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10! "b observation

Interpretation of data

(a different, fundamental meaning to probability)

Probability, law of large 
numbers, combinatorics

measurement errors, statistical fluctuations, Central Limit Theorem, 
confirming & rejecting theories, what constitutes a discovery?
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For a physics Masters/Ph.D….

• You’ll be looking at and interpreting a lot of data.

• You’ll deal with a few basic distributions

• Gaussian, Poisson, binomial, ... (and possibly a few 
others that you’ll pick up as you go along)

• You’ll deal with error estimates and error matrices

• You’ll measure parameters doing likelihood and χ2 fits

• You’ll need to translate physics into PDF’s

• You’ll interpret the fit result: what’s the error?  Is it a 
discovery? Are the data consistent with the PDF?
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A 𝞝cc at 3.5 GeV?
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Fig. 2. (a) Ξ+
cc → pD+K− mass distribution for right-sign mass combinations. Ver-

tical dashed lines indicate the region of smallest fluctuation probability as described
in the text. (b) wrong-sign events with a pD−K+, scaled by 0.6 as described in the
text. The horizontal line shows a maximum likelihood fit to the occupancy.

cal methods used in the original double charm paper [1] and the event-mixing
method used in Ref. [8]. We set out to test the hypothesis that the back-
ground events in Fig. 2 are random combinatoric tracks associated with real
D+ mesons. To mix events we took a D+ meson in the peak region (Fig. 1) and
combined it with proton and K− tracks extracted from other events. Each D+

was reused 25 times. To compare to the combinatoric background in Fig. 2,
we scale the mixed-event background down for the multiple D+ usage.

7

SELEX 2005

tracks are assigned the kaon mass and positive tracks the
pion mass. As a background check we also kept wrong-
sign combinations in which the mass assignments are re-
versed. A candidate event from the Λ+

c K−π+ sample is
shown in Fig. 1. Further details of the Λ+

c reanalysis may
be found in Ref. [6].
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FIG. 2. (a) The Λ+
c

K−π+ mass distribution in 5 MeV/c2

bins. The shaded region 3.400-3.640 GeV/c2 contains the
signal peak and is shown in more detail in (c). (b) The
wrong-sign combination Λ+

c
K+π− mass distribution in 5

MeV/c2 bins. (c) The signal (shaded) region (22 events) and
sideband mass regions with 162 total events in 2.5 MeV/c2

bins. The fit is a Gaussian plus linear background.

In Fig. 2(a) we plot the invariant mass of the Λ+
c K−π+

system, fixing the Λ+
c mass at 2284.9 MeV/c2 [1]. The

data, plotted in 5 MeV/c2 bins, show a large, narrow
excess at 3520 MeV/c2. This excess is stable for different
bin widths and bin centers. Fig. 2(b) shows the wrong-
sign invariant mass distribution of the Λ+

c K+π− system
with the same binning as in (a). There is no significant
excess.

In Fig. 2(c) the shaded region from (a) is re-plotted
in 2.5 MeV/c2 bins and fit with a maximum likelihood

technique to a Gaussian plus linear background. The
fit has χ2/dof = 0.45, indicating that the background is
linear in this region.

To determine the combinatoric background under the
signal peak we exploit the linearity of the background jus-
tified by the fit. We define symmetric regions of the mass
plot in Fig. 2(c): (i) the signal region (3520± 5MeV/c2)
with 22 events; and (ii) 115 MeV/c2 sideband regions
above and below the signal region, containing 162−22 =
140 events. We estimate the number of expected back-
ground events in the signal region from the sidebands as
140 ∗ 5/(115) = 6.1± 0.5 events. This determination has
a (Gaussian) statistical uncertainty, solely from counting
statistics. The single-bin significance of this signal is the
excess in the signal region divided by the total uncer-
tainty in the background estimate: 15.9/

√
(6.1 + 0.52) =

6.3σ [7]. The Poisson probability of observing at least
this excess, including the Gaussian uncertainty in the
background, is 1.0 × 10−6.

Our reconstruction mass window is 3.2-4.3 GeV/c2

with 110 bins of width 10 MeV/c2 in this interval. The
overall probability of observing an excess at least as large
as the one we see anywhere in the search interval is
1.1 × 10−4.

This state has a fit mass of 3519 ± 1 MeV/c2. Our
expected mass resolution, from a simulation of the decay
Ξ+

cc → Λ+
c K−π+ is ∼ 5 MeV/c2. We observe a Gaus-

sian width of 3 ± 1 MeV/c2, consistent with our simula-
tion. The confidence level for a fit with a Gaussian width
fixed at our expected resolution is 20%. The width we
observe is consistent with statistical fluctuations in this
small sample.

The wrong-sign mass combination is plotted in
Fig. 2(b). Those events show comparable fluctuations
to the sidebands of the signal channel and give no evi-
dence for a significant narrow structure. We have inves-
tigated all possible permutations of mass assignments for
the non-Λ+

c tracks. The peak at 3520 MeV/c2 disappears
for any other mass choice, and no other significant struc-
tures are observed. Reconstructions with events from the
Λ+

c mass sidebands produce relatively few entries and no
significant structures in the doubly charmed baryon re-
gion.

The dependence of the signal significance, as defined
above, on several of the selection cuts is shown in Fig. 3.
The significance depends strongly only on the K−π+ ver-
tex separation. The dependence is driven by a large in-
crease in background at small separations and the ab-
sence of both signal and background events at large sep-
arations. The dependence on the width of the signal
region is stable, only decreasing when made wider than
the mass resolution. All other cuts have been checked;
no significant dependence on any cut has been seen.

A weakly-decaying Ξ+
cc state has two c quark decay

amplitudes plus a W-exchange amplitude for c + d →
s + u. This suggests that its lifetime will be of the order

3

SELEX 2002
SELEX see it twice
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In Fig. 2(a) we plot the invariant mass of the Λ+
c K−π+

system, fixing the Λ+
c mass at 2284.9 MeV/c2 [1]. The

data, plotted in 5 MeV/c2 bins, show a large, narrow
excess at 3520 MeV/c2. This excess is stable for different
bin widths and bin centers. Fig. 2(b) shows the wrong-
sign invariant mass distribution of the Λ+

c K+π− system
with the same binning as in (a). There is no significant
excess.

In Fig. 2(c) the shaded region from (a) is re-plotted
in 2.5 MeV/c2 bins and fit with a maximum likelihood

technique to a Gaussian plus linear background. The
fit has χ2/dof = 0.45, indicating that the background is
linear in this region.

To determine the combinatoric background under the
signal peak we exploit the linearity of the background jus-
tified by the fit. We define symmetric regions of the mass
plot in Fig. 2(c): (i) the signal region (3520± 5MeV/c2)
with 22 events; and (ii) 115 MeV/c2 sideband regions
above and below the signal region, containing 162−22 =
140 events. We estimate the number of expected back-
ground events in the signal region from the sidebands as
140 ∗ 5/(115) = 6.1± 0.5 events. This determination has
a (Gaussian) statistical uncertainty, solely from counting
statistics. The single-bin significance of this signal is the
excess in the signal region divided by the total uncer-
tainty in the background estimate: 15.9/

√
(6.1 + 0.52) =

6.3σ [7]. The Poisson probability of observing at least
this excess, including the Gaussian uncertainty in the
background, is 1.0 × 10−6.
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with 110 bins of width 10 MeV/c2 in this interval. The
overall probability of observing an excess at least as large
as the one we see anywhere in the search interval is
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BELLE, LHCb don’t

5

cay process taking the account the efficiencies of the p∗

requirement.

