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Statistics,Probability and Physics
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Interpretation of data

measurement errors, statistical fluctuations, Central Limit Theorem,

confirming & rejecting theories, what constitutes a discovery?
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For a physics Masters/Ph.D....
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For a physics Masters/Ph.D....

e You’ll be looking at and interpreting a lot of data.
e You’ll deal with a few basic distributions

e Gaussian, Poisson, binomial, ... (and possibly a few
others that you’ll pick up as you go along)

e You’ll deal with error estimates and error matrices
¢ You’ll measure parameters doing likelihood and x2 fits
¢ You’ll need to translate physics into PDF’s

e You’ll interpret the fit result: what’s the error? Is it a
discovery? Are the data consistent with the PDF?
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https://inspirehep.net/record/719875?ln=en
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True & False: Pentagquark
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When did this become a discovery?
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Discoveries...

Jonas Rademacker Statistics TESHEP 2024 9



Discoveries...

¢ Particle physics is rife with false hints of discoveries - even the
Higgs was seen and unseen at several energies before the LHC
had its famous 50 discovery.
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Discoveries...

¢ Particle physics is rife with false hints of discoveries - even the
Higgs was seen and unseen at several energies before the LHC
had its famous 50 discovery.

* The problem: Nature does not allow us a direct view on its
fundamental parameters.
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What we get
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Statistics and Measurements

Jonas Rademacker Statistics TESHEP 2024 12



Statistics and Measurements

e Each measurement is messed up by millions of little perturbations
that we cannot possibly all take into account, or even know about,
individually.
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Statistics and Measurements

e Each measurement is messed up by millions of little perturbations
that we cannot possibly all take into account, or even know about,

individually.

e Statistics is the tool that allows us to separate the effect of those
fluctuations from the underlying data. And it provides us with tools
that tell us how confident we should be in our measurements.

e After this lecture, you won’t discover a false Z.c (OK, it’s too late

for that anyway) or a false Z’. | hope. Discover something
surprising, and real!
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Roadmap

EVENTS /25 MeV

Describing
Data Probability and probability
distributions, Probability
density functions
Central Limit Theorem
Discoveries
Confidence Levels
Hypothesis testing
Fitting Monte Carlo simulation
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Books

e R. J. Barlow: “Statistics”, John Wiley & Sons,
ISBN 0-471-92295-1.

e |ouis Lyons: “Statistics for nuclear and particle
physicists”, Cambridge University Press, ISBN 0-521-
37934-2

e Frederick James: “Statistical Methods in Experimental
Physics”, World Scientific, ISBN 981-270-527-9 (pbk).

Jonas Rademacker Statistics TESHEP 2024
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Problems

Problem sheets:

https://tinyurl.com/TeshepProblems

Code (Jupyter Notebooks):

https://tinyurl.com/TeshepStatCode

Jonas Rademacker Statistics TESHEP 2024 15
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Problems
Problem sheets:

https://tinyurl.com/TeshepProblems

Code (Jupyter Notebooks):

https://tinvurl.com/TeshepStatCode
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Describing data with numbers

e How do we describe a set of measurements with just a couple
of characteristic, meaningful numbers?

Jonas Rademacker Statistics TESHEP 2024 17
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http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/

Central Values
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Arithmetic Mean:
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Annual Income
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http://www.visualizingeconomics.com/2006/11/05/2005-us-income-distribution/
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Mean

e For all practical purposes we will usually use the
arithmetic mean: (1/N) Zi=1 N X

e Motivated to a large degree by its friendly mathematical
properties.

e But other central values, other means exist (see also harmonic,
geometric, etc) and they have their uses.

Jonas Rademacker Statistics TESHEP 2024 21
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Variance

¢ \We could calculate the total difference from the mean:

d = Zi-1n (Xi— X) but that’s zero by the definition of the mean
(check!)

e The variance is the average (difference)? from the mean, the
variance:

oV = (x-X)2=1/N Ziz1 N (Xi - X)2

Jonas Rademacker Statistics TESHEP 2024 23



Calculating the Variance

5 —2 Home work:
V=x—7 verify this

¢ |n words: The variance is equal to
THE MEAN OF THE SQUARES
MINUS

THE SQUARE OF THE MEAN

* You’ll always get the order of the terms right if you imagine a wide
distribution centered at zero. 7~ would zero, 12 positive and large, and the
overall variance must not be negative.

Jonas Rademacker Statistics TESHEP 2024
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Standard Deviation

e The Standard Deviation is the square-root of the variance:

c=VV

e The Standard Deviation has the same units as the data
itself.

e |t gives you a “typical” amount by which an individual
measurement can be expected to deviate from the mean.

¢ Usually, a measurement that’s one or two o away is fine,
while 3 o will raise a few eyebrows. We’ll quantify later
what the probabilities for 1, 2, 3 o deviations are under
certain (common) circumstances.
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FWHM and standard deviation

gauss ¢ For Gaussian distributions
(why these are so

Entries 10000

450 important, later):
Mean -0.007028
400 RMS 1.005
350 Underflow 0 FWHM ~ 2350
300 Overflow 0
e Check histogram on the
200
left:
150
100
50 o =RMS =1.0,
0 | 1 1 |
)6 -4 2 0 2 4 6

FWHM=1.2 - (-1.2) = 2.4

Close enough.
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Covariance

e Consider a data sample where each measurement
consists of a pair of numbers: {(x1, y1), (X2, y2), ...}

® The covariance between x and y is defined as:
N
1=

cov(z,y) = % Z (i — ) (y: — )

1

* The covariance between two parameters is a quantity
that has units; its value depends on the units you
chose, difficult to interpret.

Jonas Rademacker Statistics TESHEP 2024
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Covariance

e Consider a data sample where each measurement
consists of a pair of numbers: {(x1, y1), (X2, y2), ...}

® The covariance between x and y is defined as:
N

1 _ _

cov(x,y) = N ; (x: — ) (y: — 7)

* The covariance between two parameters is a quantity
that has units; its value depends on the units you
chose, difficult to interpret.
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Correlation Coefficient

e The correlation coefficient is defined as:

cov(x,y)

Pxy —
Oy + Oy

¢ [t has no units and varies between -1 and 1. This
provides a measure of how related to quantities are.

e For independent variables, p=0 while the correlation
coefficient of a parameter with itself (can’t get more

correlated) is: cov(z, )
Prxr =
Oy * Og
Var(z) o2
_ )%y
(0 o

Jonas Rademacker Statistics TESHEP 2024
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Correlation Coefficient Examples
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Correlation Coefficients Examples

e Correlation coefficients can be positive or negative:

> N > 4r
3:— s
of - 3¢
it 2r
o;— 1‘
P f pa
3F 2f ::
-4:|||I||||I||||I||||I||||I||||I||||I||||I|||| -3:_ -
5 4 3 2 10 1 2 3 4 e T mar e e

Make these plots yourself:

https://tinyurl.com/TeshepStatCode

https://github.com/JonasRademacker/JupyterNotebooksForTeachingMath/blob/master/CovarianceAndCorrelation.ipynb
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The Covariance/Error Matrix

e For N variables, named x(1), ..., x(N)

