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Quantum Chromodynamics (QCD): Why so important?

• old topic (early 70’s) but still really much alive today
• people are still very active working on QCD

• many connections to other areas in particle physics

QCD CP violation and flavour physics

BSM and precision SM

Heavy Ion Physics (high T and density)
QFT

Nuclear Physics (π, N )

Cosmic rays
Collider Physics
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High-energy physics at hadron colliders

LHC: Collision of two protons
• we send protons (∼ 10−15 m) at very high energies to probe

very short-distance scales (∼ 10−18 m)
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• understand all the physics behind at different energy scales:

from ∼ 1 GeV up to ∼ 1 TeV
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Propose of the short course

• Introduce basic concepts of perturbative QCD (or refresh your knowledge)

• Understand the terminology

• Be familiar with most important developments in the field

• But no historical introduction (lack of time)

Two lectures:

1. Basics of (perturbative) QCD: [SU(3)]colour, QCD Lagrangian, Gauge invariance and

gauge fixing, Feynman Rules, Colour Algebra, Renormalization and Running Coupling,

Asymptotic Freedom, naive Parton Model

2. Perturbative QCD and the improved Parton Model : NLO perturbative corrections,

IR soft/collinear singularities, Cancellation mechanism and safe observables, Initial-State

IR divergences, Universal Factorizaton of Collinear Singularities, Scale-dependent Parton

Densities, Scaling Violation, DGLAP evolution equations
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Basics

Quantum Chromodynamics (QCD): theory of strong (or hadronic) interactions

• usually formulated in terms of elementary QCD fields:

quarks (antiquarks) and gluons

• whose interactions obey principles of a relativistic Quantum Field Theory (QFT)

• with a non-abelian gauge invariance SU(3)

Hadron spectrum fully classified with the following assumptions:

• hadrons: qq̄ (mesons) and qqq (baryons):

made of 1/2 spin quarks

• each quark of a given flavour comes in Nc = 3 colours

• colour SU(3) is an exact symmetry

• hadrons are colour neutral (colour singlet under SU(3))
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Quarks and flavour quantum numbers

Quark field: ψf (x) ⇒ usual spin 1/2 fermion field

(like electron, but fractional electric charge ef )

• flavour: f = 1, ...,Nf

• Nf = 6 different types of quarks

• 3 light quarks: u, d, s

(mass « 1 GeV ← typical hadronic scale)

Naive quark model (Gell-Man and Neeman, 1961)

• mass spectrum of ordinary hadronic matter

symmetric under [SU(3)]flavour

• successful in understanding hadron spectroscopy

• but it requires one additional quantum number
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Colour quantum number and [SU(3)]colour

From Baryon spectroscopy: ∆++(1230)

⇒ spin 3/2 baryon resonance observed in πN-scattering

• ∆++ = u↑u↑u↑: observed quantum numbers suggest that the wave function is

completely symmetric w.r.t. spin and flavour quantum numbers

• forbidden by Pauli exclusion principle (u-quark is fermion)

• need additional quantum number to be antisymmetrized: ∆++ = εijku
↑
i u

↑
j u

↑
k

• εijk : completely antisymmetric tensor (Levi-Civita)

• colour indices: i , j , k = 1, ...,Nc , with Nc = 3 (at least)

⇒ New quantum number solves spin-statistics problem
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First experimental evidence for colour

From total cross sections in e+e−-annihilation:

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
∝ Nc

∑

f e2
f

e2
µ

= Nc

∑

f

e2
f

• nf = 3⇒ R = 2
3
Nc

• nf = 4⇒ R = 10
9

Nc

• nf = 5⇒ R = 11
9

Nc

• respective exp. data:

R = 2, 10
3
, 33

9
⇒ Nc = 3

[SU(3)]colour is an exact symmetry of the nature 9



Colour singlet hadrons

Observed hadrons do not carry

colour quantum number
⇒ Only colourless states can exist in

nature (colour confinement)

Hadrons are invariant under colour transformations (colour singlets)

• symmetry transformation: ψi
f ⇒ triplet under [SU(3)]colour rotations

• quarks ⇒ fundamental irrep. (3) • antiquarks ⇒ conjugate irrep. (3̄)

Transformation properties

of different states under [SU(3)]colour

• qq: 3⊗ 3 = 3̄⊕ 6 (no colour singlet)

• qq̄: 3⊗ 3̄ = 1⊕ 8 (singlet: meson)

• qqq: 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (singlet: baryon)

• other combinations possible: qqqqq̄, qq̄qq̄, etc.

