taking the missing energy/momentum

# Bethe-Bloch for heavy charged particles





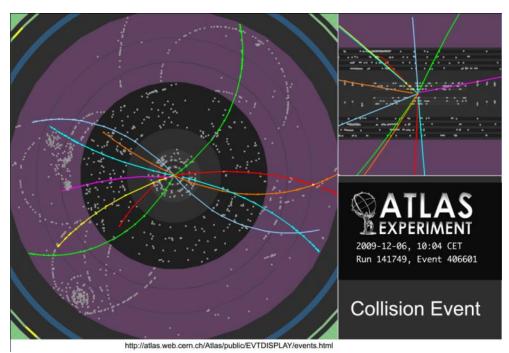
Interaction of hadrons : many different particles produced,

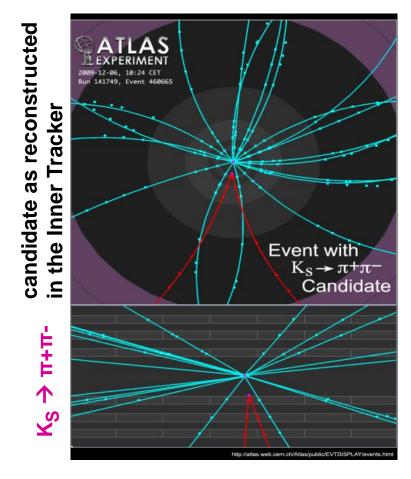
interaction length  $\lambda_{I}$ 

#### Instrumentation

#### Bezmiechowa Górna, 11-20/07/2024

Now we are (almost) ready to built our first detector ...


... but let us first look through common methods and tools


## **Gaseous detectors**

Measure: hit and/or drift time

- → Position resolution: ~ 50 µm
   → Tracks reconstruction
  - + Magnetic field
    - ➔ Momentum

[ Measure also: energy loss dE/dx → Particle ID ]

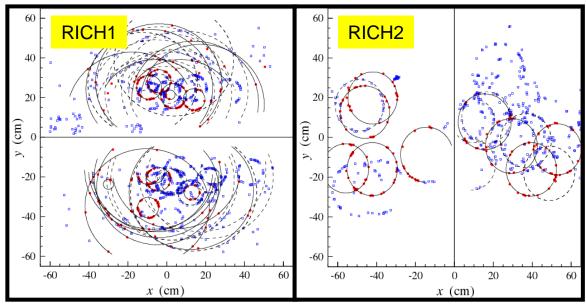




## **Silicon detectors**

Measure: hits and/or amplitude

- ➔ Position resolution: ~ 5 µm
- ➔ Tracks & Vertices reconstruction


## Instrumentation

#### Bezmiechowa Górna, 11-20/07/2024

Cherenkov detectors

# Measure: Cherenkov radiation angle (threshold)→ Particle ID

Radiator + Cherenkov light measurement + ... Example: LHCb Ring Imaging CHerenkov detector RICH



- + Transition radiation detectors
- + dE/dx from tracking detectors
- + Time-Of-Flight

```
+
```

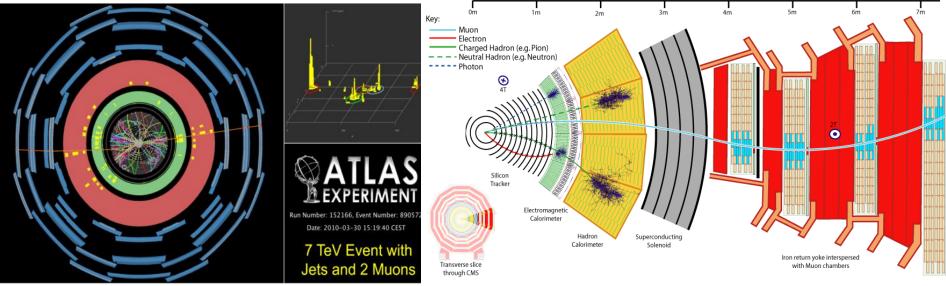
Calorimeters: electromagnetic and hadronic

Measure: shower energy and/or shower shape

- ➔ Energy resolution
- ➔ Position resolution:

~few mm

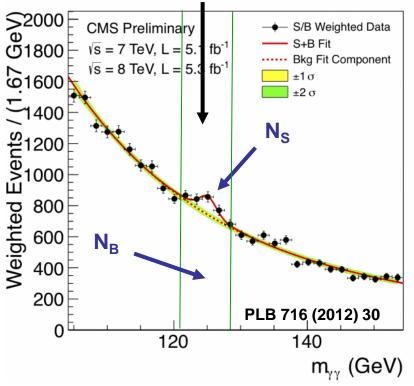
➔ Particle ID




### Muon detectors

Measure: Muon track after absorber → Particle ID

### **Muons in ATLAS**


## **Muon in CMS**

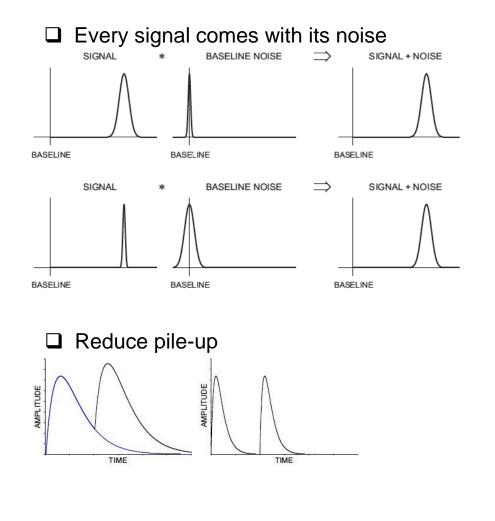


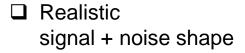
### **Criteria: efficiency and resolution**

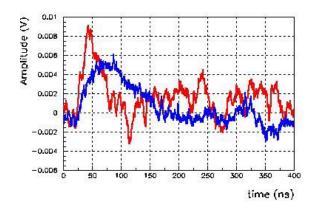
- **Efficiency** ~ amount of signal and Intrinsic detector resolution
  - □ Spatial resolution → degrade mass resolution via momentum measurement; contribute to combinatorial background via picking up random tracks and via PID.
  - □ Energy resolution → degrade mass resolution via energy measurement; contribute to combinatorial background via PID.
  - □ *Time resolution* → degrade mass resolution via contribution to spatial resolution in tracking devices; contribute to combinatorial background via pile-up and via PID.

Is the excess due to the decay of a particle into two photons ?




Statistical significance :  $S = N_S / \sqrt{N_B}$ 


 $N_{S}\left(N_{B}\right)$  : Number of signal (background) events, estimated in the peak region


$$S \sim \epsilon \sqrt{L/\sigma}$$

- → Enlarge data sample
- → Increase detector efficiency
- → Reduce detector resolution

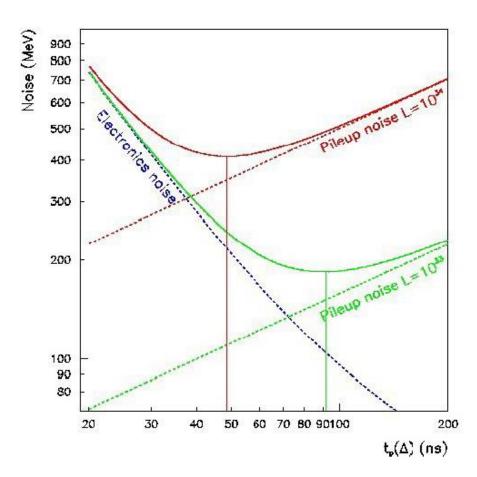
□ Signal treatment added to intrinsic detector resolution → Read-out electronics !





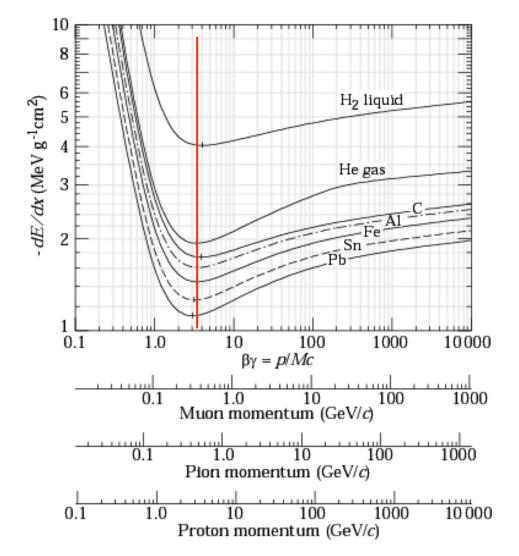


#### After E. Garutti et al.


Instrumentation

#### Bezmiechowa Górna, 11-20/07/2024

### **Criteria: efficiency and resolution**


□ Signal treatment added to intrinsic detector resolution → Read-out electronics !

- □ Example: ATLAS LAr calorimeter
- □ Ionization signal 500 ns ~ 20 LHC BXs
- $\Box$  Fast shaper reduces signal to 5 LHC BXs  $\rightarrow$  less pile-up but higher electronics noise
- □ Choice of optimal timing varies with luminosity



After E. Garutti et al.

## Q1: The minimum is approximately independent of the material



Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

Bezmiechowa Górna, 11-20/07/2024

Minimum at βγ ~ 3 ... 4
 Similar for all elements ~2 MeV/(g/cm<sup>2</sup>)
 ... why H2 is different ?

#### **Q2**

Silicon detectors

Gaseous detectors

Calorimeters

- → Position resolution: ~ 5  $\mu$ m
- $\rightarrow$  Position resolution: ~ 50 µm
- ➔ Position resolution: few mm

Why calorimeters are important for position measurements ?

Q3

Two electromagnetic showers are initiated by an electron and by a photon. Which shower will penetrate deeper in the calorimeter ?