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Structure of the charged current

Figure: The charged current interaction of fermions

In the matrix of gauge bosons

Ŵµ = 1
2
σi

2
W i

µ = 1
2

(
W 3

µ

√
2W †µ√

2Wµ −W 3
µ

)
, Wµ ≡W 1

µ + iW 2
µ , W †µ = W 1 − iW 2

µ ,

the off-diagonal fields Wµ,W
†
µ connect doublet members of charge differing by one unit,

they therefore correspond to the charged bosons W±.
For a single family of quarks and leptons,

LCC = −
g

2
√
2

(
W †µ [ūγµ(1− γ5)d + ν̄eγ

µ(1− γ5)e] + Wµ[d̄γµ(1− γ5)u + ēγµ(1− γ5)νe ]
)
.

Universality of quark and lepton interactions.
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Structure of the neutral current, the Weinberg rotation

There remain the fields W 3
µ and Bµ, which both do not carry charge.

LNC = −gW 3
µψ̄1γ

µ σ3

2
ψ1 − g ′Bµ

3∑
j=1

yi ψ̄iγ
µψi .

Can Bµ be the photon, and W 3
µ the Z -boson? No, they cannot!. We know the photon has

the same coupling to both chiralities, hence we would have to require

y1 = y2 = y3 = y , and g ′y = eQu = eQd ,

which cannot be true, as Qu = +2/3 and Qd = −1/3.
But we can try with a linear combination, introducing the weak mixing angle (Weinberg
angle) θW : (

W 3
µ

Bµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Zµ

Aµ

)
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Neutral current interaction

Now, in terms of the fields Zµ and Aµ, the neutral–current Lagrangian can be rewritten as

LNC = −
3∑

j=1

ψ̄jγ
µCµψj

with (T3 ≡ σ3/2, Yψj ≡ yjψj ):

Cµ = Aµ(gT3 sin θW + g ′Y cos θW ) + Zµ(gT3 cos θW − g ′Y sin θW )

To obtain QED, we impose the conditions

g sin θW = g ′ cos θW = e, and Y = Q − T3,

where Q is the em charge operator for quarks and leptons:

Q1 =

(
Qu 0
0 Qd

)
, Q2 = Qu , Q3 = Qd quarks

Q1 =

(
Qνe 0
0 Qe

)
, Q2 = Qνe , Q3 = Qe leptons .

Here Qu = 2/3,Qd = −1/3,Qνe = 0,Qe = −1.
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Neutral Current interaction

Now, the hypercharges are fixed by the electric charges and weak isospin T3 components,
Y = Q − T3. The right handed fields have T3 = 0.

This means a hypothetical right handed neutrino has Y = Q = 0, so that it does not
couple neither to photon nor Z -boson. It also does not couple to W± (only left handed
fields do!). Such a particle which has no SM interactions is called a sterile neutrino.
We summarize the NC Lagrangian: LNC = LQED + LZNC:

LQED = −eAµJ
µ
em = −eAµ

(2
3
ūγµu −

1
3
d̄γµd − ēγµe

)
LZNC = −

e

2 sin θW cos θW
Jµ
Z Zµ Jµ

Z = Jµ
3 − 2 sin2 θW Jµ

em .

Explicitly, in terms of the fermion fields, LZNC has the form:

LZNC = −
e

2 sin θW cos θW
Zµ

∑
f

f̄ γµ(vf − af γ5)f

where vf = T f
3 − 2Qf sin2 θW and af = T f

3 .
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Neutral current interaction

u, c, t d , s, b νe , νm, ντ e, µ, τ

2vf 1− 8
3 sin2 θW −1 + 4

3 sin2 θW 1 −1 + 4 sin2 θW
2af 1 -1 1 -1

Table: vector and axial vector NC couplings

LZNC = −
e

2 sin θW cos θW
Zµ

∑
f

f̄ γµ(vf − af γ5)f
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Outline of the lecture

Spontaneous Symmetry Breaking (SSB)

Goldstone theorem

SSB for the complex scalar field

Hidden gauge symmetry in a superconductor. The Meissner effect and an effective photon
mass.

The Higgs mechanism in the Standard Model, masses of gauge bosons

Some basic phenomenology

Generation of Fermion mass terms, Yukawa couplings.
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EW gauge theory of SU(2)L ⊗ U(1)Y

Up to now we have
1 derived the charged- (W±) and neutral (γ, Z) current interactions that allow us to describe

weak decays.
2 we have incorporated electromagnetic interactions (unified weak and electromagnetic

interactions), they emerge from a common gauge group.

We have obtained additional interactions between W± and Z bosons and of W± and γ.

Problem: the gauge bosons are still massless:

MW± = 0, MZ = 0, mγ = 0 .

This is fine for the photon, but not for W±,Z : weak interactions are short-range, they
should not be mediated by massless exchanges.