• but not (exotic): qq, qqqq, qqq̄ , etc. 10



"Rotations" in "colour space"

has to be invariant under

local SU(3) transformations

Elements of the special unitary Lie group SU(Nc):

• Nc × Nc complex matrices U(x) ⇒ 2× N2
c parameters

U†U = UU† = 1 (unitary) → N2
c conditions

det(U) = 1 (special) → 1 condition

• most general parametrization: U(x) = e igϑa(x)ta

• ta are matrix generators of Lie algebra of SU(Nc )

• ϑa(x) are independent arbitrary (real) parameters (functions)

• 2N2
c − N2

c − 1: there are a = 1, ...,N2
c − 1

• for Nc = 3 there are 8 independent parameters and generators 11



[SU(3)]colour generators

In QCD with Nc = 3:
• representations of ta generators are hermitian and traceless matrices (3× 3)

ta =







m z1 z2

z∗1 n z3

z∗2 z∗3 −m − n







• 8 independent real parameters: m, n (2) and

two for each complex number z1, z2, z3 (6)

• [ta, tb] = if abctc ⇒ do not commutate ⇒ non-abelian group

• structure constants of the SU(3) group: f abc 6= 0

• quarks transform in the fundamental

(triplet) representation:

(ta
ij)F = 1

2
λa

ij

• λa
ij : Gell-Mann matrices

• i j 1 2 3 quark colours
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Gluons

The most general (local) colour transformations involves the exchange of

• Aa
µ(x) with a = 1, ..., 8 colour fields ⇒ gluons (spin 1 and massless)

• gluons transform in the adjoint (octet) representation: (ta
bc )A = −if abc

• can be "associated" to Gell-Mann matrices

• carry colour and anticolour

R =







1

0

0






, G =







0

1

0






, R =

[

1 0 0
]

, G =
[

0 1 0
]

⇒ λ1 =







0 1 0

1 0 0

0 0 0






RG or GR

• gluon colour wave-functions are the same as for mesons
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Gauge interactions

GAUGE → standard of measure or calibration
• GLOBAL gauge invariance means that the charge is conserved

LOCAL GAUGE SYMMETRY
→ calibration convention

• convention can be

decided independently in

each space-time point

All known forces in Nature are

gauge interactions!
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The QCD Lagrangian

Main properties of QCD: NON-ABELIAN and RENORMALIZABLE gauge theory

L(x) = −1

4
F a
µνF

aµν +

Nf
∑

f =1

ψ
i

f [iγ
µ(Dµ)ij −mf δij ]ψ

j
f

• covariant derivative: [Dµ]ij = δij∂µ − igta
ijA

a
µ

• ta
ij are SU(Nc ) generators in the fundamental representation

• i , j = 1, ...Nc and a = 1, ...N2
c − 1

• g is the QCD coupling and ψi
f is quark field

• gluon field strength: F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcA

b
µAc

ν

⇒ Complete analogy with QED

but gluon Aa
µ carries colour charge a (colour-anticolour)

• gluons are charged w.r.t. strong interactions
→ gluon radiation from quark changes its colour
→ gluons interact between themselves 15



The QCD Lagrangian and interactions

• F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcA

b
µAc

ν ⇒ source of all peculiar features of QCD

• split the QCD Lagrangian:

L = Lfree + Linteraction

Lfree is quadratic in Aµ, ψf

Linteraction = g

Nf
∑

f =1

ψ
i

f γ
µta

ijA
a
µψ

j
f − gf abc∂µAa

νA
b
µAνc − 1

4
g2f abc f adeAb

µAc
νA

µdAνe

i j

βα

g

q

µa

p1 p3

p2

a1 a3

a2

µ1 µ3

µ2

p1

p4

p2

a1 a4

a2

µ1 µ4

µ2 µ3
a3

p3
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Feynman Rules

QCD:

i j

βα

q

p

a b

νµ

g

p

i j

βα

g

q

µa

p1 p3

p2

a1 a3

a2

µ1 µ3

µ2

p1

p4

p2

a1 a4

a2

µ1 µ4

µ2 µ3
a3

p3

i

p2 −m2 + iε
δij (/p + m)αβ

i

p2 + iε
δabdµν(p)

−ig(ta)ij(γ
µ)αβ

−gf a1a2a3[gµ1µ2(p1 − p2)
µ3

+gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2 ]

