

Introduction to (perturbative) QCD: Lecture 2

Rafał Maciuła¹

TESHEP 2024

¹Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Propose of the short course

- Introduce basic concepts of QCD (or refresh your knowledge)
- But no historical introduction (lack of time)
- Understand the terminology
- Be familiar with most important developments in the field

Two lectures:

- 1. Basics of (perturbative) QCD: $[SU(3)]_{
 m colour}$, QCD Lagrangian, Gauge invariance and gauge fixing, Feynman Rules, Colour Algebra, Renormalization and Running Coupling, Asymptotic Freedom, naive Parton Model
- 2. Perturbative QCD and the improved Parton Model: NLO perturbative corrections, IR soft/collinear singularities, Cancellation mechanism and safe observables, Initial-State IR divergences, Universal Factorization of Collinear Singularities, Scale-dependent Parton Densities, Scaling Violation, DGLAP evolution equations

Asymptotic Freedom and Parton Model

pQCD approach to hadronic physics applies to

- INCLUSIVE
- HARD-SCATTERING processes

Based on:

- PARTON MODEL (PM)
- ASYMPTOTIC FREEDOM (AF)
- ullet HARD-SCATTERING \Rightarrow at least one momentum scale $Q\gg M_{
 m hadron}\sim 1$ GeV
 - at this scale the QCD effective coupling $\alpha_s(Q^2)$ can be sufficiently small to attempt a perturbative expansion

Asymptotic Freedom and Parton Model

- INCLUSIVE ⇒ Parton Model picture
 - factorization of long-distance and short-distance physics

$$\sigma \sim (\mathit{f}_{1}\mathit{f}_{2}) \otimes \sigma_{\mathit{hard}} \otimes \mathit{d} + \mathcal{O}\left(\left(\frac{1}{\mathit{p}_{\mathit{T}}}\right)^{\mathit{p}}\right) \qquad \qquad \mathit{p} \geq 1$$

- f_1, d_1 : non-perturbative but universal (process independent)
- hard-cross section (pQCD) $\alpha_s(\mu^2)$ sufficiently small at large p_T

$$\alpha_s(p_T^2) \sim \frac{1}{\beta_0 \ln \frac{p_T^2}{\Lambda_{QCD}^2}}$$

higher-twist or power corrections

Is this picture correct?

- no rigorous (field theory) proof in the most general case
- Is this picture self consistent and quantitative?
 - improved parton model ("true" perturbative QCD)

$$\sigma^{NLO} = \int d\phi_2 \left| \mathcal{M}_0 \right|^2 + \int_{\mathcal{R}} d\phi_3 \left| \mathcal{M}_{\mathrm{real}} \right|^2 + \int_{\mathcal{N}} d\phi_2 2 \mathrm{Re} (\mathcal{M}_{\mathrm{virtual}} \mathcal{M}_0^*)$$

• kinematics variables for real emissions (c.m. frame):

$$x_i = \frac{2p_i \cdot Q}{Q^2} = \frac{E_1}{\frac{1}{2}Q} \qquad x_i > 0$$

• energy fractions x_i lie within a triangle

$$x_i > 0$$

- x_i: energy fractions
- energy conservation: $x_1 + x_2 + x_3 = \frac{2(p_1 + p_2 + p_3) \cdot Q}{Q^2} = 2$
- angles: $2p_1 \cdot p_3 = (p_1 + p_3)^2 =$ $=(Q-p_2)^2=Q^2-2p_2Q$

$$2E_1E_3(1-\cos\vartheta_{13}) = = Q^2(1-x_2) \quad \leftarrow x_i < 1$$

• in particular:

$$\vartheta_{13} \to 0 \Longleftrightarrow x_2 \to 1$$

real cross section:

$$\sigma^{R} = \int_{0}^{1} dx_{1} dx_{2} dx_{3} \delta(2 - x_{1} - x_{2} - x_{3}) \left| \mathcal{M}_{\text{real}}(x_{1}, x_{2}, x_{3}) \right|^{2}$$
$$\left| \mathcal{M}_{\text{real}}(x_{1}, x_{2}, x_{3}) \right|^{2} = \sigma_{0} C_{F} \frac{\alpha_{s}}{2\pi} \frac{x_{1}^{2} + x_{2}^{2}}{(1 - x_{1})(1 - x_{2})} \rightarrow \text{singular when} : x_{1,2} \to 1$$

• singularity not integrable $\int_0^1 dx_1 \frac{1}{1-x_1} \to \infty$ (a disaster for QCD?)