In conclusion, we report the first observation of two
charged baryons Ξcx(2980)+ and Ξcx(3077)+ decaying
into Λ+

c K−π+. We also search for neutral isospin re-
lated partners in Λ+

c K0
S
π− final state and observe a

signal for the Ξcx(3077)0. The statistical significance
of each of these signals is more than 5σ. The masses
and widths of all the observed states are summarized
in Table I. Taking into account the presence of s and c
quarks in the final state and the observation of an isospin
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FIG. 3: The M(Λ+
c K−π+) distribution near 3520 MeV/c2

(indicated by an arrow), the mass of a possible doubly
charmed baryon candidate [10].

partner near 3077 MeV/c2 in the Λ+
c K0

S
π− final state,

the most natural interpretations of these states are that
they are excited charmed strange baryons, Ξc. In con-
trast to decays of known excited Ξc states the observed
baryons decay into separate charmed (Λ+

c ) and strange
(K) hadrons. Further studies of the properties of the
observed states are ongoing. We have also searched for
the doubly charmed baryon state at 3520 MeV/c2 re-
ported by the SELEX collaboration in the Λ+

c K−π+ final
state [10], and extract an upper limit on its production
cross section relative to the inclusive Λ+

c yield.
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True and False

6
The mass of the top quark can be
reconstruc ted from the energ ies and
d irec tions of its decay produc ts as
measured in the de tec tors using the
conserva tion laws for energy and
momentum. Since the top quark has
a unique mass, the da ta (ind ica ted
by the b lack histograms) should
show a “peak” in the reconstruc ted
d istribution. The non-top back-
ground (the red dashed curve for
D Ø and the red dotted curve for
C DF) has very d ifferent shapes. A
simula tion is required to provide the
correspondence be tween the mea-
sured je t energ ies and the parent
quark momenta . The red dotted
curve for D Ø shows the expec ted
contribution from top for the best fit
va lue of the top mass. The solid red
curve shows wha t a simula ted top
quark mass d istribution would look
like when added to the background ,
and these curves should be com-
pared to the ac tua l da ta .

10 FALL 1995

DØ used the period while CDF was
preparing its publication to re-
optimize its own earlier analysis,
focusing on higher mass top. By April
1994, DØ was also in a position to
show some of its new results, which
were subsequently updated in the
summer Glasgow conference and
published in Physical Review Let-
ters. DØ also had a small excess of
top-like events but with smaller sta-
tistical significance; its analysis was
based upon the dilepton and single-
lepton channels with a combination
of lepton tags and topological sup-
pression techniques to reduce back-
ground. Nine events were observed,
compared with an expected back-
ground of about four, giving odds for
a background fluctuation of about
1 in 40. The excess events corre-
sponded to a cross section of 8.2±5.1
picobarns. The expected yield of tt!

events was virtually the same for DØ
and CDF. Taken together, these re-
sults from CDF and DØ were not suf-
ficient to establish conclusively the
existence of the top quark.

The final chapter in finding the
top quark began with the resumption
of the collider run in late summer
1994. The performance of the Teva-
tron was the key to the success. The
Tevatron involves a collection of sev-
en separate accelerators with a com-
plex web of connecting beam lines.
Many technical gymnastics are re-
quired to accelerate protons, produce
secondary beams of antiprotons from
an external target, accumulate and
store the intense antiproton beams,
and finally inject the counter-rotat-
ing beams of protons and antiprotons
into the Tevatron for acceleration to
900 GeV. Enormous effort had been
poured into understanding and

tuning each of the separate elements
of the process, but until summer
1994 the intensity of the collider was
disappointing. During a brief mid-
summer break, however, one of the
Tevatron magnets was found to have
been inadvertently rotated. With this
problem fixed, beam intensities rose
immediately by a factor of 2. With
the now good understanding of the
accelerator, a further doubling of the
event rate was accomplished by
spring 1995. In a very real sense, the
final success of CDF and DØ in dis-
covering top rested upon the superb
achievements of the Fermilab Ac-
celerator Division. The improved op-
erations meant that the data samples
accumulated by early 1995 were ap-
proximately three times larger than
those used in the previous analyses,
and both experiments were now
poised to capitalize on the increase.

By December, both collaborations
realized that the data now on tape
should be enough for a discovery, if
the earlier event excess had been ap-
proximately correct. In fact, the ex-
periments do not keep daily tallies
of the number of events in their sam-
ples. The physicists prefer to refine
their analysis techniques and selec-
tion parameters in order to optimize
the analysis on simulated events be-
fore “peeking” at the data. This ret-
icence to check too often on the real
data stems from the desire to avoid
biasing the analysis by the idiosyn-
crasies of the few events actually
found. At the beginning of January,
DØ showed a partial update in the
Aspen Conference using some new
data but retaining previous selection
criteria; these results had increased
significance, with only a 1 in 150
chance of background fluctuations.
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True & False: Pentaquark

7

false, 2004, H1 (DESY) true (LHCb, 2015)
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𝞝cc at LHCb?

8

SELEX
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𝞝cc at LHCb?
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𝞝cc at LHCb?

8

When did this become a discovery?

SELEX
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Discoveries...

9
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Discoveries...

• Particle physics is rife with false hints of discoveries - even the 
Higgs was seen and unseen at several energies before the LHC 
had its famous 5σ discovery.

9
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Discoveries...

• Particle physics is rife with false hints of discoveries - even the 
Higgs was seen and unseen at several energies before the LHC 
had its famous 5σ discovery.

• The problem: Nature does not allow us a direct view on its 
fundamental parameters. 

9



Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2024

What we want

10
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What we get

11
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Statistics and Measurements

12
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Statistics and Measurements

• Each measurement is messed up by millions of little perturbations 
that we cannot possibly all take into account, or even know about, 
individually. 

12
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Statistics and Measurements

• Each measurement is messed up by millions of little perturbations 
that we cannot possibly all take into account, or even know about, 
individually. 

• Statistics is the tool that allows us to separate the effect of those 
fluctuations from the underlying data. And it provides us with tools 
that tell us how confident we should be in our measurements.

12
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Statistics and Measurements

• Each measurement is messed up by millions of little perturbations 
that we cannot possibly all take into account, or even know about, 
individually. 

• Statistics is the tool that allows us to separate the effect of those 
fluctuations from the underlying data. And it provides us with tools 
that tell us how confident we should be in our measurements.

• After this lecture, you won’t discover a false 𝞝cc (OK, it’s too late 
for that anyway) or a false Z’. I hope. Discover something 
surprising, and real!

12
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Roadmap

13

Charm yesterday

11‐Sept‐2009 Beauty 2009 Summary               Kevin Pitts (kpitts@illinois.edu) 11

BNL p+Be! e+ e‐ X

November, 1974

SLAC e+ e‐! hadrons

November, 1974

Lesson 1: 

Mass resolution matters!!!