−g2[f ba1a2 f ba3a4(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+g2[f ba1a3 f ba2a4(gµ1µ2gµ3µ4 − gµ1µ4gµ3µ2)

+g2[f ba1a4 f ba3a2(gµ1µ3gµ4µ2 − gµ1µ2gµ4µ3)

QED:

βα

e

p

νµ

γ

p

βα

γ

e

µ

i

p2 −m2 + iε
(/p + m)αβ

i

p2 + iε
dµν(p)

−ie(γµ)αβ
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Gauge invariance and gauge fixing (quantization)

The QCD Lagrangian:

LQCD = Lclassical + Lgauge-fixing + Lghost

• The gauge-fixing term is needed because of a degeneracy of sets of gluon field

configurations that enter the path-integral formulation of QCD and which are

equivalent under gauge transformation

• This degeneracy makes it impossible to write a gluon propagator.

Adding gauge fixing term solves the problem.

Lgauge-fixing = − 1

2α
(∂µAaµ)(∂νA

aν)

Gauge fixing explicitly breaks gauge invariance. However, in the end physical results are

independent of the gauge choice.
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Gauge invariance and gauge fixing (quantization)

Specification of gluon (photon) polarization tensor requires gauge choice

dµν(p) =
∑

λ

ǫµ(λ)(p)ǫ
ν
(λ)(p)















−gµν + (1− α) pµpν

p2 + iε
, covariant gauges

−gµν +
pµnν + nµpν

pn
− n2pµpν

(pn)2
, axial gauges

• covariant gauges: depend on parameter α

• α = 0: Landau gauge

• α = 1: Feynman gauge

• axial gauges: depend on an arbitrary vector nµ

• big advantage: ghost contributions disappear

• Light-cone gauge: a special case of axial-gauge with n2 = 0
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Gauge invariance and gauge fixing (quantization)

The QCD Lagrangian:

LQCD = Lclassical + Lgauge-fixing + Lghost

• In covariant gauges ⇒ GHOST contributions

(propagates as a scalar but contributes as a fermion)

a bp a c

g

p

µb

δab i
p2+iǫ

gf abcpµ

Lghost = ∂µη
a†(∂µδab + gfabcA

cµ)ηb

• Ghosts are complex scalar fields obeying Fermi statistics

• to cancel unphysical longitudinal degrees of freedom which should not propagate

• ALTERNATIVE: choose an axial gauge and introduce an arbitrary direction (then

only two physical polarizations propagate)

20



Gauge invariance and gauge fixing (quantization)

• Gauge equivalent configurations are not dynamical degrees of freedom

• In the quantization procedure:

⇒ permit propagation of only physical (transverse polarizations)

degrees of freedom for gluon (photon), i.e. fix the gauge

• Two general options:
• physical gauges → select only 2 transverse polarizations (in a given frame)

• e.g. n
µ
A

a
µ = 0 (axial gauge) where n

µ is an arbitrary fixed four-vector

• covariant gauges → propagation of full Aa
µ

(physical + unphysical)

• but introduce another unphysical field (ghost) to cancel unphysical (longitudinal)

degrees of freedom of A
a
µ

• ghost interact in QCD (in QED it decouples and can be forgotten)

Which gauge one should use?

• physical gauges: intermediate steps not

explicitly Lorentz invariant

• covariant gauges: introduction of ghost

In practice:

• typically, physical gauges are simpler for

lowest-order calculations and for

approximate higher-order calculations 21



Gauge invariance and gauge fixing (quantization)

QCD Lagrangian invariant under SU(Nc ) local transformations

• one can redefine the quark and gluon fields independently at every point in space

and time without changing the physical content of the theory

ϑa ≪ 1→ infinitesimal transformation

[U(x)]ij = [e igϑa(x)ta ]ij ≃ 1 + igϑa(x)ta
ij +O(ϑ2)

ψi
f (x)→ [U(x)]ijψj

f (x) = ψi
f (x) + igϑa(x)ta

ijψ
j
f (x)

Aa
µta

ij → [U(x)]ikAa
µta

ke [U
−1(x)]ej +

i

g
[U(x)]ik∂µ[U

−1(x)]kj

Aa
µ → Aa

µ − ∂µϑa − gf abcϑbAc
µ

• colour rotation (absent in QED) and longitudinal shift (QED-like)