$$\operatorname{InfraRed}(\operatorname{IR}) = \begin{cases} \operatorname{soft} : \omega = E_{\mathbf{g}} \to 0 \sim t \to \infty & \text{long-distance} \\ \operatorname{collinear} : \vartheta \to 0 \sim \lambda \to \infty & \text{physics} \end{cases}$$

• in the real world (QCD): physical cut-off $\epsilon \sim M_h/Q \sim \Lambda_{QCD}/Q$

$$\alpha_s(Q^2) \int_0^{1-\epsilon} \sim \alpha_s(Q^2) \ln \frac{1}{\epsilon} \qquad \leftarrow \text{finite but : } \ln \frac{1}{\epsilon} \sim \ln \frac{1}{\alpha_s(Q^2)}$$

$$\sigma \sim \sigma_o(1+\alpha_s \cdot \frac{1}{\alpha_s}+\ldots) \sim \sigma_o(1+1+\ldots) \Rightarrow \quad \text{perturbative expansion does not make sense}$$

IR singularities ⇒ non-perturbative phenomena are not power suppressed ⇒ factorization between short/long distances breaks down? pQCD inconsistency?

 a closer look at the structure of the IR singularities (rewrite numerator using $x_1 + x_2 + x_3 = 2$):

$$x_1^2 + x_2^2 = 1 + (1 - x_1 - x_2)^2 - 2(1 - x_1)(1 - x_2) = 1 + (1 - x_3)^2 - 2(1 - x_1)(1 - x_2)$$

$$\frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} = \frac{1 + (1 - x_3)^2}{(1 - x_1)(1 - x_2)} - 2 \qquad \longleftarrow \text{non singular}$$

then split in two contributions:

$$\frac{1}{(1-x_1)(1-x_2)} = \frac{1}{2-x_1-x_2} \left(\frac{1}{1-x_1} - \frac{1}{1-x_2} \right) = \frac{1}{x_3} \left(\frac{1}{1-x_1} - \frac{1}{1-x_2} \right)$$

$$\frac{1}{x_3}$$
: soft singularity
$$\frac{1}{1-x_1}$$
: collinear for $\vartheta_{23} \to 0$
$$\frac{1}{1-x_2}$$
: collinear for $\vartheta_{13} \to 0$

$$\mathcal{M}_{\mathrm{real}}|^2 \sim egin{array}{c} \mathrm{non\text{-}singular} \\ \mathrm{interference} \\ \mathrm{term} \end{array}$$

 $|\mathcal{M}_{\mathrm{real}}|^2 \sim \begin{cases} \text{non-singular} \\ \text{interference} \\ \text{term} \end{cases} + \begin{cases} \text{sum of two independent} \\ \text{collinear (and soft) emissions} \\ \text{(IR limit } \sim \text{classical limit)} \end{cases}$

• probability of collinear splitting:

$$P_{qg}(x_3) = C_F \frac{\alpha_s}{2\pi} \frac{1 + (1 - x_3)^2}{x_3}$$

•
$$\frac{d\vartheta_{23}^2}{d\vartheta_{23}^2}$$
: collinear spectrum

•
$$\frac{d\vartheta_{23}^2}{\vartheta_{23}^2}$$
: collinear spectrum

$$P_{qg}(x_3) = C_F \frac{\alpha_s}{2\pi} \frac{1 + (1 - x_3)^2}{x_3}$$

$$\bullet \frac{d\vartheta_{23}^2}{\vartheta_{23}^2}: \text{ collinear spectrum}$$

$$\bullet \frac{d\omega_3}{\vartheta_{23}}: \text{ bremsstrahlung spectrum}$$

$$d\omega_{23} = \frac{dx_1}{1 - x_1} dx_3 P_{qg}(x_3) = \frac{d\cos\vartheta_{23}}{1 - \cos\vartheta_{23}} dx_3 P_{qg}(x_3) \simeq \frac{d\vartheta_{23}^2}{\vartheta_{23}^2} \frac{d\omega_3}{\omega_3} \qquad [\vartheta_{23} \to 0, \omega_3 = E_3 \to 0]$$

$$\sigma^{R} = \sigma_{0} \int_{0}^{1} dx_{1} dx_{2} dx_{3} \delta(2 - x_{1} - x_{2} - x_{3}) \cdot \left(\frac{-C_{F} \alpha_{s}}{\pi}\right) + \sigma_{0} \left\{ \int_{-1}^{1} \frac{d \cos \vartheta_{23}}{1 - \cos \vartheta_{23}} \int_{0}^{1} dx_{3} P_{qg}(x_{3}) \frac{1}{1 - x_{3}(1 - \cos \vartheta_{23})} + (1 \Leftrightarrow 2) \right\}$$