1968   BNL p+U!"+ "‐ X        

Describing 
Data

What do I 
expect?

What do I see?

Probability and probability 
distributions, Probability 

density functions

Central Limit TheoremIs what I see compatible 
with what I expect?

Discoveries 
Confidence Levels
Hypothesis testing 

Fitting Monte Carlo simulation
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Books

• R. J. Barlow: “Statistics”, John Wiley & Sons, 
ISBN 0-471-92295-1. 

• Louis Lyons: “Statistics for nuclear and particle 
physicists”, Cambridge University Press, ISBN 0–521–
37934–2 

• Frederick James: “Statistical Methods in Experimental 
Physics”, World Scientific, ISBN 981-270-527-9 (pbk). 

14
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Problems

15

 
Problem sheets:

Code (Jupyter Notebooks):

https://tinyurl.com/TeshepStatCode

https://tinyurl.com/TeshepProblems

http://goo.gl/COvCmK
https://tinyurl.com/TeshepStatCode
https://tinyurl.com/TeshepProblems
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Problems

16

 
Problem sheets:

Code (Jupyter Notebooks):

https://tinyurl.com/TeshepStatCode

https://tinyurl.com/TeshepProblems

http://goo.gl/COvCmK
https://tinyurl.com/TeshepStatCode
https://tinyurl.com/TeshepProblems
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Describing data with numbers

• How do we describe a set of measurements with just a couple 
of characteristic, meaningful numbers?

17
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Annual Income

18

From: Visualising Economics:  
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Central Values

19
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• Mode: highest 
population

• Median: As many 
events below as 
above.

• Arithmetic Mean:   
(1/N) Σi=1,N xi
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Annual Income

20

From: Visualising Economics:  
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Annual Income

20

From: Visualising Economics:  
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Annual Income

20

From: Visualising Economics:  
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

median (46k)

http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Annual Income

20

From: Visualising Economics:  
http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

median (46k) mean (63k)

http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Mean

• For all practical purposes we will usually use the  
arithmetic mean: (1/N) Σi=1,N xi 

• Motivated to a large degree by its friendly mathematical 
properties. 

• But other central values, other means exist (see also harmonic, 
geometric, etc) and they have their uses.

21
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Variance

• We could calculate the total difference from the mean:  

d = Σi=1,N (xi – x)   but that’s zero by the definition of the mean 
(check!) 

• The variance is the average (difference)2 from the mean, the 
variance: 

• V ≡ (x - x)2 = 1/N Σi=1,N (xi - x)2

23

_

_ ______
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Calculating the Variance

• In words: The variance is equal to 

THE MEAN OF THE SQUARES  

                     MINUS  

THE SQUARE OF THE MEAN 

• You’ll always get the order of the terms right if you imagine a wide 
distribution centered at zero.      would zero,      positive and large, and the 
overall variance must not be negative.

24

V = x2 � x2

x2x2

Home work: 
verify this
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Standard Deviation

• The Standard Deviation is the square-root of the variance: 

• The Standard Deviation has the same units as the data 
itself. 

• It gives you a “typical” amount by which an individual 
measurement can be expected to deviate from the mean. 

• Usually, a measurement that’s one or two σ away is fine, 
while 3 σ will raise a few eyebrows. We’ll quantify later 
what the probabilities for 1, 2, 3 σ deviations are under 
certain (common) circumstances.

25

� =
�

V
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-6 -4 -2 0 2 4 60
50

100
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200
250
300
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400
450

gauss

Entries  10000

Mean   -0.007028

RMS     1.005

Underflow       0

Overflow        0

gauss

FWHM and standard deviation

• For Gaussian distributions 
(why these are so 
important, later): 

FWHM ≈ 2.35σ 

• Check histogram on the 
left: 

σ =RMS = 1.0, 

FWHM= 1.2 – (–1.2) = 2.4  

Close enough.
26
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Covariance

• Consider a data sample where each measurement 
consists of a pair of numbers: {(x1, y1), (x2, y2), ...} 

• The covariance between x and y is defined as: 

• The covariance between two parameters is a quantity 
that has units; its value depends on the units you 
chose, difficult to interpret.

27

cov(x, y) =
1
N

N�

i=1

(xi � x) (yi � y)
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Covariance

• Consider a data sample where each measurement 
consists of a pair of numbers: {(x1, y1), (x2, y2), ...} 

• The covariance between x and y is defined as: 

• The covariance between two parameters is a quantity 
that has units; its value depends on the units you 
chose, difficult to interpret.

27

cov(x, y) =
1
N

N�

i=1

(xi � x) (yi � y)cov(x, y) =
1

N

NX

i=1

(xi � x) (yi � y)

= xy � x · y
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Correlation Coefficient

• The correlation coefficient is defined as: 

• It has no units and varies between -1 and 1. This 
provides a measure of how related to quantities are. 

• For independent variables, ρ=0 while the correlation 
coefficient of a parameter with itself (can’t get more 
correlated) is:

28

�xy =
cov(x, y)
⇥x · ⇥y

�xx =
cov(x, x)
⇥x · ⇥x

=
Var(x)

⇥2
x

=
⇥2

x

⇥2
x

= 1
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Correlation Coefficient Examples

29
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Correlation Coefficients Examples

• Correlation coefficients can be positive or negative:

30
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https://github.com/JonasRademacker/JupyterNotebooksForTeachingMath/blob/master/CovarianceAndCorrelation.ipynb

Make these plots yourself:

https://tinyurl.com/TeshepStatCode

https://github.com/JonasRademacker/JupyterNotebooksForTeachingMath/blob/master/CovarianceAndCorrelation.ipynb
https://tinyurl.com/TeshepStatCode
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The Covariance/Error Matrix

• For N variables, named x(1), ..., x(N) 

• Symmetric. Diagonal = variances. Off-diagonal: covariances. 

• Will become very important when we discuss errors and 
multidimensional parameter transformations.

31
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The Correlation Matrix

• Defined equivalently, for N variables x(1), ..., x(N) 

• symmetric 

• diagonal = 1 

• Related to covariance matrix by:

32

�ij ⇥
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�
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⌅
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Vij = �ij ⇥i⇥j
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Correlation and Causality

• Among my favourite correlations is this one: 

• During doctors’ strikes the death-rate tends to go down - 
in Israel the death-rate went down by 39% in a recent 
doctors’ strike. So there is a positive correlation between 
life-expectancy and the number of doctors on strike (this 
phenomenon has been observed in other countries, too). 
Does this mean that fewer doctors would be good for the 
nation’s health?  

• Listen to this BBC programme if you like this sort of thing:

33

http://news.bbc.co.uk/2/hi/programmes/more_or_less/7408337.stm

http://news.bbc.co.uk/2/hi/programmes/more_or_less/7408337.stm
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Lemons prevent traffic deaths

34

find this and other weird correlations at: https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations

http://pubs.acs.org/doi/abs/10.1021/ci700332k 

https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations
http://pubs.acs.org/doi/abs/10.1021/ci700332k
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Internet Explorer causes murder

35

http://gizmodo.com/5977989/internet-explorer-vs-murder-rate-will-be-your-favorite-chart-today

http://gizmodo.com/5977989/internet-explorer-vs-murder-rate-will-be-your-favorite-chart-today
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Lack of (Caribbean) pirates causes global warming

36

http://www.venganza.org/about/open-letter/

http://www.venganza.org/about/open-letter/
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Correlation and Causality

• Statistics does not tell us if two correlated variables are 
also connected by causality, i.e. if one causes the other. 