Vi, = cov(:z:(i),a:(j))
( COV($(1)7Q;(1)) COV($(1)’:E(2)) COV(x(l)’m(N)) \
Vo cov(x®, 2D cov(z® @) .. cov(z® )
\ cov (@™, M) cov(@®™,2®) . cov(e®™, 2 )

e Symmetric. Diagonal = variances. Off-diagonal: covariances.

e Will become very important when we discuss errors and
multidimensional parameter transformations.
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The Correlation Matrix

e Defined equivalently, for N variables x(1), ..., x(N)

cov (2@, 2))

Pij =
J 040
( L pi2 - pin \
p21 1 - pon
p = . . .
e symmetric \ pPN1 PN2 1 /

e diagonal = 1

e Related to covariance matrix by:
Vij = pij 0i0;

Jonas Rademacker Statistics TESHEP 2024 32



Correlation and Causality

e Among my favourite correlations is this one:

e During doctors’ strikes the death-rate tends to go down -
in Israel the death-rate went down by 39% in a recent
doctors’ strike. So there is a positive correlation between
life-expectancy and the number of doctors on strike (this
phenomenon has been observed in other countries, t00).
Does this mean that fewer doctors would be good for the
nation’s health?

e Listen to this BBC programme if you like this sort of thing:

http://news.bbc.co.uk/2/hi/programmes/more _or less/7408337.stm

Jonas Rademacker Statistics TESHEP 2024
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Lemons prevent traffic deaths
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550

find this and other weird correlations at: https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlati
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Internet Explorer causes murder

18,000
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Internet Explorer vs Murder Rate
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45%

30%
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O Murders in US 2 Internet Explorer Market Share

http://gizmodo.com/5977989/internet-explorer-vs-murder-rate-will-be-your-favorite-chart-today
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Lack of (Caribbean) pirates causes global warming

Global Average Temperature Vs. Number of Pirates

Global Average Temperature (C)

35000 45000 20000 15000 5000 400
Number of Pirates (Approximate)

17
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http://www.venganza.org/about/open-letter/
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Correlation and Causality

e Statistics does not tell us if two correlated variables are
also connected by causality, i.e. if one causes the other.

* For example there is a strong correlation between rain and
wet roads. It is clear that rain causes roads to be wet, and

that wet roads do not cause rain. But the statistics won’t
tell you that.

e There is also a clear correlation between wet roads and the
the number of people running around with wet hair. Here

neither causes the other, but both are correlated because
they have a common cause.

Jonas Rademacker Statistics TESHEP 2024
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Homework

¢ Write down 100 times:

“Correlation is not causation” &

'
T
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Summary: Representing Data

e Central value: Usually use arithmetic mean. Nice: Means add
up. (i.e. <X + y> = <x> + <y>)

e Width: Use standard deviation. Standard deviations do not add
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variables x and y are
uncorrelated).

e Multiparameter distributions: Covariance, Correlation.
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Correlation is not causation.

Summary: Representing Data

e Central value: Usually use arithmetic mean. Nice: Means add
up. (i.e. <X + y> = <x> + <y>)

e Width: Use standard deviation. Standard deviations do not add
up. Variances do, i.e. V(x+y) = V(x) + V(y) (if variables x and y are
uncorrelated).

e Multiparameter distributions: Covariance, Correlation.
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https://www.youtube.com/watch?v=SSbBvKaM6sk

https://www.youtube.com/watch?v=WDswiT87008
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We only ever see a slightly blurred picture of nature

s )
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Why the blur is Gaussian

Xt
o

e_ 262

glx;pu,0) =

V2o
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Gauss & me hanging out in GG
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Gauss on old money
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The Central Limit Theorem

, Consider random variable ¥ = Z X;, where each Xx; is taken from a

l

distribution with mean {x;) and variance V; = o7
e Then Variances add up!
(Standard
, Y has an expectation value (Y) = Z (x.) deviations don’t)

, /

: — : R 2
, Y has avariance Vy = 2 V.. Equivalently: oy = Z O;

l l

¢ The distribution of Y becomes Gaussian as N— oo,
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Roll some Dice, submit results, here

https://tinyurl.com/Dice TESHEP

=]y (o]

Largest number of entries wins!
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Rolling Dice, predict results, here

https://tinyurl.com/PredictDice TESHEP

(=] y1o: [m]

B ™
u

=37

First (few) correct answers win
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Summary

Mode
Median

.......... ogran Mean

* Averages: Mean, Median, Mode - usually we chose arithmetic ::
mean, but there are use cases for alternatives. ;. L —

¢ Width: Standard deviation, Variance, FWHM

e Covariance, correlation (is not causation, but still informative)

3
2
13
o
e
2
a4
_4:

“““““““““““““““““““““““““““

5 -4 3 -2 10 1 2 3 4

¢ CLT, transforms ignorance to well-defined uncertainty.

¢ Do your bit for the CLT and win a prize!

¢ Roll dice: https://tinyurl.com/DiceTESHEP

¢ Predict results: https://tinyurl.com/PredictDiceTESHEP
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Lecture 2
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Recap

Mode
Median

lifetime hi: ram

Mean

1400
1200
10000

800 \|—|_
600

Events per 0.25 ps

| ]_\_‘_‘1

gauss

600

500

400

300

200

Jonas Rademacker

100

Number of resistors / 0.350 Ohm

FITT T[T T[T T[T T[T rrrr]

85

I B WP EIPRN Br a—
20 95 100 105 110 115

Resistance [Ohm)]

5 4 3 2 -1 0 1 2 3 4
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Roadmap

EVENTS /25 MeV

Describing
Data Probability and probability
distributions, Probability
density functions
Central Limit Theorem
Discoveries
Confidence Levels
Hypothesis testing
Fitting Monte Carlo simulation
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Today

* Analyse yesterday's data, and discuss their implications
¢ Fitting

e Monte Carlo
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The Central Limit Theorem

, Consider random variable ¥ = Z X;, where each Xx; is taken from a

l

distribution with mean (x;) and variance V; = 67, and all x_i are

INDEPENDENT

Variances add up!
(Standard
deviations don’t)

, Y has an expectation value () = 2 (x;) /

e Then

l

, Y has avariance V, = Z V.. Equivalently: 0% — Z gi2

l l

¢ The distribution of Y becomes Gaussian as N— .
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Rolling Dice

Your data: https://tinyurl.com/TESHEP24DiceResults
Code to analyse data: https://tinyurl.com/RealDiceTESHEP

Code to generate more data: https://tinyurl.com/SimDiceTESHEP
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Rolling more and more dice
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Rolling more and more dice

100000 tries throwing 1 dice

8 Entries: 100000
£16000 o

o Mean 3.496
§ 14000 RMS = 1708
212000 Underflow 0
£ 10000 Overflow

ob—L I R R L0
4 5 6 7 8 9 10
Result of throwing 1 dice

Frequency of result a
=y
[=}
[=}
o

a
o
-
N
w
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Rolling more and more dice

100000 tries throwing 1 dice

_8 E Entries 100000
=16000— : : :

o E Mean 3.496
§ 14000( RMS |  1.708
S 12000 Underflow | 0
2 10000F Overflow . 0
© C : : :