 $\frac{1}{1-x_3(1-\cos\vartheta_{23})} \leftrightarrow \int_0^1 dx_2 \delta(2-x_1-x_2-x_3)|_{1-x_1=\frac{x_2x_3(1-\cos\vartheta_{23})}{2}}$

phase-space factor:

•
$$\frac{\omega_3}{\omega_3}$$
: bremsstraniung spectrum
$$d\vartheta_{23}^2 d\omega_3$$

ectrum
$$[artheta_{23}
ightarrow 0, \omega_3 = extit{ iny E}_3 - artheta_3$$

 back to the full cross section: add virtual terms \Rightarrow completely analogous to real terms but different kinematics

loop integral :
$$\int_0^\infty dx_3 \dots \simeq \begin{cases} \int_1^\infty dx_3 \dots & \text{UV region} \\ \int_0^1 dx_3 \dots & \text{IR behaviour} \end{cases}$$
 coupling \otimes finite same IR behaviour as real matrix element apart from overall sign and kinematics

- UV: renormalized (running) coupling ⊗ finite
- overall sign and kinematics

- back to the full cross section:
 - SIGN: it comes from UNITARITY

probability that everything happens
$$P = 1 = 1 + \alpha_s \text{(real - virtual)}$$
 (LO) (+) (-)

KINEMATICS:

$$\sigma^{R} + \sigma^{V} = \text{finite } + \int_{-1}^{1} \frac{d\cos\theta_{23}}{1 - \cos\theta_{23}} \int_{0}^{1} dx_{3} P_{qg}(x_{3}) \left[\frac{1}{\frac{1 - x_{3}(1 - \cos\theta_{23})}{2}} - 1 \right] + (1 \Leftrightarrow 2)$$

$$\left[\frac{1}{\frac{1-x_3(1-\cos\vartheta_{23})}{2}}-1\right]=\frac{\frac{x_3(1-\cos\vartheta_{23})}{2}}{\frac{1-x_3(1-\cos\vartheta_{23})}{2}}\to x_3\vartheta_{23}^2$$
• $x_3\to 0$ and $\vartheta_{23}\to 0$:
• kinematics differences are irrelevant in IR region

- total cross section is finite because real/virtual cancellation of IR singularities
- pQCD can consistently applied to total cross section

Two comments:

1. Matrix elements enhanced in soft and collinear regions (phase space is flat)

 typical tructure of hadronic final state: jets + soft particles

- 2. The pQCD approach applicable to total cross section. What about less inclusive quantities and other processes?
 - IR behaviour is UNIVERSAL provided the measured quantity fulfils some SAFETY CRITERIA

General structure of pQCD cross sections

Cross section:
$$\sigma = \sigma^{LO} + \sigma^{NLO} + \dots$$

• Leading-order (LO): \rightarrow suppose m final-state partons

$$\sigma^{LO} = \int_{m} d\sigma^{B} \leftarrow \text{Born level cross section}$$

$$d\sigma^{B} \sim d\phi^{m} \left| \mathcal{M}_{m}^{\text{tree}}(\{p_{i}\}) \right|^{2} F_{J}^{m}(\{p_{i}\})$$
 e^{-}

- ullet total phase-space: $d\phi^m=\prod_{i=1}^mrac{d^4p_i}{2\pi^3}\delta_+(p_i^2)\delta^{(4)}(p_{in}-\sum_i p_i)$
- $|\mathcal{M}_m^{\mathrm{tree}}(\{p_i\})|^2$: tree-level QCD matrix element (depends on the process)
- $F_J^m(\{p_i\})$: phase-space (measurement) function that defines the physical quantity we want to compute (including experimental cuts)
- $F_I^m(\{p_i\}) = 1 \Rightarrow \text{total cross section}$

General structure of pQCD cross sections

Cross section: $\sigma = \sigma^{LO} + \sigma^{NLO} + \dots$

Next-to-leading order (NLO): → add real and virtual contributions

$$\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V$$

same structure as Born level but: $\mathcal{M}_m^{\mathrm{tree}} o \mathcal{M}_{m+1}^{\mathrm{tree}}$ and $\mathcal{M}_m^{\mathrm{tree}} o \mathcal{M}_m^{1\text{-loop}}$

$$\int_{m+1} d\sigma^R : \text{ divergent}$$

 \bullet divergences arise from integration of $\mathcal{M}_{m+1}^{\mathrm{tree}}$ over IR region

$$\int_{m} d\sigma^{V}$$
: divergent

ullet divergences arise in loop integral $\mathcal{M}_m^{\text{1-loop}}$ from its IR region

NLO: real emissions

We can easily compute the matrix elements in the IR region:

IR behaviour of QCD matrix elements is UNIVERSAL

Factorization formulae:

$$\left|\mathcal{M}_{m+1}^{\mathrm{tree}}(p_1,\ldots,p_i,\ldots,p_j,\ldots,p_{m+1})\right|^2\simeq \left|\mathcal{M}_{m}^{\mathrm{tree}}(p_1,\ldots,p_i+p_j,\ldots,p_m)\right|^2\cdot V_{ij}$$

• V_{ij} : process independent singular factor

• analogous formulae for soft limit (eikonal factorization)

NLO: virtual corrections

We can easily compute the matrix elements in the IR region:

IR behaviour of QCD matrix elements is UNIVERSAL

emission :
$$\begin{bmatrix} p_1 & \\ p_i & \\ p_m & \\ p_m & (p_i \text{ soft}) \\ (p_i \text{ soft}) & \\ (p_i \parallel p_j) & \\ \end{bmatrix}^2 \qquad \int_{\text{loop}} V_{ij}$$

Factorization formulae:

$$\left|\mathcal{M}_m^{ ext{1-loop}}(p_1,\ldots,p_m)\right|^2 \simeq -\left|\mathcal{M}_m^{ ext{tree}}(p_1,\ldots,p_m)\right|^2 \cdot \int_{ ext{loop}} V_{ij}$$

inserting into: $\sigma^{NLO} = \text{finite} + \sigma^{NLO}_{IR \text{ region}}$

$$\sigma_{\mathrm{IR \ region}}^{NLO} \simeq \sum_{i,j} \int_{m} d\phi^{(m)} \left| \mathcal{M}_{m}^{\mathrm{tree}} \right|^{2} \int_{\mathrm{i},j} V_{ij} \left[F^{m+1}(\ldots,p_{i},p_{j},\ldots) - F^{m}(\ldots,p_{i}+p_{j},\ldots) \right]$$

- differences in total phase space irrelevant in IR region
- same structure as at Born level
- $F^m(\{p_i\})$: phase space restriction for the physical quantity

Infrared safety

SAFETY CRITERIA (Sterman-Weinberg):

```
IR cancellation \Leftrightarrow F^{(m+1)}(\ldots,p_i,\ldots,p_j,\ldots) \simeq F^{(m)}(\ldots,p_i+p_j,\ldots) (i.e. non-perturbative physics is power suppressed) IR limit p_i \to 0 IR safety collinear limit p_i \parallel p_j collinear safety
```

Kinoshita-Lee-Nauenberg (KLN) theorem (quantum mechanics) in pQCD:

- perturbative observables must be IR and collinear safe
- for a suitable defined inclusive observable, there is a cancellation between the soft and collinear singularities occurring in the real and virtual contributions
- physical observables always requires the cancellation

In other words:

- the measured/computed quantity cannot resolve long-distance phenomena
- its value should remain the same by:
 - adding a (many) soft particles
 - replacing a particle by two (many) collinear particles

Observables that respect the above constraint are called infrared safe observables. Infrared safety is a requirement that the observable is calculable in pQCD.

IR/collinear safe obervables

Examples:

- Event shape distributions (Thrust T, Sphericity S, and many more ...)
- Jet cross section

- Qualitative definition: collimated spray of high-energy particles
- Quantitative studies ⇒ precise definition of jet necessary (in particular: low energy particles have to be assigned to jet to have IR safety)

Need a JET ALGORITHM fulfilling the following requirements:

- IR/collinear safe
- simple to implement in the experimental analyses
- simple to implement in theoretical calculations
- small hadronization (non-perturbative) corrections

Processes with initial-state hadrons

- kinematics differences (incoming parton have different momenta: xp and zxp):
 - ullet irrelevant in soft limit $z o 1 \Rightarrow$ cancellation of soft sinuglarities
 - relevant in collinear limit $z \neq 1 \Rightarrow$ no cancellation of collinear singularities

Processes with initial-state hadrons

Physical interpretation:

- ullet there are non-perturbative terms that are not power suppressed (initial-state collinear singularities \sim regularized by a physical cut-off related to the hadron size)
- collinear singularities depend on each initial-state hadron and are universal (process independent) \Longrightarrow non-perturbative (singularity) terms can be absorbed (factorized) in non-perturbative parton densities: $f(x) \to f(x, Q^2)$ (scaling violation)
- $f(x, Q^2)$ not computable in absolute value but its Q^2 -dependence (rellated to collinear singularities) UNIVERSAL and COMPUTABLE in pQCD (DGLAP evolution equations)