• For example there is a strong correlation between rain and 
wet roads. It is clear that rain causes roads to be wet, and 
that wet roads do not cause rain. But the statistics won’t 
tell you that. 

• There is also a clear correlation between wet roads and the 
the number of people running around with wet hair. Here 
neither causes the other, but both are correlated because 
they have a common cause.

37
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Homework

• Write down 100 times: 

“Correlation is not causation”

38
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Summary: Representing Data

• Central value: Usually use arithmetic mean. Nice: Means add 
up. (i.e. <x + y> = <x> + <y>) 

• Width: Use standard deviation. Standard deviations do not add 
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variables x and y are 
uncorrelated). 

• Multiparameter distributions: Covariance, Correlation.

39

Correlation is not causation.
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Summary: Representing Data

• Central value: Usually use arithmetic mean. Nice: Means add 
up. (i.e. <x + y> = <x> + <y>) 

• Width: Use standard deviation. Standard deviations do not add 
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variables x and y are 
uncorrelated). 

• Multiparameter distributions: Covariance, Correlation.

39

Correlation is not causation.
Correlation is not causation.
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https://www.youtube.com/watch?v=SSbBvKaM6sk

https://www.youtube.com/watch?v=WDswiT87oo8

https://www.youtube.com/watch?v=SSbBvKaM6sk
https://www.youtube.com/watch?v=WDswiT87oo8
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We only ever see a slightly blurred picture of nature

42
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Why the blur is Gaussian

43
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Gauss & me hanging out in Göttingen

44
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Gauss on old money

45
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The Central Limit Theorem

• Consider random variable , where each  is taken from a 

distribution with mean  and variance  

• Then 

•  has an expectation value  

•  has a variance  . Equivalently:  

• The distribution of Y becomes Gaussian as N→∞.

Y = ∑
i

xi xi

⟨xi⟩ Vi = σ2
i

Y ⟨Y⟩ = ∑
i

⟨xi⟩

Y VY = ∑
i

Vi σ2
Y = ∑

i

σ2
i

46

Variances add up! 
(Standard 

deviations don’t)
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Roll some Dice, submit results, here

47

https://tinyurl.com/DiceTESHEP

Largest number of entries wins!

https://tinyurl.com/DiceTESHEP
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Rolling Dice, predict results, here

48

https://tinyurl.com/PredictDiceTESHEP

First (few) correct answers win

https://tinyurl.com/PredictDiceTESHEP
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Summary

• Averages: Mean, Median, Mode - usually we chose arithmetic 
mean, but there are use cases for alternatives. 

• Width: Standard deviation, Variance, FWHM 

• Covariance, correlation (is not causation, but still informative) 

• CLT, transforms ignorance to well-defined uncertainty. 

• Do your bit for the CLT and win a prize! 

• Roll dice: https://tinyurl.com/DiceTESHEP  

• Predict results: https://tinyurl.com/PredictDiceTESHEP 

49
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Lecture 2

50
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Recap

51
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Roadmap

52

Charm yesterday

11‐Sept‐2009 Beauty 2009 Summary               Kevin Pitts (kpitts@illinois.edu) 11

BNL p+Be! e+ e‐ X

November, 1974

SLAC e+ e‐! hadrons

November, 1974

Lesson 1: 

Mass resolution matters!!!

1968   BNL p+U!"+ "‐ X        

Describing 
Data

What do I 
expect?

What do I see?

Probability and probability 
distributions, Probability 

density functions
Central Limit Theorem

Is what I see compatible 
with what I expect?

Discoveries 
Confidence Levels
Hypothesis testing 

Fitting Monte Carlo simulation
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Today

• Analyse yesterday's data, and discuss their implications 

• Fitting 

• Monte Carlo

53
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The Central Limit Theorem

• Consider random variable , where each  is taken from a 

distribution with mean  and variance , and all x_i are 
INDEPENDENT 

• Then 

•  has an expectation value  

•  has a variance  . Equivalently:  

• The distribution of Y becomes Gaussian as N→∞.

Y = ∑
i

xi xi

⟨xi⟩ Vi = σ2
i

Y ⟨Y⟩ = ∑
i

⟨xi⟩

Y VY = ∑
i

Vi σ2
Y = ∑

i

σ2
i

54

Variances add up! 
(Standard 

deviations don’t)
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Rolling Dice

55

Code to generate more data: https://tinyurl.com/SimDiceTESHEP

Your data: https://tinyurl.com/TESHEP24DiceResults

Code to analyse data: https://tinyurl.com/RealDiceTESHEP

https://tinyurl.com/SimDiceTESHEP
https://tinyurl.com/TESHEP24DiceResults
https://tinyurl.com/RealDiceTeshep
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Rolling more and more dice

56
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Comparing Gaussians to 1, 4, 16, 64-dice 
distributions
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Comparing Gaussians to 1, 4, 16, 64-dice 
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bokeh serve jonas_singletoy.py

localhost:5006/jonas_singletoy
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Central Limit Theorem holds in the centre, not  
in the tails(!)

• Central limit theorem ensures that within a few sigma of 
the mean, we get a good approximation to a Gaussian. 

• Differences remain in the tails of the distribution (doesn’t 
have to be fewer events, such as here, can also be more).
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Gaussians, errors, confidence
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• Within ±1σ:  “1σ Confidence Level”, 
or “68.27% Confidence level” 

• Within ±2σ: “2σ CL” or “95.45% CL” 

• Within ±3σ: “3σ” or “99.73% CL”
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Talking to Engineers

• Physicists quote their errors as 1σ 
(Gaussian) confidence intervals. 

• The probability that a result is outside 
the quoted error is 32%. About 1/3 of 
measurements should be outside the 
error bars. Results outside error bars 
are OK - it just shouldn’t happen too 
often. And it shouldn’t be too far: 
P(outside μ±2σ) ~5%,  P(outside 
μ±3σ) ~0.3%) 

• Engineers guarantee that the actual 
value is within mean ± tolerance.

61

"What we've got here 
is...failure to communicate.  

Some men you just can't 
reach."
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Which plot makes most sense?

62
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What is the most plausible plot if the line represents theory, dots data 
distributed according to that theory, and the vertical lines are 1σ error bars.

https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepProblems
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What’s the uncertainty on the mean?
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Uncertainty on the mean???

64

-6 -4 -2 0 2 4 60

1

2

3

4

5

6

gauss

Entries  10

Mean    0.784

RMS    0.7639

Underflow       0

Overflow        0

gauss

Ideal parent 
sample, in limit of 
infinite statistics 

(practically 
inaccessible) 

Uncertainty on the mean: if I repeat the measurement with N data points again and 
again, and record each time the mean, what is the width/standard deviation of that 

distribution?

∞
0



Central Limit theorem

• Take the sum Y of N independent 

variables xi . 

•  

• Std dev.  

• Gaussian as N→∞.