S 8000F

a C

2 6000

k3 o

> 4000

g oo

o 2000

= - H : : : ;

g 0t i i i i i

o -1 0 4 5 6 7 8 9 10

Jonas Rademacker

Result of throwing 1 dice

100000 tries throwing 4 dice

10000

Frequency of result after 100000 tries

Statistics

Entries 100000

Mean 14.01
RMS 3.422
Underflow 0

Overflow 0

5

10

15

20

Result of throwing 4 dice
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Rolling more and more dice

100000 tries throwing 1 dice

Frequency of result a

100000 tries throwing 16 dice

Frequency of result after 100000 tries

Jonas Rademacker

6000
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Entries ‘ 100000
Mean |  3.496
RMS |  1.708
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Result of throwing 1 dice

(|

Entries 100000

Mean 56.02
RMS 6.843
Underflow 0
Overflow 0

NI |
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Result of throwing 16 dice
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10000
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Entries 100000

Mean 14.01
RMS 3.422
Underflow 0

Overflow 0

Frequency of result after 100000 tries

o

Statistics
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Result of throwing 4 dice
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Rolling more and more dice

100000 tries throwing 1 dice 100000 tries throwing 4 dice
(7] F (7] F
Q@ - Entries: 100000 dz) L Entries 100000
é 16000 E Méan ?.496 é 10000 :_ Mean 14.01
S 14000 RMS | 1.708 S C RMS 3.422
212000F Underflow = 0 = 8000 Underflow 0
g 10000 E_ Oyerﬂoyv P00 g’ N Overflow 0
s C o S 6000
S 8000 E] C
8 coook 8 000k
= 6000 ~ 4000
© = k] C
2 4000 2 2000k
& 2000F & r
g' E : | | | i g' L 1 1 1
| | | | | 1 A R T T [N T TR T T SN T TR T T N SR T L1
£ 93 01 2 3 45 6 7 8 9 10 g 0 5 10 15 20
Result of throwing 1 dice Result of throwing 4 dice
100000 tries throwing 16 dice 100000 tries throwing 64 dice
) [ ()] r
o 6000[ Entries 100000 2 3000 Entries 100000
pay C Mean 56.02 pay C Mean 224
§ 5000: RMS 6.843 § 2500 RMS 13.68
o - = L
- - Underflow 0 - C Underflow 0
». 4000 » C
] - Overflow 0 9 2000 r Overflow 0
S 3000 s :
§ C § 1500
7 C 7 C
o C o C
= 2000 « 1000
o u o C
> C > r
g 1000 S  500F
Q - Q -
=} - =} o
g | ol IS I P P | o | P P R PR T~ U PR B
T 20 30 40 50 60 70 80 90 r 100 150 200 250 300
Result of throwing 16 dice Result of throwing 64 dice
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Comparing Gaussians to 1, 4, 16, 64-dice
distributions

100000 tries throwing 1 dice 100000 tries throwing 4 dice
22000 \ el $12000F )
- E RMS 1.708 - N RMS 3.422
© 20000 Underfio 0 o B Underflow 0
=4 3 fiow S 10000 verfiow
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= 4000F o s 2 T 20000 e
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= . 5 1500~
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=] o =] F
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Comparing Gaussians to 1, 4, 16, 64-dice
distributions

100000 tries throwing 1 dice 100000 tries throwing 4 dice
0 " n
222000 \ il 812000
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bokeh serve jonas_singletoy.py

localhost:5006/jonas_singletoy
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Central Limit Theorem holds in the centre, not

iNn the tails(!)

10000000 1y

10°
10°
10°
102

10

1

Frequency of result after 100000007

10_1 1 111

s throwing 4 dice

1000000¢C

1e+07

14

3.415

0

0

9.873e+07 /40
0

168e+06 = 452
145+ 0.0
415 = 0.001

Entries

s b N Ly

20 25 30 35
Result of throwing 4 dice

‘requency of result after 10000000C 7

s throwing 16 dice

(4
L0 1e+08
6 56
10 6.831
5 0
10 0
10 3.559e+04 / 100
0
108 Constant 4e+06 = 715
Mean 56.5+ 0.0
102 831+ 0.000

10

1
1 | T S T | | L

60 80
Result of throwing 16 dice

-1 1 1
10 20 40

¢ Central limit theorem ensures that within a few sigma of
the mean, we get a good approximation to a Gaussian.

¢ Differences remain in the tails of the distribution (doesn’t
have to be fewer events, such as here, can also be more).
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(Gaussians, errors, confidence

e Within +10: “10 Confidence Level”,
or “68.27% Confidence level”

1
1 22
e 2 dx = 68.27%
/1 V2T C

e Within +20: “20 CL” or “95.45% CL”

1 22
e” 2 dx = 95.45%
/2 Vo C

. Witﬂhin1:30: “30” or “99.73% CL”
| _%e—%da: — 99.73%

Jonas Rademacker Statistics
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Talking to Engineers

* Physicists quote their errors as 10
(Gaussian) confidence intervals.

® The probability that a result is outside
the quoted error is 32%. About 1/3 of
measurements should be outside the
error bars. Results outside error bars
are OK - it just shouldn’t happen too
often. And it shouldn’t be too far:

P(outside ux2c) ~5%, P(outside "What we've got here
pux30) ~0.3%) s...failure to communicate.
e Engineers guarantee that the actual Some men you just can't

value is within mean = tolerance. reach.
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https://tinyurl.com/TeshepProblems
Which plot makes most sense”?

What is the most plausible plot if the line represents theory, dots data
distributed according to that theory, and the vertical lines are 10 error bars.

BYE exp
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400:— o
3502 350E
300 300¢
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200 200F
150F 150F
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%2040 ""60™ 0 100 20 a0 fo0 ab 400 0536306080 700 720740 160780 200
exp exp
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350 180F
300F 160E
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250; 120F
200F 100F
150F 80F
100F- 60t
E 40F
505— 20F
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0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F Mean 30
0.07 O = 4583
0.06 f_ Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F
0.02F
0.01F

0 n N P B
0 60 80 100

r for N =100, p = 0.300
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Uncertainty on the mean”???

gauss

gauss

Ideal parent
sample, in limit of

o
©

200
180
160
140
120
100

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIX
'y

infinite statistics
(practically
inaccessible)

— N w S o [=2]
TIT T T T[T T T T[T T T T[T T T T[TTT T[T

Entries

10
Mean -0.07611

RMS 1.233

Underflow 0

Overflow 0

Uncertainty on the mean: if | repeat the measurement with N data points again and
again, and record each time the mean, what is the width/standard deviation of that

Jonas Rademacker

distribution?
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Central Limit theorem

e Take the sum Y of N independent
N

variables x; Y, = Z X;.
i=1

° <Ysum> = Z (x;)

o Stddev.oy = Z o’

Ssum l

e Gaussian as N .
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Central Limit theorem

e Take the sum Y of N independent
variables x; Y, = Z X;.

sum
i=1

° <Ysum> = Z (x;)

Ssum

oeStddev.oy = Z o’

e Gaussian as N .

Take the average Y of N independent

1 N
variables xi: ¥, = N - X;.
=1
<Yav> — l <xi>
N
1
Std dev.: oy = N GZ Gl-z

if all oi the same: =

Gaussian as N— .
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Central Limit theorem

e Take the sum Y of N independent
variables x; Y, = Z X;.

sum
i=1

<Ysum> = Z (x;)

oeStddev.oy = 20.2

Ssum

e Gaussian as N .