Hard processes with initial-state hadrons in pQCD

$$\begin{vmatrix} \lambda^q \\ z \\ z \end{vmatrix} = \begin{vmatrix} 2 \\ \text{perturbative} \\ \text{esparsion} \end{vmatrix} + \begin{vmatrix} \lambda \\ \lambda \\ z \end{vmatrix} +$$

- pQCD calculation leads to IR (soft and collinear) divergences
- completely inclusive final-state (IR/coll. safe) ⇒ cancellation of soft and FINAL-STATE collinear singularities
- initial-state: one single parton (not fully inclusive) ⇒ uncancelled **INITIAL-STATE** collinear singularities ⇒ general feature of any IR/coll. safe hard scattering processes with colliding hadrons

$$\alpha_{s}(Q^{2}) \int_{0}^{1} \frac{d\theta^{2}}{\theta^{2}} \qquad \bullet \quad k_{\perp} \sim \theta P \sim \theta Q$$

$$\bullet \quad \int_{0}^{1} \frac{d\theta^{2}}{\theta^{2}} = \int_{0}^{Q} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \longrightarrow \int_{Q_{0}}^{Q} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}}$$

$$\bullet \quad \text{regularized by physical cutoff } Q_{0}$$

• $k_{\perp} \sim \theta P \sim \theta \Omega$

$$\bullet \int_0^1 \frac{d\theta^2}{\theta^2} = \int_0^Q \frac{dk_\perp^2}{k_\perp^2} \longrightarrow \int_{\mathbf{Q}_0}^Q \frac{dk_\perp^2}{k_\perp^2}$$

• regularized by physical cutoff Q_0

 $(Q_0 \sim 1 \text{ GeV}, 1/Q^0 \rightarrow \text{average distance between partons inside hadron})$

Hard processes with initial-state hadrons in pQCD

physical interpretation: ⇒ sensitivity to IR cut-off ⇒ long-distance phenomena included in QCD corrections

First problem: How to remove sensitivity to IR cutoff? (i.e. How to identify partonic subprocesses dominated by short-distance interactions?)

• higher-order corrections

- ullet one parton emission o corrections of $\mathcal{O}(1)$ \Rightarrow not power suppressed
- resume these corrections to all-order in perturbation theory (include many emissions)

Hard processes with initial-state hadrons in pQCD

Second problem: Reliable estimate requires resummation of log corrections to all orders in α_s

- both problems (sensitivity to IR cutoff, all-order resummation) solved by UNIVERSAL FACTORIZATION OF COLLINEAR SINGULARITIES
- exploit analogy with renormalization
- since parton densities are not calculable in pQCD, assume

naive parton model
$$f(z) \longrightarrow f^0(z)$$
 bare parton density

- $f^0(z) \Rightarrow$ parton density at some non-perturbative scale Q_0
- ullet then, absorb collinear singularities in redefinition (\sim renormalization) of parton density

$$f^0 \Gamma\left(\alpha_s(Q^2), \frac{Q^2}{Q_0^2}\right) \equiv f(Q^2)$$
 true (physical) parton density

- overall singular factor: $\Gamma\left(\alpha_s(Q^2), \frac{Q^2}{Q_0^2}\right)$ contains all $\left[\alpha_s(Q^2) \cdot \ln \frac{Q^2}{Q_0^2}\right]^n$
- this procedure works if Γ is an universal factor (depends only on hadron)
 (independent of hard scattering and factorizable from it)

- heuristic argument (detailed proof much more involved) based on power counting for collinear singularities in physical gauge
- correction to partonic cross section due to radiation of collinear parton of momentum k
- to identify collinear singularities look for $1/Q^2$ behaviour in squared matrix element

phase-space factor
$$\frac{d^3k}{2k^0} \sim dk^0k^0 d\varphi d(\cos\theta)$$
 φ azimuthal angle θ emission angle
$$\theta \to 0: \qquad d(\cos\theta) \sim d\theta^2$$

MATRIX ELEMENT:

propagator:

$$\frac{1}{(p-k)^2} = -\frac{1}{2p \cdot k} = -\frac{1}{2p^0 k^0 (1-\cos\theta)} \underset{\theta \to 0}{\propto} \frac{1}{\theta^2}$$

vertex (physical gauge):

$$p_i \cdot arepsilon(p_j) igwedge_{ heta o 0} heta$$

- because physical (transverse) polarization $(p \cdot \varepsilon(p) = 0)$
- $p_i \propto p + \mathcal{O}(\theta)$

• squaring the matrix element (DIS case)

• only direct contributions can lead to collinear singularities in physical gauge (in covariant gauge interferences also contribute but final gauge invariant result is the same)