Gauge theories with massless gauge bosons have the very attractive property of being
renormalizable. (All the gauge coupling constants are dimensionless).

Adding mass terms “by hand” breaks the gauge symmetry. Somehow we need to “break” the
gauge symmetry by still maintaining a symmetric (gauge invariant) Lagrangian.
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Spontaneous magnetization

Landau-Ginzburg theory of continuous
(“2nd order”) phase transitions. Near TC

magnetization ~M is small, and we can
expand the free energy in low powers of ~M.

u( ~M) = (∇i
~M)2 + V ( ~M)

V ( ~M) = α1(T ) ~M · ~M + α2( ~M · ~M)2

α2 > 0, and α1(T ) = α · (T − TC ) , α > 0. Figure: Magnet above and below TC

The minimum of the free energy (ground state) is realized at

Mi

(
α1 + 2α2 ~M · ~M

)
= 0

For T > TC , the bracket never vanishes, and we must have ~M = 0. However for T < Tc

coefficient α1 < 0, and the mimimum of the free energy is at a finite magnetization:

| ~M| =

√
α · (TC − T )

α2

The direction of the magnetization is unspecified by the theory. The ground state with ~M in
a particular direction is one of an infinitely degenerate set. Its direction is fixed by external
conditions/boundary condistions and “breaks the rotational symmetry”.
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Goldstone theorem

This donkey from a review by A. Pich illustrates everything about spontaneous symmetry
breaking (SSB):

Figure: Spontaneous symmetry breaking and “Goldstone mode”

The existence of flat directions connecting the degenerate states of minimal energy (free
energy etc...) is a general property of SSB.

In many-body theory/relativistic QFT it implies the existence of gapless/massless degrees of
freedom, the Goldstone bosons.

The fact that in a relativistic QFT for every broken direction there is a massless Goldstone
boson is called the Goldstone theorem.
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Spontaneous symmetry breaking for a complex scalar field

complex scalar field with Lagrangian:

L = ∂µφ
∗∂µφ− V (φ) , V (φ) = µ2φ∗φ+ λ(φ∗φ)2 = λ

(
φ∗φ+

µ2

2λ

)2
+ const .

For µ2 > 0 we have the potential on the LHS. µ is the mass of the particle, and in the
ground state we have φ = 0, or 〈0|φ|0〉 = 0.
The situation completely changes, if we allow µ2 < 0. Then we cannot interpret the
quadratic term as a mass term. Minima of potential:

|φ|2min = −
µ2

2λ
.

Now we have infinitely many degenerate ground states with φmin = |φ|mine
iα.
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Spontaneous symmetry breaking for a complex scalar field

We can parametrize φ = (φ1 + iφ2)/
√
2. Let’s choose for the ground state the mimimum for

α = 0 (φ1-direction). This “breaks” the global U(1) symmetry.

Now the minimum is at φ1 =
√
−µ2/λ = v . Then we shift the fields

φ1 = v + η(x), φ2 = ξ(x)

The Lagrangian becomes:

L = 1
2∂µη∂

µη + 1
2∂µξ∂

µξ − 1
2 (−2µ2)η2 −

λ

4
(η2 + ξ2)2 − λv(η2 + ξ2)η

η is a massive particle, mη = −2µ2.
We have a massless mode. ξ is a Nambu-Goldstone boson.
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Spontaneous symmetry breaking for a complex scalar field

Despite the spontaneous breaking of the symmetry, the Noether current is still conserved.

jµ = −i
(
φ∗∂µφ− ∂µφ

∗φ
)

= v∂µξ + η∂µξ − ξ∂µη

The Noether current has a nonzero matrix element between a 1-Goldstone boson state and
the vacuum

〈ξ(p)|jµ|0〉 = v pµ exp(−ip · x)

It means that the Noether charge does not annihilate the vacuum. It creates a
zero-momentum Goldstone boson.

Q̂|0〉 ∝ δ(3)(~p)|ξ(p)〉
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Exponential parametrization

a subtlety of field theory is that we have a freedom to redefine fields, while maintaining all
observables (on-shell amplitudes). It is a certain freedom in the choice of “coordinates” in
the field space.

For the case at hand, there is a more convenient parametrization of φ(x) which highlights
another property of Goldstone boson physics.

φ =
1
√
2

(v + η) exp
[
i
θ

v

]
Now, the field θ will be the Goldstone degree of freedom, while η still is a massive mode.

L = 1
2

(
1 +

η

v

)2
∂µθ∂

µθ + 1
2∂µη∂

µη − 1
2 (−2µ2)η2 + aη3 + bη4

The Goldstone particle does not appear in the potential terms. It only has derivative
interactions with the η-field. ∝ η∂µθ∂µθ and η2∂µθ∂µθ.

Goldstone bosons are weakly coupled at low momenta. A new possibility for a
perturbative expansion emerges.
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