Take the average Y of N independent

variables x;: Y =

Vo) =% Z<x

Std dev.: Oy = N Z o2

l

O;

if all oi the same: = ——
VN

Gaussian as N— .

the 1st miracle of /N
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F Mean 30
0.07 O = 4583
0.06 f_ Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F
0.02F
0.01F

0 n N P B
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08 E_ Mean 30 Gmean — G/VN
0.07F O = 4583
0.06 E_ Underflow 0
. E_ Overflow 0
0.04F
0.03F
0.02F
0.01F

0 n A I R
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08 E_ Mean 30 Gmean — G/VN
0.07F O = 4583
0.06 E_ Underflow 0
0.05 E_ Overflow 0 N — 1 O 1
0.04F
0.03F
0.02F
0.01F
0 n A I R
0 60 80 100

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08 E_ Mean 30 Gmean — G/VN
0.07F O = 4583
0.06 E_ Underflow 0
0.05 E_ Overflow 0 N — 1 O 1
0.04F
0.03;— Omean —_ 046
0.02F
0.01
0 n A R RS
0 60 80 100

r for N =100, p = 0.300
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The Central Limit Theorem
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' The Central Limit Theorem

ol cal []J Off365 [ MyBristol (il PPGP-CG EMIAPP [ SAT EJAmAn EJERC EExp EJuUoB [JReference EJPDe E5sTFc E5ox EFPython 5 French £} Most Visited [ GarageDoor >

1 -

4 600 :
08 4 ]
i 500 <
1 400 —
0.6 < J
g 300 —+
0.4 4 |
: 200 :
0.2 100 ]
] 0
Y T T T T T T T T T T -' — 1t r T r r 1 rr
1 -0.5 0.5 1 1.5
Slider: 1
Jonas Rademacker Statistics TESHEP 2024



The Central Limit Theorem N
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The Central Limit Theorem h
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The Central Limit Theorem

!

0.

| 0.6

| 0.2 4

N € G Bokeh X Progran
q&m
B« c @

pyt

® localhost:5006/jonas_singletoy

90%

- @ %

N 60 & & O

ol cal (] Off365 [ MyBristol [l PPGP-CG MIAPP SAT {5 AmAn ERC Exp UoB Reference pPDG [T sTFC [37ox Python French %} Most Visited GarageDoor

1 -

0.8 —

0.4 4

o

Slider: 4

Jonas Rademacker

Convolve

Statistics

TESHEP 2024

»




e
g
:Kq &) C © ® localhost:5006/jonas_singletoy 90% ooe % N @O & @& O

ol cal [ off365 [ MyBristol [ PPGP-CG EMIAPP [ SAT FJAmAn EJERC EExp EUoB [ Reference EJPDe EFsTFc EJox [ Python F5French %F Most Visited [ GarageDoor >

" o | o

Bokeh X Progran

0.8

0.6 4

0.4

0.2

-1 -0.5 0 0.5 1 -3 -2 -1 0 1 2 3

Slider: 5

Convolve

Jonas Rademacker Statistics TESHEP 2024




Th Cenal iit Thre

K

Progran

pyt

a 600 —

500

300 —

200 +

100

. @ %

‘ [’Cal []Off365 %MyBristol td PPGP-CG EMIAPP BSAT EAmAn EERC EExp BUOB BReference BPDG ESTFC BOX EPython EFrench ﬁMostVisited BGarageDoor

N @ & & O

o

- o 4 . I
(@] F Bokeh X
(¢ C @ ® localhost:5006/jonas_singletoy
g
14
0. |
o 1
08
) 1
o
06 4
0. i
o
04 4
0. i
o
02 -
o+t
' 4 05 0 05
Slider: 6

Convolve

Jonas Rademacker

Statistics

TESHEP 2024



Th Cenal iit Thre

K

Progran

pyt

a 600 —

500

300 —

200 +

100

. @ %

‘ [’Cal []Off365 %MyBristol td PPGP-CG EMIAPP BSAT EAmAn EERC EExp BUOB BReference BPDG ESTFC BOX EPython EFrench ﬁMostVisited BGarageDoor

N @ & & O

o

- o 4 . I
(@] F Bokeh X
(¢ C @ ® localhost:5006/jonas_singletoy
g
14
0. |
o 1
08
) 1
o
06 4
0. i
o
04 4
0. i
o
02 -
o+t
' 4 05 0 05
Slider: 6

Convolve

Jonas Rademacker

Statistics

TESHEP 2024 67



What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

0.09

§ g_ Entries 101
0.08 - Mean 30
0.07 O = 4583
0.06 E— Underflow 0
0.05 z_ Overflow 0
0.04 ;—
0.03 ;—
0.02 ;—
0.01F-
0 t Lo A T B . \/
0 20 40 60 80 100 The 1st miracle of VN

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0095_ Entries 101
0.08F- Mean 30 Omean = O'/'\/N
0.07 O = 4583
0.06 Underflow 0
0.05 E_ Overflow 0
0.04F
0.03F
0.02F
0.01F
0% 8080 100 The 1st miracle of VN

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

0.09

§ 3 Entries 101
0.08F Mean 30 Omean = 0—/'\/N
0.07 O = 4583
0.06 E— Underflow 0
0.05 E_ Overflow 0 N — 1 O 1
0.04F
0.03F
0.02F
0.01F
n N P B .
0p 60 80 100 The 1st miracle of VN

r for N =100, p = 0.300
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What’s the uncertainty on the mean”

Theory with N =100, p = 0.300

§ 0.09F Entries 101
0.08F Mean 30 Omean = 0—/'\/N
0.07 O = 4583
0.06F Underflow 0
0.05 E_ Overflow 0 N — 1 O 1
0.04F
0.03F Omean = 046
0.02F
0.01F
0 t T B ) \/
0 60 80 100 The 1st miracle of VN

r for N =100, p = 0.300
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Further important theoretical distributions...

¢ |n the next few slides I’'ll introduce the binomial and the Poisson
distribution - you will meet them a lot in your particle physics
research!