- decompose DIS partonic cross section in two-particle irreducible (2PI) subgraphs
- 2PI ⇒ cannot be disjoint by cutting only two lines

process dependent but no collinear singularities

leads to collinear singularities but process independent (universal $2 \rightarrow 2$ parton scattering processes)

• introduce arbitrary factorization scale μ_F and split last (upper) k_{\perp} -integration

$$\int_{Q_0^2}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \dots = \begin{cases} \int_{\mu_F^2}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \dots \longrightarrow \hat{\sigma}_{\mathrm{hard}}(\mu_F^2) \\ \int_{Q_0^2}^{\mu_F^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \dots \longrightarrow \Gamma\left(\frac{\mu_F^2}{Q_0^2}\right) f^0 \equiv f(\mu_F^2) \end{cases}$$

• <u>UNIVERSAL FACTORIZATION FORMULA</u> (factorization theorem of coll. sing.)

$$\sigma(p,Q^2) = \sum_{a=q,\bar{q},g} \int_0^1 dz \ \hat{\sigma}_{\mathrm{hard},a}(zp,\alpha_s(Q^2),\mu_F^2) \ f_a(z,\mu_F^2)$$

- $\hat{\sigma}_{\text{hard},a}(zp, \alpha_s(Q^2), \mu_F^2)$: properly defined (subtracted) partonic cross section (no col. sing., computable order by order in pQCD)
- $f_a(z, \mu_F^2)$: process independent and scale-dependent parton densities (unlike those of naive parton model)
- Q: hard scale

- same argument applies to hard-scattering processes in hadron-hadron collisions
- only one new feature w.r.t. lepton-hadron collisions: diagrams with interferences between the two colliding partons
- in physical gauge, again collinear suppressed by power counting

FACTORIZATION FORMULA:

$$\sigma(p_1, p_2, Q^2) = \sum_{a,b} \int_0^1 dz_1 \int_0^1 dz_2 f_{1,a}(z_1, \mu_F^2) f_{2,b}(z_2, \mu_F^2)$$

$$\times \hat{\sigma}_{hard,ab}(z_1 p_1, z_2 p_2, \alpha_s(Q^2), \mu_F^2)$$

- 1. Introduction of arbitrary factorization scale μ_F
- 2. Scale dependent parton densities
- 3. Scale dependence of $f(z, Q^2)$ calculable in pQCD

Physical cross section
$$\sigma(Q^2)$$
 cannot depend on μ_F : $\sigma(Q^2) \sim \hat{\sigma}_{hard}(\alpha_s(Q^2), \mu_F^2) \cdot f(\mu_F^2)$
 $\Rightarrow \mu_F$ dependence in $\hat{\sigma}_{hard}(\alpha_s(Q^2), \mu_F^2)$ and $f(\mu_F^2)$ compensate

- in principle: choose arbitrary μ_F
- in practice:

$$\hat{\sigma}_{\text{hard}}(\alpha_s, \mu_F) = \alpha_s \left[\hat{\sigma}^{(0)} + \alpha_s \hat{\sigma}^{(1)}(Q/\mu_F) + \ldots + \alpha_s^n \hat{\sigma}^{(n)}(Q/\mu_F) + \ldots \right]$$

- $\hat{\sigma}^{(n)}(Q/\mu_F)$ contain terms $\alpha_s^n(\ln\frac{Q}{\mu_F})^n$ from integration of log collinear spectrum when $k_{\perp}>\mu_F$
- if μ_F very different from $Q \Rightarrow \left| \ln \frac{Q}{\mu_F} \right| \gg 1$ \Rightarrow reliability of fixed-order expansion spoiled
- set: $\mu_F \sim Q$

Scale dependence of $f(z, Q^2)$ comes from resummation of large collinear logs

- physical consequence: SCALING VIOLATION (e.g. in DIS, violation of Bjorken scaling at large Q^2 , structure functions $F_i(x, Q^2)$ depends logarithmically on Q^2)
- physical picture: resolution power of hard-scattering probe increases with Q^2

- increasing Q² ⇒ more probable to scatter off lower-momentum parton
- shift of partons from higher to lower x
- scaling violation: positive at small-x and negative at large-x

SCALING VIOLATION:

- large-x values: dominated by valence quarks $(Q^2 \uparrow \rightarrow F_2 \downarrow)$
- small-x values: dominated by gluons and sea quarks $(Q^2 \uparrow \rightarrow F_2 \uparrow)$

- scale-dependent parton densities $f(x, Q^2)$ not calculable in pQCD
- can be extracted from experimental data (in principle from a single experiment)
- MORE IMPORTANT: Scale dependence predicted (calculable) by pQCD
- need experimental information from a one experiment at one input scale