• in QCD longitudinal component re-interact because of colour rotation
22



Colour Algebra and Colour Factors

• Calculation of Feynman graphs similar to QED apart from an overall colour factor

• explicit form of colour matrices not important for most practical purposes

• most relevant colour relations:

Tr(tatb) = TRδ
ab

(tata)ij = CF δij

f abc f abd = CAδ
cd

TR = 1/2 (normalization)

CF =
N2

c − 1

2Nc

CA = Nc

{

Tr(T a) = 0

[T a,T b] = if abcT c

either (T a)ij = ta
ij

or (T a)bc = ifbac

ataek

δie

δjk

= Tr(tatb) = TR btaji

itakeδjk

δab

= (tata)ie = CF etaij

ab

c

d

= fadcf bdc = CA ba

• Casimirs of the fundamental
and adjoint representations

• CF = 4
3
→ quark colour charge squared

• CA = 3→ gluon colour charge squared 23



Renormalization and running coupling

Main properties of QCD: NON-ABELIAN and RENORMALIZABLE gauge theory

• calculation of radiative corrections → loop contributions (virtual)

g2

∫

d4k
1

k2

1

(p − k)2
→ g2

∫ ∞

p

d4k

(k2)2
∼ g2 ln

∞
p p

k

p− k

p

• ultraviolet (UV) region: k ≫ p → UV divergence: ln ∞
p

• UV divergence is a property of QCD (and many other QFTs): it arises because we

extend our theory up to infinite energies, but each theory is valid only up to a

certain scale Λ

• UV singularities

can be removed by

RENORMALIZATION

PROCEDURE

REPLACE
bare coupling gB renormalized coupling g
(masses mB, ... ) (masses m, ... )

arbitrary parameters
in the Lagrangian

physical parameters
in physical quantities 24



Renormalization and running coupling

• α = g2

4π
by analogy with fine structure constant in QED

• renormalization procedure works by regularization (1) and substraction (2)

(by redefinition (3) of αB)

= + +
HIGHER−ORDER

LOOPS

(1) ∼ αB

{

1+αBβ0

∫ Λcutoff

p2

d4k

(k2)2
+O(α2

B)
}

(2) ∼ αB

{

1+αBβ0(ln
Λcutoff

µ2
+ln

µ2

p2
)+O(α2

B)
}

(3) ∼ α(µ2)
{

1+β0α(µ
2) ln

µ2

p2
+O(α2

µ)
}

α(µ2) ≡ αB

[

1+β0αB ln
Λcutoff

µ2
+O(α2

B)
]

• Λcutoff : UV regularization

• β0: coefficient of UV behaviour

• µ
2: renormalization scale (arbitrary

but diagram independent)

• α(µ2): UNIVERSAL (cutoff/process

independent) but (renormalization)

SCALE DEPENDENT 25



Renormalization and running coupling

• Gauge invariance → UV divergent terms have the same symmetry as bare

Lagrangian and can be absorbed by redefinition of bare quantities

• must use a gauge invariant regularization

• QCD: Dimensional Regularization (DR)

→ the most convenient safe regularization
∫

d4k[4]

(2π)4
→ µ4−d

DS

∫

ddk[d]

(2π)d
, d ≡ 4− 2ǫ < 4

• d-dimensional integrals are more convergent if one

reduces the number of dimensions

• scale µDS needed to preserve the correct dimensions

∫ 1

0

dx

x
→

∫ 1

0

dx

x1−ǫ
=

1

ǫ

• divergent integrals lead to

poles of the form 1
ǫ

• RENORMALIZATION can be carried out at any order of the power expansion in α

26



Renormalization and running coupling

Theory can consistently be defined (renormalization) at the quantum level (remove UV

divergences) by introducing renormalization scale-dependent coupling α(µ2)

• It makes physical sense → in any physical measurement we observe interactions

(coupling) at a certain scale

• QED provides us with an intuitive picture of running coupling

electron

∼

e+

e−
• quantum fluctuations
• the vacuum around the electron is polarized by

virtual e+e− pairs that produce the dielectric effect
• screening of electron charge at large distances

• α(r) =
e2

eff
(r)

4π

• smaller r → less screening

• less screening → larger eeff

• energy (momentum) ∼ 1
r 27



Renormalization group equation and asymptotic freedom

• Size of the running coupling not predicted by the theory

• BUT its scale dependence unambiguously predicted

• From lowest-order definition:

α(µ2) = αB

[

1 + β0αB ln
Λcutoff

µ2
+O(α2

B)
] • β0: coefficient characteristic of UV

behaviour of the theory

d lnα(µ2)

d lnµ2
= −β0α

2(µ2) +O(α3(µ2))
• any unphysical parameter (bare

quantities, UV regulator) disappear

• all-order generalization → RENORMALIZATION GROUP EQUATION

d lnα(µ2)

d lnµ2
= β(α(µ2)) β(α) = −

∞
∑

n=1

βn−1α
n+1 • β: theory dependent function

• R.G. equation predicts scale dependence of running coupling

• only extra input needed → initial condition: α(µ2
0
) at a given input scale 28



Renormalization group equation and asymptotic freedom

Small-coupling solution of R.G. equation:

• suppose α(µ2
0) at a given µ0 is small (α(µ2

0)≪ 1)

• use perturbation theory: dα(µ2)
d lnα(µ2) ≈ −β0α

2(µ2)

• according to the sign of β0 the coupling α(µ2) may

increase or decrease e.g. at large distances (small scales)

actual calculations:

QED

QCD

two different

contributions

γ e+

e−

g
qf

q̄f

Σf

g
g

g

β0 = − 1

3π

β0 = − 1

3π
TRNf

β0 = +
11

12π
CA

negative
(as expected from
screening argument)

negative
(QED-like)

POSITIVE!

Gluons are charged ⇒ the virtual gg -pair spreads gluon charge over large distances
29



Renormalization group equation and asymptotic freedom

⇒ ANTI-SCREENING of gluon colour charge

β0 =











− 1

3π
QED

1

12π
(11Nc − 2Nf ) QCD

• negative: QED coupling increases at short

distances (large momenta)

• positive (for Nf ≤ 16): QCD coupling

decreases at short distances (large momenta)

• ASYMPTOTIC FREEDOM: αS(µ
2) → 0 when µ

2
→ ∞

[

α(µ2) ≡ αs(µ
2)
]

• peculiar feature of QCD (non-abelian gauge theory)

• extremely important for physics of strong interactions

• at large transferred momentum (short distances), hadrons behave as a collection of
free (weakly interacting) partons (elementary constituents: quarks and gluons)

• in this regime, one can use simple method, i.e. perturbation theory, to make
theoretical QCD predictions (no necessity of solving exactly the theory) 30



Renormalization group equation and asymptotic freedom

Solution of R.G. eq. in terms of α(µ2
0
) −→

• QCD: β0 > 0⇒ lowest-order expression

for α(µ2) diverges at low scale

• fundamental QCD scale:

ΛQCD ≈ µ0 exp

(

− 1

2µ0α(µ2
0)

)

α(µ2) =
α(µ2

0)

1 + β0α(µ2
0) ln µ2

µ2

0

(

1 +O(α(µ2
0))

)

1 + β0α(µ
2
0) ln

µ2

µ2
0

≈ 0

α(µ2) =
1

β0 ln µ2

Λ2

QCD

[

1 +O( 1

ln µ
ΛQCD

)

]

• ΛQCD indicates a scale at which αs becomes large and

perturbative theory is not applicable any longer

• ΛQCD ≈ 200 MeV is measurable but it is not an observable

(its value depends on: pert. order, renorm. scheme, Nf )

• increase of αs at low scales consistent with CONFINEMENT

• rigorous proof of QCD confinement still missing
31



Renormalization group invariance

actual size of α(µ2
0) not

predicted from the theory
⇒ fundamental parameter

of the theory
⇒ input from

experimental data

Since renormalization-scale is arbitrary ⇒ How is it related to physical scales?

QED: natural answer ⇒ free electrons are observables

• in the static limit µ→ 0 (µ ≤ me electron mass)

• α(µ2 ≈ 0) measurable from Coulomb interaction

• α(µ2 ≈ 0) = α = 1/137

QCD: free quarks, gluons not observed ⇒ exploit renormalization group invariance
• renormalization scale µ is arbitrary, thus physics cannot depend on it

• any physical observable R

at the physical scale Q2 cannot depend on µ2

(e.g. σtot(e
+e− → hadrons) with

√
s = Q)

R(Q2) = Rtheory(αs(µ
2), µ2,Q2)

• µ2 dependence compensates

32



Renormalization group invariance and running coupling

In principle: no need of any αs(µ
2)

• chose one physical quantity R0 at scale Q0 and from its theoretical expression obtain