We don’t have much time and
will do a super-fast version of
this on the whiteboard, then
continue on slide 87. The
more detailed slides will be
on Indico.
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Poisson — (Gaussian

Theory with lambda = 0.500

g 0.6 ;—— Entries 1
o F Mean 0.5
£ 05 RMS = 07071
[« % -
F Underflow 0
04
F Overflow 0
03 —
: ) [
0.2 /\ —— ) '
F =  \UJ
0.1
ok

o
-
N
w
N

5 6 7 8 9 10
r for lambda = 0.500

Theory with lambda = 10.000

? 0.12 :_ Entries 31
= L Mean 10
o L
0.1 RMS 3.162
L Underflow 0
0.08[~ Overflow 0
0.06-
o A=10
0.02F
0 b 1 1 1 1 L
0 5 10 15 20 25 30

r for lambda =10
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Theory with lambda = 1.000

E E Entries 10
E 0.35 E_ Mean 1
e RMS 1
0.25 Underflow 0
Overflow 0

0.2

0.05

o
AR LAt LAt L R
~.)
)’
[l
A

0 1 2 3 4 5 6 7 8 9 10
r for lambda =1

Theory with lambda = 100.000

§ 0.04 ;— Entries 200
T 0.035F Mean 100
a E RMS 10
0.03 E_ Underflow 0
0.025 ;_ Overflow 0
0.02 ;—
0.015 ;—
0.01 —
0.005 ;—
0 E 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

r for lambda = 100

Statistics

Theory with lambda = 2.000

§ E Entries 1
2 0.25~ Mean 2
E E RMS 414
0.2 :— °
F Overflow 0
0.15F
0.1 )\ ')
0.05F é
%1 2 3 4 5 6 7 8 9 10

r for lambda = 2.000

Theory with lambda = 400.000

§ 0.02F Entries 700
= 0.018F Mean 400
& 0.016F RMS 20
0.014 E— Underflow 0
0.012 E— Overflow 0
0.015
0.008 ;—
A=400
0.004F I
0.002F-
0 E 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700

r for lambda = 400
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The Binomial Distribution

e Fixed number of “trials” (measurements),

e Two possible outcomes, usually termed “Success” and
“Failure” (but can be green and orange, or >5 and <=5, or
anything else mutually exclusive).

* The probability for a success in a single trial is p.

e Question: What is the probability to get r successes and (/\'-r)

failures in /V trials: (whiteboard)
P(r; N, p) =?

Jonas Rademacker Statistics TESHEP 2024
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The Binomial Distribution

number of “successes” probability of failure in single trial

probability of success in single trlal number of “failures”

P(r; N

||

i
|

=

=

;

number of different sequences
In which one can have r
successes and N - r failures

Jonas Rademacker Statistics TESHEP 2024 72



Binomi Examples

Theory with N =0, p = 0.300

T 1 N Ehtries 1

- Mean 0

0.8 RMS 0

B Underflow 0

0.6 L Overflow 0
0.4 N
0.2~

oL |
-1 1 2

Theory with N =2, p = 0.300

rfor N=0, p =0.300

§ 0.5 :_ Entries: 3

- Mean 0.6

04— RMS |  0.6481

C Underfiow 0

0.3F Overflow 0
0.2
0.1

ot i
-1 2 3 4

Jonas Rademacker

rfor N=2, p=0.300

Theory with N =1, p = 0.300

Statistics

P(r)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

lllllllllllllllllllllllllllllllllll

Entriés
Meaﬁ
RMS%
Undérflow

Overflow

2
0.3

0.4583

0
0

0

Theory with N = 3, p = 0.300

;_5 0.45
0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

2

rfor N=1, p =0.300

3

E_ | Entries : 4
= Mean = 0.9
= RMS  0.7937
=  Underflow 0
§_  Overflow 0
F L |

-1 3 4 5

r for N =3, p =0.300
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Binomi Examples

Theory with N =10, p = 0.300 Theory with N = 100, p = 0.300

§ r Entfies 11 § 0.09 E_ Entries 101
0.25 :_  Mean | fg 0.08 ;_ Mean 30
C L RMS | 11449 0.07 RMS 4.583
0.2 Underflow 0 0.06F- Underflow 0
015 E_ Ovejrflom% ()} 0.05 z_ Overflow 0
C 0.04F
0.1 0.03F
C 0.02F
0.05[ E
C 0.01F
ok [ T R T T R okt N R B SR
-1 01 2 3 45 6 7 8 9 10 1112 20 40 60 80 100

r for N =10, p = 0.300 r for N =100, p = 0.300

Th ithN=1 ,p=0.
e 000, p =0.300 10000 tries with N = 10000, p = 0.300

T - Entries 1001 3 L Entries 10000

0.025 :— Mean 300 Py 100 - Mean 3000

- RMS 14.49 § C RMS 45.76

0.02— Underflow 0 - 80 Underflow 0

E Overflow 0 -.“ﬂ:e - Overflow 0
0.015F < 60
r 5 r
C o -
0.01 S a0
» o L
- 2 C
0.005 s 20C
- = -
N o B

0 PR Y SSPIL VO I I I 90...|...|...|...|...
0 200 400 600 800 1000 L 0 2000 4000 6000 8000 10000
r for N = 1000, p = 0.300 Successes for N = 10000, p = 0.300
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Example: Lightning

¢ The Poisson distribution describes
sharp events in a continuum.

* There is still a fixed outcome
(flash), but not a fixed number of
trials. It doesn’t make sense to ask
how many non-flashes we saw.

¢ But we can ask how many flashes
we expect to see in a given time
interval. Or clicks in a Geiger
counter.

photographs of lightning in an urban setting In:"Thunder and Lightning", Camille

Lightning striking the Eiffel Tower, June 3, 1902, at 9:20 P.M. This is one of the earliest
Flammarion, translated by Walter Mostyn Published in 1906.
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Binomial = Poisson

e \WWe’'ll start with our trusted Binomial Distribution.

P(r;N,p) = p" (1-p) ( T)

e How can we modify it such that it describes the number of
flashes in a continuum?
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Binomial = Poisson

e Strategy:

¢ Divide the time over which we observe the sky and count
flashes into small intervals.

e |[f the intervals are small enough, we do have a binomial
distribution - each interval is a trial and can have two
outcomes, success (flash) or failure (no flash).

¢ [Important: The intervals must be so small that we can get
at most one flash - otherwise we would have more than
two possible outcomes (0, 1, 2, ,... flashes), and the
binomial distribution would not work.

Jonas Rademacker Statistics TESHEP 2024
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e _..derivation on whiteboard, if time permits

N

7!

P(r;\) =e
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rI(N —r)!
A" AN\
o= (1-3) e
_X (1 _ A)N” N
r! N NT(N —r)!
N (1_3)“? N(N —1)(N —2)--- (N —r+1)
7! N NT
N (1 - A>N (1 - i)‘r N+ oqN™"L 4 ap N2
! N N N
lim P(r;N,\) = £e>‘ (1)~" (1 —I—Ozi +042L + )
N —o00 r! N N2
=YW
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P(r; N, p)-&=pAr-(1-p)NN-r} \frac{N!}Xr! (N-r)}
\
P(r; N, \lambda) &=
\fracQ\lambda’r{N*r} \left(1-\frac{\lambda}p\right) N\ N-r} \frac{N!Xr! (N-r)!}
\
&= \frac{\lambda’r¥r!}
\left(1-\frac(\lambda{N}\right) {N-r}
\frac{N!KN*r (N-r)!}
\
&= \frac{\lambda’r}{r!}
\left(1-\frac(\lambda{N}\right) {N-r}
\frac{N(N-1)(N-2)\cdots (N-r+1){N"r}
\
&= \frac{\lambda’r}{r!}
\left(1-\frac{\lambda}{ NRright) N}
\left(1-\frac(\lambda}{N}\right)-r}
\frac{N/r + \alpha_1 N/Nr-1} + \alpha_2 NNr-2} \cdots{N*r}
\
\lim_{N\to\infty} P(r; N, \lambda)
&= \frac{\lambda’r}{r!}
e\lambda} \left( 1 \right){-r}
\left( 1 + \alpha \frac{1XN} + \alpha_2 \frac{1 XN”2} + \Idots \right)
\
& = \frac(\lambda’r{r!}
e\lambda} \left( 1 \right){-r}
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. AT
Poisson Summary  P(r;)) =e * —

7!