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

- 2PI kernel: $P_i = P(\alpha_s(k_{\perp i}^2), z_i)$
- $\sum_{k_n \sim x_n p + k_{\perp n}} \bullet z_i$: fraction of longitudinal momentum transferred along the cascade $\Rightarrow x_i = \prod_{i=1}^i z_i$

 - logarithmically dominant kinematical region:

$$Q^2 > k_{\perp n}^2 > k_{\perp n-1}^2 > \dots > k_{\perp 1}^2 > Q_0^2 \quad k_\perp\text{-ordering}$$

$$f(x,Q^2) \simeq f^{(0)}(x) + \int_{Q_0^2}^{Q^2} \frac{dk_{\perp n}^2}{k_{\perp n}^2} \int_x^1 P_n(\alpha_s(k_{\perp n}^2), z_n) f\left(\frac{x}{z_n}, k_{\perp n}^2\right)$$

$$f(x,Q^2) \simeq f^{(0)}(x) + \int_{Q_0^2}^{Q^2} \frac{dk_{\perp n}^2}{k_{\perp n}^2} \int_x^1 P_n(\alpha_s(k_{\perp n}^2),z_n) f\left(\frac{x}{z_n},k_{\perp n}^2\right)$$

Taking derivative of $f(x, Q^2)$ w.r.t. Q^2 :

$$\frac{df(x,Q^2)}{d \ln Q^2} = \int_x^1 \frac{dz}{z} P(\alpha_s(Q^2),z) f\left(\frac{x}{z},Q^2\right)$$

- 1st order differential equation \Rightarrow can be solved by giving initial condition $f\left(\frac{x}{z},Q_0^2\right)$ from experiment (parton densities at a single input scale Q_0)
- Q_0 no longer arbitrary IR cutoff
- probability $P(\alpha_s(Q^2), z) \Rightarrow$ perturbatively calculable (no collinear singularities) as power series expansion in α_s

Probabilistic interpretation \Rightarrow system of coupled equations w.r.t. flavours of partons

$$\begin{cases} \frac{df_q(x,Q^2)}{d \ln Q^2} = P_{qq} \otimes f_q + P_{q\bar{q}} \otimes f_{\bar{q}} + P_{qg} \otimes f_g & \text{similiar with } q \Leftrightarrow \bar{q} \\ \frac{df_g(x,Q^2)}{d \ln Q^2} = P_{gq} \otimes f_q + P_{g\bar{q}} \otimes f_{\bar{q}} + P_{gg} \otimes f_g \end{cases}$$

where convolution $f \otimes g \equiv \int_0^1 \frac{dz}{z} f\left(\frac{x}{z}\right) g(z)$ (\Rightarrow longitudinal momentum conservation)

• P_{ab} : probability of parton evolution $b(p) \rightarrow a(zp)$ by radiating a bunch of partons with $q'_{\perp}s$ of the same order $(q_{\perp 1} \sim q_{\perp 2} \sim \ldots \sim Q)$ in the rapidity interval $\Delta y = \frac{1}{z}$

- solving DGLAP equations with $P_{ab}^{(LO)}$, $P_{ab}^{(NLO)}$, $P_{ab}^{(NNLO)}$, ... \Rightarrow equivalent to resumme large: leading logs $\alpha_s^n \ln^n \frac{Q}{Q_0}$, next-to-leading logs $\alpha_s^n \ln^{n-1} \frac{Q}{Q_0}$, ...
- emission of an additional parton without k_{\perp} -ordering costs a power of α_s (with no enhancing ln Q factor)

DGLAP probabilities at LO:

$$P_{qq}(z) = C_F \left[\frac{1+z^2}{(1-z)_+} + \frac{3}{2}\delta(1-z) \right] \qquad z \left(\int_{q}^{q-z} \int_{0}^{z} dz + \int_{q}^{z} dz \right)$$

$$P_{gg}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] \qquad z \left(\int_{g}^{g} \int_{0}^{z} dz + \int_{g}^{z} dz \right)$$

$$+ \delta(1-z) \frac{1}{6} (11C_A - 2N_f)$$

$$P_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right] \qquad z \left(\int_{g}^{q} \int_{q}^{1-z} dz \right)$$

$$P_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right] \qquad z \left(\int_{q}^{g} \int_{q}^{1-z} dz \right)$$

- $P_{ab}(z)$ positive for z < 1 (as it should be for probabilities)
- $z \to 1$: soft singularity $\Rightarrow P_{qq} \sim 2C_F(\frac{1}{1-z})_+$ and $P_{gg} \sim 2C_A(\frac{1}{1-z})_+$
- $z \rightarrow 0$: enhancement of $P_{gg} \sim \frac{2C_A}{z}$ and $P_{gq} \sim \frac{2C_F}{z}$

