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Dark Matter Problem

One of the indicators of the existence of dark matter is the galaxy
rotation curves.

e If there were no hidden mass, according to classical physics, rotation
curves would look like A, but because of the dark matter halos around
the galaxies, they appear different v =~ constant

Another indication of hidden
mass is gravitational lensing
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Calculated by this method, the
masses of galaxies are much
higher than expected. They far
exceed the mass of observed
baryonic matter through the
galaxies




Alternative Model Of Gravitation

Cotton gravity is a MOND (Modified Newtonian dynamics) type
theory.

A new term is added to the gravitational potential that depends linearly
on the distance from the point source.
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 Every solution of Einstein's equations satisfies the equations of the
new model, both with and without the cosmological term.
 The cosmological term is introduced as an integration constant.

J. Harada, “ Emergence of the Cotton tensor for describing gravity,” Phys. Rev. D (2021) °



Cotton Tensor

The main mathematical object of this theory is the rank 3 Cotton tenor,
(Emile Cotton; 1872-1950) which is related to Weyl and Riemann tensors.

1
CVDU — QVHJWHVPU — VPRUO' - VO'RVP - é(gyO-VPR - gypvo-R) (3)
Properties: v Cypg' —0 Conservation of Energy-Momentum

e Zero derivative :
guPCWJ =0 — > V'C,,e =16xGV, T* =0
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o Zero Trace:

« Antisymmetric : Cupo +Cusp =10 v, T",=0

« cyclic permutations : Cy 5 + Cpop + Cgpp =0 @

Vacuum equation: Cupo =0 ©

E. Cotton, ,, Sur les variétés a trois dimensions, “Annales de la Faculté des Sciences de Toulouse (1899) “



Schwarzschild-like metric

A spherically symmetric Schwarzschild-like solution of (5) is given

by:
ds®> = —e" M dt? + e " dr? + r%(dh? + sin? 0dp?) ©
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Where: —goog = 1/911 = BV(T) =1 — —T2 ~+ 6)
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Schwarzschild-de Sitter metric

This extra linear term has been successfully used to describe the
galaxy rotation curves without the dark matter

« v and A are integration constants and they can be estimated using
the radius of the observable universe (Hubble horizon).

For example, In case of the solar system: 7 = 1.9 X 107*°m ™!

J. Harada, “ Emergence of the Cotton tensor for describing gravity,” Phys. Rev. D (2021)



Galaxy Rotation Curves
The equivalent of Poisson's equation in this theory can be

expressed as:
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And in spherically symmetric case this can be solved to obtain
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General spherically symmetric vacuum solution

We can consider more general case where g;.(r) # —1/g,,(r) is not
satisfied

ds? = —e*Mdt? + e P dr? 4 r2(dh? + sin? 6d¢?) ©)

If we take previous expression for a this equation can be solved

analytically for second unknown function g
2maG

We get a large expression which in large distances, where — =0 and
yr < 1, can be reduced to
2GM
b= Tt Cor? 10)

Our goal is to fully, analyze the solutions in different limits and their
cosmological application, in particular fitting to galaxy rotation
curves. We also plan to solve field equations of Cotton gravity in
different metrics.

7
Gogberashvili & Girgvliani, “General spherically symmetric solution of Cotton gravity,” CQG (2024)



Velocity squared force

The appearance of a term Cr? eventually leads to the velocity dependent part

in geodesic equation.
For geodesic equation under the assumption of static space-time and weak
gravity ‘

d*x _dxtdx”
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We get what in the spherically symmetric case of Cotton gravity we get
additional v?dependent term in radial acceleration
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Where this new repulsive long-range correction to Classical gravitational
force, which in principle could provide explanation for observed
acceleration of the universe.

K. Loeve, K. S. Nielsen and S. H. Hansen, “Consistency analysis of a Dark Matter velocity dependent
force as an alternative to the Cosmological Constant,” Astrophys. J. (2021). 8



Summary

 Cotton Gravity inherently includes general relativity

 Galaxy rotation curves have been successfully described by
Cotton Gravity using a linear term in the Schwarzschild solution
(Dark Matter)

» Schwarzschild-like solution gives us many interesting results
such as % dependent term in metric. Also using different
approximations, we can calculate that there should be naked
singularity on black hole photosphere

 Because of the % term, we get long-range repulsive force that is
dependent on velocity squared (Dark Energy)

« By using more general metrics, we can obtain results that could
have significant implications on cosmological scales.
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One approach to develop alternative model of gravity, without fundamentally revising existing theory,
involves using the once-contracted differential Bianchi identity:

VQ'RC:BU.;_L — V#Ryﬁ o VI/R,’J:IS ’ (]')

where V,, denotes the covariant derivative associated with the Levi-Civita connection. By replacing
the Ricci tensors at the right side using the standard Einstein equations,