Ysum ≡
N

∑
i=1

xi

⟨Ysum⟩ = ∑ ⟨xi⟩

σYsum
= ∑ σ2

i

65
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• Take the average Y of N independent 

variables xi: .


• 


• Std dev.:    

if all σi the same:  


• Gaussian as N→∞.

Yav ≡
1
N

N

∑
i=1
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⟨Yav⟩ =
1
N ∑ ⟨xi⟩

σYav
=
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N ∑ σ2
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=
σi
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• Take the average Y of N independent 

variables xi: .
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the 1st miracle of √N
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What’s the uncertainty on the mean?
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What’s the uncertainty on the mean?
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The Central Limit Theorem
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What’s the uncertainty on the mean?
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Further important theoretical distributions...

• In the next few slides I’ll introduce the binomial and the Poisson 
distribution - you will meet them a lot in your particle physics 
research!

69

We don’t have much time and 
will do a super-fast version of 
this on the whiteboard, then 
continue on slide 87. The 
more detailed slides will be 
on indico.
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Poisson → Gaussian

70
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The Binomial Distribution

• Fixed number of “trials” (measurements), N 

• Two possible outcomes, usually termed “Success” and 
“Failure” (but can be green and orange, or >5 and <=5, or 
anything else mutually exclusive). 

• The probability for a success in a single trial is p. 

• Question: What is the probability to get r successes and (N–r) 
failures in N trials: 

P(r; N, p) = ?

71

(whiteboard)
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The Binomial Distribution

72

P (r;N, p) = pr (1� p)N�r
�

N
r

⇥

= pr (1� p)N�r N !
r! (N � r)!

number of “successes”

probability of success in single trial number of “failures”

probability of failure in single trial

number of different sequences 
in which one can have r 

successes and N – r failures
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Binomi Examples

73
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Binomi Examples
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Example: Lightning

• The Poisson distribution describes 
sharp events in a continuum. 

• There is still a fixed outcome 
(flash), but not a fixed number of 
trials. It doesn’t make sense to ask 
how many non-flashes we saw.  

• But we can ask how many flashes 
we expect to see in a given time 
interval. Or clicks in a Geiger 
counter.

76
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Binomial → Poisson

• We’ll start with our trusted Binomial Distribution. 

• How can we modify it such that it describes the number of 
flashes in a continuum?

77

P (r;N, p) = pr (1� p)N�r
�

N
r

⇥

= pr (1� p)N�r N !
r! (N � r)!
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Binomial → Poisson

• Strategy: 

• Divide the time over which we observe the sky and count 
flashes into small intervals. 

• If the intervals are small enough, we do have a binomial 
distribution - each interval is a trial and can have two 
outcomes, success (flash) or failure (no flash). 

• Important: The intervals must be so small that we can get 
at most one flash - otherwise we would have more than 
two possible outcomes (0, 1, 2, ,... flashes), and the 
binomial distribution would not work.

78
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• ...derivation on whiteboard, if time permits

79

P (r;�) = e�� �r

r!
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P (r;N, p) = pr(1� p)N�r N !

r!(N � r)!
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P(r; N, p) &= p^r (1-p)^{N-r} \frac{N!}{r! (N-r)!}
\\
P(r; N, \lambda) &= 
\frac{\lambda^r}{N^r} \left(1-\frac{\lambda}{p}\right)^{N-r} \frac{N!}{r! (N-r)!}
\\
&= \frac{\lambda^r}{r!}
\left(1-\frac{\lambda}{N}\right)^{N-r} 
\frac{N!}{N^r (N-r)!}
\\
&= \frac{\lambda^r}{r!}
\left(1-\frac{\lambda}{N}\right)^{N-r} 
\frac{N(N-1)(N-2)\cdots (N-r+1)}{N^r}
\\
&= \frac{\lambda^r}{r!}
\left(1-\frac{\lambda}{N}\right)^{N} 
\left(1-\frac{\lambda}{N}\right)^{-r} 
\frac{N^r + \alpha_1 N^{r-1} + \alpha_2 N^{r-2} \cdots}{N^r}
\\
\lim_{N\to\infty} P(r; N, \lambda)
&= \frac{\lambda^r}{r!}
      e^{\lambda} \left( 1 \right)^{-r}
 \left( 1 + \alpha \frac{1}{N} + \alpha_2 \frac{1}{N^2} + \ldots \right)
\\
& = \frac{\lambda^r}{r!}
      e^{\lambda} \left( 1 \right)^{-r}
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Poisson Summary

• Describes cases where we do not have a fixed number of trials, but 
discrete events in a continuum. 

• It has only one single parameter - the expected mean number of 
events, λ. 

〈r〉 = λ  

σ   =  

• The probability to see r events, given an expected mean of λ, is: 

82

�
�

P (r;�) = e�� �r

r!

P (r;�) = e�� �r

r!
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Poisson Summary

• Describes cases where we do not have a fixed number of trials, but 
discrete events in a continuum. 

• It has only one single parameter - the expected mean number of 
events, λ. 

〈r〉 = λ  

σ   =  

• The probability to see r events, given an expected mean of λ, is: 

82

�
�

P (r;�) = e�� �r

r!

the 2nd miracle of √N.  
If I expect N events, the uncertainty on this is √N, and the relative uncertainty is √N/N = 1/√N.

P (r;�) = e�� �r

r!
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Binomial → Poisson

• ... our derivation (if we did it) implies that the Poisson 
distribution with λ=Np is a decent approximation of the 
Binomial distribution in cases where p is small and N is large.

83
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Poisson → Gaussian

84
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Trinity

85

Binomial Poisson

Gaussian

lim N→∞, p→0, N⋅p=λ

P(r; N,p) P(r; λ)

P(x; μ,σ)

N⋅p→λ

lim N→∞ lim λ→∞
λ→μ,  
√λ→σ

N · p ⇤ µ�
Np(1� p) ⇤ ⇥

P (r;N, p) = pr (1� p)N�r
�

N
r

⇥

g(x;µ,� =
1p
2⇡�

e�
1
2 (

x�µ
� )2

P (r;�) = e���
r

r!
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Homework: Which distribution?

86

Problems Sheet: Statistics

Please hand in by 11 Feb

(In total: 100 points)

1) The year is 2084. (10 points) The government gets tough on crime.
Because most violent crime takes place within the closest circle of friends
and family, it is decided that anybody above the age of 18 who wants to
engage in personal relationships must first obtain a permit to do so. The
decision whether a permit is granted is based on a detailed background check.

When the method is tested on a sample of known violent o↵enders and
another sample of innocent people, it seems to work surprisingly well: 80%
of violent o↵enders are refused the permit. Only 0.1% of non-violent people
are refused the permit.

Assume that in 2084, 1 in 10, 000 of the adult population in the UK is
(criminally) violent, and that violent and non-violent people are equally likely
to ask for a permit.

What fraction of those who are refused a permit are in fact non-violent?

2) Which distribution? (5 points) Which distribution best describes the
following:

a) The number of flashes of lightening within on hour of a thunderstorm.

b) The number of Higgs events at the LHC in a year of running.

c) The number of students per hundred carrying the H1F1 virus.

d) Weight of individual A4 pieces of paper in a notebook

e) The number of sand grains in 1kg of sand.