DGLAP: large-x limit

• both for quarks and for gluons

- $x \rightarrow 1$: only soft-parton (gluon radiation)
- evolution dominated by by

$$P_{qq} \sim 2C_F \left(\frac{1}{1-z}\right)_+ \qquad P_{gg} \sim 2C_A \left(\frac{1}{1-z}\right)_+$$

• note: large log

$$\int_{x}^{1} dz \left(\frac{1}{1-z}\right)_{+} = -\int_{0}^{x} \frac{dz}{1-z} = \ln\left(1-x\right)$$

$$f_a(x,Q^2) \simeq f_a(x,Q_0^2) \cdot (1-x)^{p_a}$$
 $f_a(x,Q_0^2) \sim (1-x)^{\eta}$ $(1-x)^{p_a} = \exp\left\{p_a \ln(1-x)\right\} = \exp\left\{\int_x^1 dz \frac{2C_a}{(1-z)_+} \int_{Q_0^2}^{Q^2} \frac{dq^2}{q^2} \frac{lpha_s(q^2)}{2\pi}\right\}$

•
$$\int_{Q_0^2}^{Q^2} \frac{dq^2}{q^2} \alpha_s(q^2) = \frac{1}{\beta_0} \ln \frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)}$$
• $n = \frac{C_s}{2} \ln \frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)} \Rightarrow n > 0$ for

•
$$p_a = \frac{C_a}{\pi \beta_0} \ln \frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)} \Rightarrow p_a > 0$$
 for $Q > Q_0 \Rightarrow$ power suppression increases with Q^2

DGLAP: small-x limit

- x → 0: multiple soft gluon exchanges in the evolution dominate (with radiation of many hard gluons)
- evolution driven by gluon density

$$P_{gg} \sim \frac{2C_A}{z}$$

$$xf_g(x,Q^2) = xf_g(x,Q_0^2) \times \exp\left\{\sqrt{\frac{2C_A}{\pi}} \frac{1}{\beta_0} \ln \frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)} \ln \frac{1}{x}\right\}$$

- $\sqrt{\ln \frac{1}{x}}$: strong rise of gluon density
- faster than any power of $\ln \frac{1}{x}$, though slower than any power of $\frac{1}{x}$
- $\sqrt{\frac{1}{\beta_0}} \ln \frac{\alpha_s(Q_0^2)}{\alpha_s(Q^2)}$: steepness increases with Q^2
- ullet gluon self interactions \Rightarrow peculiar feature of non-abelian gauge theory

DGLAP and experimental data

- DGLAP evolution equations give quantitative description of observed scaling violation
- scale dependence well described by the pQCD

THANK YOU!

BACKUP SLIDES

IR/collinear safe obervables

Need a quantitative measure that would allow us to classify events as 2- or 3-jets, both in theoretical calculations and in experiment.

Jet algorithms

CLUSTERING:

- define "distance" between two particles: $y_{ij} = \frac{d_{ij}}{Q^2}$
- *d_{ii}*: dimensionful resolution variable (distance measure)
- merge particles with minimum y_{ii} until a fixed resolution y_{cut} :

merge particles with minimum
$$y_{ij}$$
 until a fixed resolut $y_{ij} > y_{\mathrm{cut}} \quad \forall_{ij}$

Compute distances between particles for all particle pairs: $d_{ij} = \min \left(p_{ti}^{2p}, p_{ti}^{2p} \right) \Delta R_{ii}^2 / R^2$ and the particle-beam distances for all particles: $d_{iB} = p_{ti}^{2p}$, where R is a jet radius and $\Delta R_{ii} = \sqrt{(y_i - y_i)^2 + (\phi_i - \phi_i)^2}$ is a distance between particles in the $(y - \phi)$ -plane.

Find smallest d_{ii} and d_{iB} :

- $d_{ii} < d_{iB}$: recombine the two particles and add the particle ij to the list of particles
- $d_{ii} > d_{iB}$: call i particle a jet and remove form particle list

$$\begin{array}{lll} \textit{k}_t \text{ algorithm:} & \text{Cambridge/Aachen algorithm:} & \text{anti-}\textit{k}_t \text{ algorithm:} \\ (p=1) & (p=0) & (p=-1) \\ d_{ij} = \min\left(p_{ti}^2, p_{tj}^2\right) \Delta R_{ij}^2/R^2 & d_{ij} = \Delta R_{ij}^2/R^2 & d_{ij} = \min\left(\frac{1}{p_{ti}^2}, \frac{1}{p_{tj}^2}\right) \Delta R_{ij}^2/R^2 \\ \end{array}$$