1
R,uy = 8¢ (Tm, — EQMVT) . (2)

we obtain the third order to the metric tensor differential equations (first order with respect of the
Riemann tensor). If additionally we express the Riemann tensor by the Weyl tensor, W,z,,, the
condition (1) obtains the form of so-called quasi-Maxwellian equations of gravity:

V*Weauwe = 471G My, (3)
where the gravitational 'current’,
1 1
-ﬂ"fapv - v,u (Tau - EQJVT) -V, (Tgp, - g gauT) 1 (4)

is covariantly conserved quantity,

Vo My =0 . (5)

11
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TABLE I. Parameters for galaxies. Column (1) gives the galaxy name. Column (2) gives the numerical Hubble type adopting
the following scheme: 0 = S0, 1 = Sa, 2 = Sab, 3 = Sb, 4 = Sbe, 5 = Se, 6 = Sed, 7 = Sd, 8 = Sdm, 9 = Sm, 10 = Im.
Column (3) gives the assumed distance. Column (4) gives the assumed inclination angle (¢). The parenthesis shows the
error. Columns (3) and (4) are obtained from the SPARC |12]. Column (5) gives the constant in Eq. (24). Column (6) gives
the mass-to-light ratio at 3.6 pm band (Y,) of the stellar disk. Column (7) gives the baryonic mass (Mpar). The baryonic
mass is a sum of the stellar mass M, and the gas mass Mg.s. The stellar mass is a sum of the masses of the stellar disk
Mais and the central bulge Mpyjge. Column (8) gives the disk fraction (faisk = Maisk/Mpar). Column (9) gives the bulge
fraction (foulge = Mbulge/Mbar). The mass-to-light ratio for the bulge is assumed to be 1.47, for all galaxies with the bulge.
Column (10) gives the gas fraction (fgas = Mgas/Mbpar). Gas mass is estimated by Mgas = 1.33Mur, where My is the H 1 mass
and 1.33 represents an enhancement factor to account for the cosmic abundance of helium. Columns (5), (6), (7), (8), (9), and
(10) arc obtained in this work. Column (11) gives the references for the radial H 1 surface density profiles (Xu1) used in this
work: All5 [13], An22 [14], Ba05 [15|, Ba06 [16], BC04 [17], BW94 [18], Ca90 [19], CB89 [20], Co91 |21], Co00 |22], CP90 [23],
Fr02 [24], Frl1 [25], Ga02 [26], Ge04 [27], Hal4 [28], HoO1 [29], JC90 [30], KeO7 [31], Lel4 [32], MC94 [33], No05 [34], Rh96 [35],
SGO06 [36], Sw02 [37], VHI3 [38], VSO1 [39].

Name Type D i Yealaxy /2 T, Mhar faisk Soulge feas Ref.
(Mpc) () (km® s pc')  (Mo/Lo)  (10°Me)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

DDO064 10 6.80 60(5) 0.75 0.50 0.391 0.208 0.000 0.792 Sw02
DDO154 10 4.04 64(3) 0.39 0.65 0.385 0.084 0.000 0.916 CB89
DDO161 10 7.50 70(10) 0.28 0.34 2.778 0.066 0.000 0.934 Co00
DDO168 10 4.25 63(6) 0.67 0.50 0.432 0.212 0.000 0.788 HoO1
DDO170 10 15.40 66(7) 0.31 0.50 1.033 0.244 0.000 0.756 HoO1
ESO079-G014 4 28.70 79(5) 1.38 0.67 37.932 0.886 0.000 0.114 Ge04
ESO116-G012 7 13.00 74(3) 1.15 0.77 4.837 0.683 0.000 0.317 Ge04
ESO444-G084 10 4.83 32(6) 1.20 0.50 0.209 0.168 0.000 0.832 Co00

12
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ds* = [1 — A(r)| dt* —

dr® — r* (d6” + sin” 6d¢”) .

B(r) =

For the pure Schwarzschild case with v = A = 0, the metric functions

2Gm
Asch(r) = —

rd(r — 2Gm)Ca + (4r — 9Gm)(r — 2Gm)C1  2Gm(45G2m?2 — 7r?)
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13
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In Cotton gravity, the extra long-range curvature can be
interpreted as an effective perfect fluid filling the universe, giving
rise to this additional force. The appearance of such correction is
natural, as velocity-squared forces are known to exist in other
physical systems, such as drag forces on objects moving at high
speeds relative to a surrounding fluid.

Velocity-dependent forces, like the Coriolis and Lorentz forces, are
well-known, but velocity-squared forces are relatively rare. The
concept of a gravitational force proportional to the square of the
velocity was initially proposed by Schrodinger, and more recently,
a repulsive force proportional to the squared velocity dispersion of
a structure was derived by contracting the relativistic
generalization of angular momentum. 14
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