3) CPV, part 1: Fit and Fit quality (30 points) There is some example
code to help you with this computing based question - see the hint at the
end of the next question for details. CP violation can be measured in time-
dependent decay rate aymmetries to CP eigenstates like this

A(t) =
�(B0 ! fCP )(t) � �(B̄0 ! fCP )(t)

�(B0 ! fCP )(t) + �(B̄0 ! fCP )(t)
= S sin(�m t)

where �(B0 ! fCP )(t) is the rate of B0 mesons (more precisely, of particles
that were B0 mesons at time t = 0) that decay to fCP at time t, �(B̄0 !

1

*

* H1F1 gives you bird flue

https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepProblems
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More Homework - calculate significances

87

and read the 5-line README file. That will get you started. The code
is in pgStats.cpp, and to read it, best start with the “main()” function
at the end - that should be fairly inutitive, more so than the classes de-
fined before that. To learn more about MINT, you can do the tutorial in
Mint forTar/Mint/doc/. Of course you do not have to use this - any means
to answer the questions are fine.

5) Z
0 ! µµ? (10 points) The plot below shows recent data from the CDF

experiment at Fermilab:
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It displays the number of events in bins of the reconstructed mass for Z 0 !
e+e� candidate. The Z 0 is a hypotetical partical, essentially a heavy Z, that
pops up in a variety of beyond-the-Standard Model theories. The histogram
(thin line) shows the expected number of events according to th the Standard
Model. The dots with error bars represent the data. There appear to be
more events than expected around 240 GeV/c2: 48 events where we expect
28 (note: I read these numbers o↵ the graph, they are not exact).

(a) (6 pts) Estimate the significance of this observation, by calculating the
probability of observing such an increased number of events as a result
of a statistical fluctuation, taking into account that the physicists are
looking simultaneously in 84 bins in the mass range from 160GeV/c2

to 1000 GeV/c2 (for clarity, only some of that range is shown in the plot
above).

(b) (4 pts) Your answer above should be a fairly small number - less than a
percent. So, this is quite an interesting result. Why do you think this
has still not been published as a discovery of a new particle (that would
have been all over the media)?

6) Errorbars (5 points) Which of these 4 plots look like what you would
expect if the theoretical prediction (black line) describes the data (red circles
with blue error bars) and the error bars are Gaussian? Which ones don’t?
Why?

4

• Estimate the significance of this 
observation: 

• Step 1: calculate the probability 
so see an upward fluctuation 
this big or bigger in the 
Standard Model, in this one bin 

• Step 2: take into account that 
they looked in 84 bins (tricky!) 

• You should get a fairly small 
number. Why, do you think, have 
you not read in the news about 
the discovery of the Z’ at CDF?

• In the bin with the arrow, we 
expect 28 events without the Z’ 

• See 48 events.

Z’ search at CDF

https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepProblems
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Roadmap

88

Charm yesterday

11‐Sept‐2009 Beauty 2009 Summary               Kevin Pitts (kpitts@illinois.edu) 11

BNL p+Be! e+ e‐ X

November, 1974

SLAC e+ e‐! hadrons

November, 1974

Lesson 1: 

Mass resolution matters!!!

1968   BNL p+U!"+ "‐ X        

Describing 
Data

What do I 
expect?

What do I see?

Probability and probability 
distributions, Probability 

density functions
Central Limit Theorem

Is what I see compatible 
with what I expect?

Discoveries 
Confidence Levels
Hypothesis testing 

Fitting Monte Carlo simulation
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Fitting

89
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Lifetime fit

• I have a decay time distribution that I want to describe with an 
exponential decay distribution: 

• Question 1: What is the mean lifetime τ? 

• Question 2: Did I pick the right function - are my data really 
described by an exponential decay?

90

P (t) =
1

⌧
e�t/⌧
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χ2 Fitting

• Use for binned data

• Minimise distance between 
data and function that 
describes data.

91

x0 9

f(x2)

n(x2)}

usually σi = √f(xi)≈√ni
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χ2 Fitting

• Use for binned data

• Minimise distance between 
data and function that 
describes data.

91
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f(x2)

n(x2)}

usually σi = √f(xi)≈√ni
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χ2 Fitting

• Use for binned data

• Minimise distance between 
data and function that 
describes data.

91

x0 9

f(x2)

n(x2)}

f(x1)
n(x1)

}

usually σi = √f(xi)≈√ni
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χ2 Fitting

• Use for binned data

• Minimise distance between 
data and function that 
describes data.

• Possible definition: 

d2 = Σ(n(xi) - f(xi))2

91

x0 9

f(x2)

n(x2)}

f(x1)
n(x1)

}
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• root macros go here

92
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Do I trust my fit?

• Your fit programme will probably converge even if you use the 
wrong function. Need a way to pick this up - we want to the 
quantify badness of our fit.
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Goodness of fit and χ2 distribution

• Given this definition: 

what value for χ2 would you expect?

94

⇥2 =
N�

i=1

(ni � fi)
2

�2
i
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Goodness of fit and χ2 distribution

• Given this definition: 

what value for χ2 would you expect? 

• If we got our error estimates right, we’d expect a typical 
difference between model and data in each bin of 1σ. 

• So we’d expect, for N bins:
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Goodness of fit and χ2 distribution

•χ2 definition: 

• However, we are not just comparing a model and data. We are 
allowed to adjust the model.  

• To account for the extra wiggle-room each fit parameter 
provides, we define the number of degrees of freedom as 

• We expect 
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Fit quality as a probability: How likely am I to get a fit 
that bad or worse if my model is correct?

• The probability density to get a certain χ2 
for a given number of degrees of freedom: 
 

• Calculate the probability, p, to get a χ2 this 
bad or worse* 

• If p is smaller than a few %, it gets a bit 
worrying.
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p =
⇥

�2

P (��2; ndf) d(��2)

P (�2; ndf) =
1

2ndf/2�(ndf/2)
�ndf�2e��2/2

*) root does it for you, with the stupidly named function TMath::Prob
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Probabilities, PDFs and likelihood fitting

98

Skip in TESHEP 2024 lectures
GOTO slide 115.
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Probability

99
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Probability

• As an average UK citizen, at the age of 20, the probability that 
you die within a year is 0.048%.
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Probability

• As an average UK citizen, at the age of 20, the probability that 
you die within a year is 0.048%.

• But who is average?

• If you are female, it is only 0.026% (male: 0.069%)

• If you are a male in Scotland, it is 0.1%
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Probability

• As an average UK citizen, at the age of 20, the probability that 
you die within a year is 0.048%.

• But who is average?

• If you are female, it is only 0.026% (male: 0.069%)

• If you are a male in Scotland, it is 0.1%

• But what if you smoke? If you don’t? If you are a heroin-addicted 
bomb-disposal expert?
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What is Probability?

• Mathematically: Defines basic properties such as 0 ≤ P ≤ 1  and 
calculation rules; all other definitions must satisfy also this one. 
But: No meaning. 

• Frequentist: How many times nE does something (event E) happen 
if I try N times?  P(E) = nE/N for N→∞ 
Problem: What if I can try only once? 