¢ Describes cases where we do not have a fixed number of trials, but
discrete events in a continuum.

e [t has only one single parameter - the expected mean number of
events, A.

(r) =A

o= V)

e The probability to see r events, given an expected mean of A, is:

)\T
P\ =e =

r!
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. )\7“
Poisson Summary — P(riA) =e "t —

7!

¢ Describes cases where we do not have a fixed number of trials, but
discrete events in a continuum.

e [t has only one single parameter - the expected mean number of
events, A.

(r) =A

o = @ the 2nd miracle of {N.
If | expect N &vents, the uncertainty on this is \/N, and the relative uncertainty is /N/N = 1/{/N.

e The probability to see r events, given an expected mean of A, is:

)\T
N\ =
P(r;\) =e )
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Binomial = Poisson

e ... our derivation (if we did it) implies that the Poisson
distribution with A=Np is a decent approximation of the
Binomial distribution in cases where p is small and N is large.
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Poisson — (Gaussian

Theory with lambda = 0.500

g 0.6 ;—— Entries 1
o F Mean 0.5
£ 05 RMS = 07071
[« % -
F Underflow 0
04
F Overflow 0
03 —
: ) [
0.2 /\ —— ) '
F =  \UJ
0.1
ok

o
-
N
w
N

5 6 7 8 9 10
r for lambda = 0.500

Theory with lambda = 10.000

? 0.12 :_ Entries 31
= L Mean 10
o L
0.1 RMS 3.162
L Underflow 0
0.08[~ Overflow 0
0.06-
o A=10
0.02F
0 b 1 1 1 1 L
0 5 10 15 20 25 30

r for lambda =10
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Theory with lambda = 1.000

E E Entries 10
E 0.35 E_ Mean 1
e RMS 1
0.25 Underflow 0
Overflow 0

0.2

0.05

o
AR LAt LAt L R
~.)
)’
[l
A

0 1 2 3 4 5 6 7 8 9 10
r for lambda =1

Theory with lambda = 100.000

§ 0.04 ;— Entries 200
T 0.035F Mean 100
a E RMS 10
0.03 E_ Underflow 0
0.025 ;_ Overflow 0
0.02 ;—
0.015 ;—
0.01 —
0.005 ;—
0 E 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

r for lambda = 100

Statistics

Theory with lambda = 2.000

§ E Entries 1
2 0.25~ Mean 2
E E RMS 414
0.2 :— °
F Overflow 0
0.15F
0.1 )\ ')
0.05F é
%1 2 3 4 5 6 7 8 9 10

r for lambda = 2.000

Theory with lambda = 400.000

§ 0.02F Entries 700
= 0.018F Mean 400
& 0.016F RMS 20
0.014 E— Underflow 0
0.012 E— Overflow 0
0.015
0.008 ;—
A=400
0.004F I
0.002F-
0 E 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700

r for lambda = 400
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Trinity

. _ T o - )\T
P(r;N,p) p" (1-p) <:T ) f%r;A)::e_A—T
| ~lim N=oo, p—0, N'p=A _ . r:
Binomial » Poisson
P(r; N,p) N-p—=A P(r; )
lim N— oo im A= oo
N-p — pu A= 4,
VNp(1—p) — o VA0
(Gaussian
P(x; 1,0)

( L _-3(=e)
T, o = e o
il V2mo
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Homework: Which distribution?

a) The number of flashes of lightening within on hour of a thunderstorm.

b

)

) The number of Higgs events at the LHC in a year of running.
c) The number of students per hundred carrying the H1F T virus.
)
)

d

€

Weight of individual A4 pieces of paper in a notebook

The number of sand grains in 1kg of sand.
*H1F1 gives you bird flue

https://tinyurl.com/TeshepProblems
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https://tinyurl.com/TeshepProblems

More Homework - calculate significances

e Estimate the significance of this /’ search at CDF
observation:
N L140- -6 data
* Step 1: calculate the probability =~ &0 o oo s

Model
prediction

so see an upward fluctuation
this big or bigger in the
Standard Model, in this one bin

Events/(1
258

¢ Step 2: take into account that . MR
160 180 200 220 240 260 280 300 320 340

they looked in 84 bins (tricky!) M(ee) (GeV/c)

¢ |In the bin with the arrow, we

. :
You should get a fairly small expect 28 events without the Z’

number. Why, do you think, have
you not read in the news about
the discovery of the Z’ at CDF? * See 48 events.
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Roadmap

EVENTS /25 MeV

Describing
Data Probability and probability
distributions, Probability
density functions
Central Limit Theorem
Discoveries
Confidence Levels
Hypothesis testing
Fitting Monte Carlo simulation
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Fitting
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Lifetime fit

e | have a decay time distribution that | want to describe with an
exponential decay distribution:

1
P(t) = —e /7

T

e Question 1: What is the mean lifetime 1?

e Question 2: Did | pick the right function - are my data really
described by an exponential decay?
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x2 Fitting

e Use for binned data |
e Minimise distance between f(X )
data and function that &
describes data. B N (X2)
NENEERER
0 9 X

usually oi = \[f(xi)=/ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

usually oi = \[f(xi)=/ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

usually oi = \[f(xi)=/ni

Jonas Rademacker Statistics TESHEP 2024 91



x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(x) - f(xi))2

usually oi = \[f(xi)=/ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(x) - f(xi))2

e Better: Weight by error
usually oi = \[f(xi)=/ni
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x2 Fitting

e Use for binned data

e Minimise distance between
data and function that
describes data.

¢ Possible definition:

d2 = Z(n(x) - f(xi))2 |'

0 9 X

e Better: Weight by error

2 Z (Mmeas(Ti) — f(74))

2 usually oi = \[f(xi)=/ni

X

all bins
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* root macros go here
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Do | trust my fit”?

exp

exp
400F 400
350 ; 350 ;
300k 300F
250F 250F
200 2oo§
150¢ 150F
100¢ 100
50F 50t
Op""20""20 60 80 100 120 140 160 180 200 052020508500 T30 45 ee 0 400

* Your fit programme will probably converge even if you use the
wrong function. Need a way to pick this up - we want to the
quantify badness of our fit.
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Goodness of fit and x2 distribution

¢ Given this definition: N (n f )2
1 - J1
o;

XQZZ

1=1

what value for x2 would you expect?
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Goodness of fit and x2 distribution

¢ Given this definition: N

X2 _ Z (nz szz)

1=1

what value for x2 would you expect?

e |f we got our error estimates right, we’d expect a typical
difference between model and data in each bin of 10.

e So we’d expect, for N bins:

x> ~ N,

2
-

=1a¥
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Goodness of fit and x2 distribution

¢ x2 definition: N

X2 _ Z (nz szz)

1=1

e However, we are not just comparing a model and data. We are
allowed to adjust the model.

e To account for the extra wiggle-room each fit parameter
provides, we define the number of degrees of freedom as

ndf = Nbins — Nﬁt parameters

* We expect X2 1

Y g
'Y,
Jonas Rademacker n df Statistics TESHEP 2024
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Fit quality as a probability: How likely am | to get a fit
that bad or worse if my model is correct?