αs(µ
2) as a function of R0(Q

2
0
) ⇒ insert this function in:

Rtheory[R0(Q
2
0
),Q2

0
,Q2] (any th. prediction in terms of a single exp. input (R0(Q

2
0
)))

In practice: compute Rtheory(αs(µ
2), µ2,Q2)

with sufficient theoretical accuracy

• set µ2 ∼ Q2 ("natural" physical scale) and

extract αs(Q
2) from comparison

with Rexp(Q
2)

• µ0 = MZ : conventional reference scale

• world average: αs(MZ ) = 0.1181

• τ decays: Mτ = 1.78 GeV → αs ≈ 0.35

Measurements of the running coupling

33



Renormalization and running coupling

few summarizing remarks:

RENORMALIZATION IS NOT A TRICK

• RUNNING COUPLING ⇒ introduction of scale-dependent coupling

makes physical sense

• RENORMALIZATION GROUP EQUATION ⇒ absolute size of coupling not

predicted (input) but its scale dependence unambiguously predicted

• RENORMALIZATION GROUP INVARIANCE ⇒ size of coupling at a reference

scale unambiguously measurable

34



The Parton Model

If we are not interested in details of hadronic
(sufficiently inclusive) process at small scale

=⇒ PARTON PICTURE (factorization of
short-distance and long-distance processes)

Example: Total hadronic cross section in e+e− annihilation (completely inclusive over final state)

e+

e−

Q

γ∗, Z

hadrons

e+

e−

q

q̄

⊗

q

q̄

p ∼ Q p ∼ Q0

h
a
d
r
o
n
se+e−→ X

• parton model (lowest order QCD): σ(LO) = 4πα
2

Q2 Nc

∑

f e2

f

• interactions at high momentum scale: ∝ αn
s (Q

2) ∼ ( 1

ln Q
)n (inverse powers of ln Q)

• hadronization (conversion into hadrons): 1 +O(Q0

Q
)p (inverse powers of Q)

• Q2 →∞ (Q2 ≫ ΛQCD): forget about corrections and simply compute σ(e+e− → qq̄)

35



The Parton Model

• also less inclusive cross sections with triggered hadrons in final or initial state

Example: Single-particle inclusive cross section in e+e− (one hadron observed in the final state)

e+

e− γ∗, Z

anything
e+

e−

q

q̄

e+e− → h(p) +X

h
p

h
p

1
zp

dq→h(z)

parton
model

+

small
corrections
for Q→∞

dσh

d3p
∼

∑

partons

∫ 1

0

dz

z2

(

dσparton

d3pparton

)

1

z
p=parton

· dparton→h(z)

• z : momentum fraction lost in fragmentation process

• dparton→h(z): parton fragmentation function (probability that a given parton

fragments into the observed hadron) 36



The Parton Model

• also less inclusive cross sections with triggered hadrons in final or initial state

Example: Deep-inelastic lepton-hadon scattering (DIS) (one hadron in the initial state)

k

e

γ∗, Z anyt
hing

e(k) + h(p)→ e′(k′) +X

h
p

parton
model

partonic
cross
section

e′

k′

p

zp

Q

fh→q(z)

k − k′ = q

Q2 = −q2≫ Λ2QCD

σh(p) ∼
∑

partons

∫ 1

0

dz · fh→parton(z) · σparton(pparton = zp)

• z : fraction of hadron momentum carried by the parton

• fh→parton(z): parton density

• ⇒ probability to find a given parton into the initial-state hadron 37



The Parton Model

Inclusive hadronic processes at large transferred momentum:
• theory predictions in terms of computable partonic cross sections
• few non-perturbative quantities

PARTON MODEL (PM) ⇒ compute hadronic cross section in terms of:

Short-distance phenomena

• partonic cross section
⊗ (convolution)

Long-distance phenomena

• parton densities (PDFs)

• fragmentation functions (FFs)

• PDFs and FFs: cannot be computed in QCD perturbation theory
• UNIVERSAL: depend only on the hadron and not on the process
• in principle, computable by non-perturbative methods
• IF NOT: extract them from a single process by comparison with

experimental data and use to predict any other process

PM introduced before QCD (Feynman, Bjorken, Gribov, ...) and
justified "a posteriori" because of QCD and its asymptotic freedom 38



THANK YOU!

Next lecture:

How this naive parton model picture can be consistently and quantitatively improved?

⇒ "true" perturbative QCD

39