• Bayesian: Probability is a measure for the “degree of belief” that 
event E happens. One possible definition: I’d bet up to € nE that E 
happens, if I get € N if I win: P(E) = (£ nE)/(£ N).  
Problem: Subjective (not good for science, but occasionally 
unavoidable, e.g. for systematics.)
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Probabilities nomenclatura

• P(A) = probability that A happens 

• P(A or B) = probability that A happens, or B happens, or 
both. 

• P(A & B) = P(A and B) probability that both A and B 
happen. 

• P(A|B) = “P of A given B”, the probability that A happens 
given that B happens. 

• Note: while P(A & B) = P(B & A), P(A or B) = P(B or A),  
P(A|B) ≠ P(B|A), for example: 
  P(pregnant | woman) ≈ a few % 
  P(woman | pregnant) ≈ 100%

101
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Probabilities

• Inside the red box everyone who likes football.

102
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Adding non-exclusive Probabilities

• What is the probability to pick 
somebody who likes football 
(outcome A) or the colour pink 
(outcome B)? 

• Not P(A or B) = P(A) + P(B), 
because we would be double-
counting those who like football 
and the colour pink.

103
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Adding Non-Exclusive Probabilities

• P(A or B)

104
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Adding Non-Exclusive Probabilities

• P(A or B) = P(A) + P(B) – P(A and B)
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Conditional Probabilities

• P(A given B) = P(A|B) = P(A and B)/P(B) 

• P(B given A) = P(B|A) = P(A and B)/P(A) 

• P(A and B) = P(A) ⋅ P(B|A) = P(B) ⋅ P(A|B)

106



Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2024

• P(A and B) = P(A) P(B|A) = P(B) P(A|B) 

• From this follows Bayes’ theorem: 

P(A|B) =  P(B|A) P(A)/P(B)

Bayes’ Theorem

107
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• P(A and B) = P(A) P(B|A) = P(B) P(A|B) 

• From this follows Bayes’ theorem: 

P(A|B) =  P(B|A) P(A)/P(B)

Bayes’ Theorem
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Very important 
theorem. 

Also worth noting: 
This is not Bayesian 

statistics (every 
frequentist will 

happily use Bayes’ 
theorem)
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Problem

• 0.01% of the population is infected with a nasty, contagious 
virus 
 
A test for this virus is developed. This test identifies correctly 
100% of those carrying the virus. Amongst those that do not 
carry the virus, it gives the correct result in 99.8% of the cases. 

• If you test positive, how worried should you be? Are you likely 
to be infected?

108
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• 0.01% of the population is infected with a nasty, contagious 
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A test for this virus is developed. This test identifies correctly 
100% of those carrying the virus. Amongst those that do not 
carry the virus, it gives the correct result in 99.8% of the cases. 

• If you test positive, how worried should you be? Are you likely 
to be infected?
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• Task: calculate how likely you are infected if the test is positive
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Probabilities for Continuous Distributions
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Probabilities for Continuous Distributions

• Say you have a 100 strings between 10cm and 12cm long 
and measure their length. 
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and measure their length. 
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Probabilities for Continuous Distributions

• Say you have a 100 strings between 10cm and 12cm long 
and measure their length. 

• How many are 11 cm?

• But how do we describe a probability distribution where the 
probability of each event is zero?
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Probabilities for continuous variables
• P(x) = probability density function (PDF) 

• PDFs are not probabilities. But we can use them to calculate 
probabilities that we find a value between a and b 

• This integral is a probability. If you integrate over a small 
range, such as a histogram bin of width Δx, the probability to 
find an event in that bin is  
            P(find event in bin centered at x)          ≈          P(x)Δx 
            Expected number of events in that bin ≈ Ntotal P(x)Δx 

• BTW, the Gaussian discussed earlier is a PDF.
110

P (x 2 [a, b]) =

bZ
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PDFs for real variables

• Frequent student mistake: decide which of the three great 
distributions applies (Binomial, Poisson, Gauss) based on 
whether a variable is continuous or not. 

• But: You can use Probability Density Functions (and Gaussians) 
for discrete variables. It’s an approximation, but often a useful 
one. 

• It’s the same as approximating discrete people with a 
population density or discrete atoms with a mass density.
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PDFs: important properties

• Normalisation - the probability that something happens is 1: 

• Expectation value of x, or any function of x, gives the average 
expected outcome for x (function of x) 

• Variance   V = 〈x2〉 – 〈x〉2 

112

hxi =
Z

x0P (x0) dx0 hf(x)i =
Z

f(x0)P (x0) dx0

+1Z

�1

P (x0) dx0 = 1



Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2024

PDFs and change of variables
• Let P(x) be a PDF. Then P(x) dx is a probability. 

• Let y be a function of x (suitable for co-ordinate 
transformations, i.e. bijective [one-to-one], and also 
differentiable). 

• Then P(y) dy = P(x) dx ⇒ P(y) = P(x) dx/dy. 

• This can give negative P(y) because the derivative can be negative. This would be 
handled by the corresponding swap in integration limits, giving positive integrals. 
We’d rather have positive PDF’s and decide that integration limits for PDFs will 
always be from the lower to the higher value. 

• Hence P(y) = P(x) ⎮dx/dy⎮.
113
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Example: Variable Transformation
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1.0/(20*sqrt(x)) x
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P (x) =

⇢
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�

y = x2 , x =
p
y for x > 0

P (y) dy = P (x) dx

P (y) = P (x)
dx

dy

= P (x)
1
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p
y

=
1

20
p
y

x

y

Check out https://tinyurl.com/TeshepVariableTrafo for related python code.

https://tinyurl.com/TeshepVariableTrafo
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Last time: χ2 Fitting

• Use for binned data

115
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Last time: χ2 Fitting

• Use for binned data

• Minimise weighted 
distance between 
data and function 
that describes data.
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Last time: χ2 Fitting

• Use for binned data

• Minimise weighted 
distance between 
data and function 
that describes data.
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Likelihood fits

• Define the likelihood: 

• View this as a function of the parameters of the PDF, here τ: 

• This gives us the probability that, given τ, we see the data we see. We 
adjust τ to maximise this.  

• Note that this does not give us the probability that τ is the right value 
(although we would probably quite like to know that - too bad, it’s not 
what it tells us). 
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L �
�

all data points

P (ti)

L(�) �
�

all data points
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Likelihood fits

• Rather than maximising this product: 

• it is usually easier (and equivalent), to maximise the logarithm of 
the likelihood, since this turns the product into a sum
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L(�) �
�

all data points

P (ti; �)

lnL(�) =
�

all data points

lnP (ti; �)
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Normalising your PDF

• This property: 
 
 
 
is crucial! Often you have a function f(x) you want to fit to the 
data that is not normalised. Before you can use it in your 
likelihood fit, you must always normalise it
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+1Z

�1

P (x) dx = 1

P (x) =
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+1R
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data that is not normalised. Before you can use it in your 
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Likelihood Shape

• L should be Gaussian, and L should be a parabola (near 
the maximum) from which you can read off the 
uncertainty

119

lnL = � (a� â)2

2�2
a

+ (meaningless constant)

�a
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Uncertainty from likelihood “Parabolic Error”

• You can also calculate the uncertainty directly from 

120

lnL = � (a� â)2

2�2
a

+ (meaningless constant)

d2(lnL)
d a2

���
at a=â

= � 1

�2
a

�a =

vuut
1

�d2(lnL
d a2

���
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Error Estimate

121

lnL = � (a� â)2

2�2
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+ (meaningless constant)

� lnL =
1
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• If it’s not a Gaussian, you get asymmetric errors.