* The probability density to get a certain x?
for a given number of degrees of freedom:

1 2
P 2, df) = ndf—2 —x“/2
OCmdh) = S mar ) X ¢

e Calculate the probability, p, to get a x2this

bad or worse*
O

p = / P(x"*;ndf) d(x*)
X2
e |If p is smaller than a few %, it gets a bit

worrying.

*) root does it for you, with the stupidly named function TMath::Prob
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Probabillities, PDFs and likelihood fitting

Skip in TESHEP 2024 lectures
GOTO slide 115.
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Probability
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?

e |If you are female, it is only 0.026% (male: 0.069%)
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
e |If you are female, it is only 0.026% (male: 0.069%)

e [f you are a male in Scotland, it is 0.1%
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Probability

¢ As an average UK citizen, at the age of 20, the probability that
you die within a year is 0.048%.

e But who is average?
e |If you are female, it is only 0.026% (male: 0.069%)
e [f you are a male in Scotland, it is 0.1%

e But what if you smoke? If you don’t? If you are a heroin-addicted
bomb-disposal expert?
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What is Probability”?

e Mathematically: Defines basic properties suchas0<P <1 and
calculation rules; all other definitions must satisfy also this one.
But: No meaning.

¢ Frequentist: How many times ne does something (event E) happen
if | try N times? P(E) = ne/N for N—
Problem: What if | can try only once?

e Bayesian: Probability is a measure for the “degree of belief”’ that
event E happens. One possible definition: I’d bet up to € ne that E
happens, if | get € N if | win: P(E) = (£ ng)/(£ N).

Problem: Subjective (not good for science, but occasionally
unavoidable, e.g. for systematics.)
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Probabilities nomenclatura

e P(A) = probability that A happens

e P(A or B) = probability that A happens, or B happens, or
both.

e P(A & B) = P(A and B) probability that both A and B
happen.

e P(A|B) = “P of A given B”, the probability that A happens
given that B happens.

e Note: while P(A & B) = P(B & A), P(A or B) = P(B or A),
P(A|B) # P(B|A), for example:
P(pregnant | woman) = a few %
P(woman | pregnant) = 100%
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Probabillities

¢ Inside the red box everyone who likes football.

Lo
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Adding non-exclusive Probabillities

e What is the probability to pick
somebody who likes football
(outcome A) or the colour pink
(outcome B)?

wrong

e Not P(A or B) =P(A) + P(B),
because we would be double-
counting those who like football
and the colour pink.
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Adding Non-Exclusive Probabilities

e P(A or B)
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Adding Non-Exclusive Probabilities

e P(A or B) = P(A) + P(B) - P(A and B)
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Conditional Probabilities

« P(A given B) = P(A|B) = P(A and B)/P(B)

* P(B given A) = P(BJA) = P(A and B)/P(A)

e P(A and B) = P(A) - P(B|A) = P(B) - P(A|B)
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Bayes’ Theorem

e P(A and B) = P(A) P(B|A) = P(B) P(A|B)

e From this follows Bayes’ theorem:

P(A|B) = P(B|A) P(A)/P(B)

Jonas Rademacker Statistics
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Bayes’ Theorem Very important
theorem.

Also worth noting:
This Is not Bayesian
*P(A and B) = P(A) P(BJA) = PB) P(AIB)  Statistics (every
frequentist will
happily use Bayes’
theorem)

e From this follows Bayes’ theorem:

P(A|B) = P(B|A) P(A)/P(B)
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly

100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e [f you test positive, how worried should you be? Are you likely
to be infected?
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Problem

¢ 0.01% of the population is infected with a nasty, contagious
Virus

A test for this virus is developed. This test identifies correctly
100% of those carrying the virus. Amongst those that do not
carry the virus, it gives the correct result in 99.8% of the cases.

e [f you test positive, how worried should you be? Are you likely
to be infected?

e Task: calculate how likely you are infected if the test is positive
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Probabilities for Continuous Distributions
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Probabilities for Continuous Distributions

e Say you have a 100 strings between 10cm and 12cm long
and measure their length.
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Probabilities for Continuous Distributions

e Say you have a 100 strings between 10cm and 12cm long
and measure their length.

e How many are 11 cm?

e But how do we describe a probability distribution where the
probability of each event is zero?
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Probabilities for continuous variables

¢ P(x) = probability density function (PDF)

e PDFs are not probabilities. But we can use them to calculate

probabilities that we find a value between aand b
b

P(x € [a,b]) = /P(x’)dx’

a

* This integral is a probability. If you integrate over a small
range, such as a histogram bin of width Ax, the probability to
find an event in that bin is

P(find event in bin centered at x) = P(x)Ax
Expected number of events in that bin = Nictal P(X)AX

e BTW, the Gaussian discussed earlier is a PDF.
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PDFs for real variables

e Frequent student mistake: decide which of the three great
distributions applies (Binomial, Poisson, Gauss) based on
whether a variable is continuous or not.

e But: You can use Probability Density Functions (and Gaussians)
for discrete variables. It’'s an approximation, but often a useful
one.

¢ |t’'s the same as approximating discrete people with a
population density or discrete atoms with a mass density.
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PDFs: important properties

e Normalisation - the probability that something happens is 1:
+00

/ P(z')da = 1

— 0

e Expectation value of x, or any function of x, gives the average
expected outcome for x (function of x)

() = / o P(') da’ (f(2)) = / F(a)P(a') do

*Variance V = (x2) —(x)2
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PDFs and change of variables

e et P(x) be a PDF. Then P(x) dx is a probability.

e | et y be a function of x (suitable for co-ordinate
transformations, i.e. bijective [one-to-one], and also
differentiable).

e Then P(y) dy = P(x) dx = P(y) = P(x) dx/dy.

¢ This can give negative P(y) because the derivative can be negative. This would be
handled by the corresponding swap in integration limits, giving positive integrals.
We’d rather have positive PDF’s and decide that integration limits for PDFs will
always be from the lower to the higher value.

e Hence P(y) = P(x) |dx/dy| :
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Example: Variable Transformation %

1
—  between 0 and 10
_ 10
P(:z:) { 0 otherwise

y =121 =./yfor x>0
P(y)dy = P(x) dx
dx
dy
1
2VY

P(y) = P(z)

= P()

1
20./7

}

0.1

y

— 0.25— :
22X o8
O oefF
0.14F
0.12fF

0.1
0.08
0.06
0.04
0.02

1.0/(20*sqrt(x)) X

0.22F

02F

— ‘
> 0.18}F

SN—"

Q. o.16

Check out https://ftinyurl.com/TeshepVariableTrafo for related python code.
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Last time: X2 Fitting

e Use for binned data

SUREREEY

usually oi = \[f(xi)=/ni
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Last time: X2 Fitting

e Use for binned data

usually oi = \[f(xi)=/ni
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Last time: X2 Fitting
e Use for binned data
* Minimise weighted
distance between

data and function
that describes data.

Jonas Rademacker
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Last time: X2 Fitting

e Use for binned data

* Minimise weighted
distance between
data and function
that describes data.