Error Estimate for low N

122

� lnL =
1
2

â

�+
a��a

a = â
+�+

a

���a



Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2024

Quality of Fit

• Very tricky for likelihood fits. The value of the likelihood function does 
not tell you anything at all about the quality of the fit. 

• One solution: After doing an un-binned likelihood fit, bin the data and 
calculate the χ2  between data and fit.

123

lnL = –276.3 lnL = –271.4
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Quality of Fit

• Very tricky for likelihood fits. The value of the likelihood function does 
not tell you anything at all about the quality of the fit. 

• One solution: After doing an un-binned likelihood fit, bin the data and 
calculate the χ2  between data and fit.

123

lnL = –276.3 lnL = –271.4

The absolute value of the likelihood 

function is absolutely meaningless!
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χ2 Fitting and likelihood.

• Let’s do a binned likelihood 
fit. Our model predicts f(x1) 
events for bin centred at 
x1.  

• The probability to see ni 
events given that we 
expect f(xi) is given by a 
Poisson distribution

124

x0 9

f(x2)

n(x2)}

f(x1)
n(x1)

}

P (ni; f(xi)) = e�f(xi) f(xi)ni

ni!
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χ2 Fitting and likelihood.

• Binned likelihood: 

• if ni is large, approximate 

• log-likelihood

125

P (ni; f(xi)) = e�f(xi) f(xi)ni

ni!

x0 9

f(x2)

n(x2)
}

f(x1)

n(x1)
}

meaningless 
constants

<latexit sha1_base64="9cgBxROZYynZ1iWFNHbw2RN/YHU="></latexit>

P (ni; f(xi)) =
1p

2⇡
p

f(xi)
e
� (f(xi)�ni)

2

2(
p

f(xi))
2

<latexit sha1_base64="E3fIy8uA3TxUlBgm5bhedN4vW40="></latexit>

logL =
X

i

log (P (ni; f(xi))) = �1

2

(f(xi)� ni)2

f(xi)
+ C

�2 logL =
X

i

log (P (ni; f(xi))) =
(f(xi)� ni)2

f(xi)
+K

Gaussian that inherits from Poisson with 
<latexit sha1_base64="YOwr9Xw/7fpCTxkc00cB5SeV9iI=">AAACIXicbVDLSgMxFM34rPVVdekmWATdlBmR2o1QdOOygn1Apw6ZzJ02NJkZk0yxDP0VN/6KGxeKdCf+jOljodYDIYdz7r25OX7CmdK2/WktLa+srq3nNvKbW9s7u4W9/YaKU0mhTmMey5ZPFHAWQV0zzaGVSCDC59D0+9cTvzkAqVgc3elhAh1BuhELGSXaSF6h4nJTHBDswkPKBjhzpzMzCcEIhyePHjsd4UvsitRjk1uxriAeuz/zCkW7ZE+BF4kzJ0U0R80rjN0gpqmASFNOlGo7dqI7GZGaUQ6jvJsqSAjtky60DY2IANXJptuM8LFRAhzG0pxI46n6syMjQqmh8E2lILqn/noT8T+vneqw0slYlKQaIjp7KEw51jGexIUDJoFqPjSEUMnMrpj2iCRUm1DzJgTn75cXSeOs5JRL5dvzYvVqHkcOHaIjdIIcdIGq6AbVUB1R9IRe0Bt6t56tV+vDGs9Kl6x5zwH6BevrGzuKous=</latexit>

� ⌘ f(xi) = µi = �2
i
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χ2 Fitting and likelihood.

• The χ2 fit is equivalent to a binned likelihood fit for large 
numbers of events. The interpretation of the χ2 in terms 
probabilities etc is based on that. 

• Conversely, χ2 fits only work properly if you have a large 
number of events in each bin. Say at least 10. 

• What to do if you have fewer than 10 events in a bin: 

• Merge bins until you have at least 10 events per bin. 

• Do a binned likelihood fit (i.e. simply do not approximate the 
Poisson with the Gaussian).  

• Do an unbinned likelihood fit.
126



Jonas Rademacker                                                                                Statistics                                                                           TESHEP 2024

Testing your fit

127

Whatever you do, test your fit!
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Pull study

• Simulate a lot of datasets using 
Monte-Carlo simulation.  

• Fit each dataset and calculate the  
 
pull = 

and put it in a histogram. 

• For a good, unbiased fitter, you 
get:

128

σ=1.4 for 1k events ⇒ wrong errors

σ=1.0 for 1k events ⇒ correct errors

Mean = 0± 1�
Nexp

� = 1± 1�
2Nexp

(fit result)� (true value)
(error estimate)
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Monte Carlo
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Monte Carlo Simulations
• To test your fit, you need to try it out on simulated 

data.

• To really test it properly, you cannot rely on the 
experiment’s detailed simulation - you want to run 
thousands of simulated experiments and see if your 
fitter behaves as expected. You need a simplified, fast 
Monte Carlo for that.

• Today: 

• How do generate any distribution

• How to do it a bit more efficiently
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Von Neumann Accept-Reject
• Aim: Generate f(x) between 0 and 10

131
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Von Neumann Accept-Reject
• Aim: Generate f(x) between 0 and 10

• Define a box from 0 and 10, such that f(x) is always 
below the box (i.e. you need to know f(x)’s maximum 
in the are of interest).
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• Aim: Generate f(x) between 0 and 10

• Randomly shoot into the box. Accept those events that 
are below the red line.

Von Neumann Accept-Reject
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• x = rnd->Rndm() ⋅ 10; 

y = rnd->Rndm() ⋅ fmax; 

if(y < f(x)) acceptEvent(x,y)

Von Neumann Accept-Reject
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• This can be used for MC integration - the fraction of 
points accepted is ∝ to the area under the curve.

• This is the most efficient method of numerical 
integration in many dimensions (say more than 3).

MC-integration
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• Can be very inefficient for peaky distributions

Von Neumann Accept-Reject
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Problems, Solutions and other links
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https://tinyurl.com/TeshepProblems

https://tinyurl.com/TeshepStatCode

Problem sheet:

Links for installing jupyter and anaconda:

http://jupyter.readthedocs.io/en/latest/install.html
https://docs.anaconda.com/anaconda/

https://tinyurl.com/TeshepMC

Solutions: https://tinyurl.com/TeshepSolutions

Jupyter Workbook for Monte 
Carlo à la TESHEP
Solutions: https://tinyurl.com/TeshepMCSolved

Additional Jupyter notebooks to play around with:

https://tinyurl.com/TeshepFitJupyter Workbook for Chi2 
fit à la TESHEP
Solutions: https://tinyurl.com/TeshepFitSolved

https://tinyurl.com/TeshepProblems
https://tinyurl.com/TeshepStatCode
http://jupyter.readthedocs.io/en/latest/install.html
https://docs.anaconda.com/anaconda/
https://tinyurl.com/TeshepMC
https://tinyurl.com/TeshepSolutions
https://tinyurl.com/TeshepFit
https://tinyurl.com/TeshepFitSolved
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The End