I'
0 9 X

2 Z (nmeas(xi) B f(xz))

2 usually ai = Jf(xi)={ni

X

all bins
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Likelihood fits

¢ Define the likelihood:

all data points

¢ View this as a function of the parameters of the PDF, here T:

L(T)= H P(t;;7)
all data points

® This gives us the probability that, given T, we see the data we see. We
adjust T to maximise this.

¢ Note that this does not give us the probability that T is the right value
(although we would probably quite like to know that - too bad, it’s not
what it tells us).
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Likelihood fits

e Rather than maximising this product:

L(T)= H P(t;;T)

all data points

e it is usually easier (and equivalent), to maximise the logarithm of
the likelihood, since this turns the product into a sum

InL(7) = Z In P(t;;7)

all data points
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Normalising your PDF

e This property: ™%
/ P(z)dzr =1

— OO

is crucial! Often you have a function f(x) you want to fit to the
data that is not normalised. Before you can use it in your
likelihood fit, you must always normalise it

Sz oo

P(CE) — + 00 ( ) + o0 +f f(CC/) dx’
J A [ paar ==

e T 1)

=1
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Normalising your PDF

e This property: ™%
/ P(z)dzr =1

— OO

is crucial! Often you have a function f(x) you want to fit to the
data that is not normalised. Before you can use it in your
likelihood fit, you must always normalise it

_ +o0
P(CE) T 4o + o0 _f f(CC/) dx’

LI [y =22 =1\/
. [ ) o
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Likelihood Shape

¢ | should be Gaussian, and L should be a parabola (hear

the maximum) from which you can read off the
uncertainty

Jonas Rademacker

100

999 -

99.8

9.7 -

994

993 |-

992

9.1 |

99

Inl = —

(a —a)’

2
20:

100-(t-1)*+2

0.5

Statistics

+ (meaningless constant)
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Uncertainty from likelihood “Parabolic Error”

¢ You can also calculate the uncertainty directly from

12
Inf = _(a2 g) + (meaningless constant)
O-a
d*(In L) I
d CL2 at a=a B o CZL / \ :

Oq —
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Error Estimate

Jonas Rademacker

100

999 |-

998 |-

99.7 |

996 |-

+ (meaningless constant)

100-(t-1)**2

05

Q>_.|.----------- EEEEEEEEEEEEEEEEEENN

Statistics
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Error Estimate for low N

e If it’s not a Gaussian, you get asymmetric errors.

Jonas Rademacker

992 |

99

98.8

a —

T
100-(t-1)%%2 + 0.2%(t-1)%*3

a _

0.5

1
Al — —
n/l 5
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Quality of Fit

¢ Very tricky for likelihood fits. The value of the likelihood function does
not tell you anything at all about the quality of the fit.

OscillationHisto GarbageHisto
- OscillationHisto _ GarbageHisto
N = Entries 0 g L Entries 198
E Mean 1.792 g 12— Mean 14.08
E RMS 4.376 E L | RMS 8.898
< 5 < L I ]
1 —
1 —— r
08f—
05 -
- 06—
0 —

04—

02

oy o by ey by by by b s by by e bew oy Bl - . L . P TR S N N, T R
20 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25
time (ps) time (ps)

e One solution: After doing an un-binned likelihood fit, bin the data and
calculate the x2 between data and fit.
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Quality of Fit

¢ Very tricky for likelihood fits. The value of the likelihood function does
not tell you anything at all about the quality of the fit.

InL =-276.3 InL =-271.4

OscillationHisto

OscillationHisto
Entries 0
Mean 1.792
RMS 4.376

Asymmetry

e One solution: After doing an un-binned likelihood fit, bin the data and
calculate the x2 between data and fit.
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x2 Fitting and likelihood.

¢ | et’s do a binned likelihood
fit. Our model predicts f(x1)
events for bin centred at
x1.

>

® The probability to see n;
events given that we
expect f(xi) is given by a
Poisson distribution

P(ni; f(x;)) = e /") S (i)™
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x2 Fitting and likelihood.

¢ Binned likelihood:

P(ng; (1)) = et L &)™

e if n; is large, approximate

1 _Uep=—n? .
P(ni; f(gj,b)) — e 2(/F(z))? >
V2my/ f () X
Gaussian that inherits from Poisson with )\ = f(a:z) = ; = O'Z-Q
e log-likelihood }
_ . , _ 1 (f(ﬂ?z') -

f(x;)
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x2 Fitting and likelihood.

* The x2 fit is equivalent to a binned likelihood fit for large
numbers of events. The interpretation of the x2 in terms
probabilities etc is based on that.

e Conversely, x2 fits only work properly if you have a large
number of events in each bin. Say at least 10.

e What to do if you have fewer than 10 events in a bin:
e Merge bins until you have at least 10 events per bin.

e Do a binned likelihood fit (i.e. simply do not approximate the
Poisson with the Gaussian).

e Do an unbinned likelihood fit.
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Testing your fit

Whatever you do, test your fit!
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Pull study

e Simulate a lot of datasets using o=1.4 for 1k events = wrong errors
Monte-Carlo simulation. ] —
* Fit each dataset and calculate the o
oull = (fit result) — (true value) )
(error estimate) e T

and put it in a histogram. 0=1.0 for 1k events = correct errors

[ Pull distribution for a,_ | - h1 -

. n 240 E!Z:: ) n.n:ggil

* For a good, unbiased fitter, you s
A

et: 1
g Mean = 0+ .
VNexo :

1 e

o = 1= e
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Monte Carlo Simulations

* To test your fit, you need to try it out on simulated
data.

* To really test it properly, you cannot rely on the
experiment’s detailed simulation - you want to run
thousands of simulated experiments and see if your
fitter behaves as expected. You need a simplified, fast
Monte Carlo for that.

* Today:
* How do generate any distribution

* How to do it a bit more efficiently
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A




Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

* Define a box from 0 and 10, such that f(x) is always
below the box (i.e. you need to know f(x)’s maximum
in the are of interest).
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Von Neumann Accept-Reject

* Aim: Generate f(x) between 0 and 10

A

0 10

e Randomly shoot into the box. Accept those events that
are below the red line.
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Von Neumann Accept-Reject

0 10
e x =rnd->Rndm() - 10;

y = rnd->Rndm() - fmax;

if(y < f(x)) acceptEvent(x,y)
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MC-integration

>
X

0 10

e This can be used for MC integration - the fraction of
points accepted is « to the area under the curve.

* This is the most efficient method of numerical
integration in many dimensions (say more than 3).
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Von Neumann Accept-Reject

0 10

* Can be very inefficient for peaky distributions
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Problems, Solutions and other links

Problem sheet: https://tinvurl.com/TeshepProblems
Solutions: https://tinyurl.com/TeshepSolutions

Jupyter Workbook for Monte https://tinyurl.com/TeshepMC
Carlo a la TESHEP

Solutions: https://tinvurl.com/TeshepMCSolved
J_Upyter Workbook for Chi2 https://tinyurl.com/TeshepFit
fit ala TESHEP ) )
) https://tinyurl.com/TeshepFitSolved
Solutions:

Additional Jupyter notebooks to play around with:
https://tinyurl.com/TeshepStatCode

Links for installing jupyter and anaconda:
http://jupyter.readthedocs.io/en/latest/install.html

https://docs.anaconda.com/anaconda/
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The End



