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Propose of the short course

Introduce basic concepts of QCD (or refresh your knowledge)

But no historical introduction (lack of time)

Understand the terminology
e Be familiar with most important developments in the field

Two lectures:

1. Basics of (perturbative) QCD: [SU(3)]colours QCD Lagrangian, Gauge invariance and
gauge fixing, Feynman Rules, Colour Algebra, Renormalization and Running Coupling,
Asymptotic Freedom, naive Parton Model

2. Perturbative QCD and the improved Parton Model : NLO perturbative corrections,
IR soft/collinear singularities, Cancellation mechanism and safe observables, Initial-State
IR divergences, Universal Factorizaton of Collinear Singularities, Scale-dependent Parton
Densities, Scaling Violation, DGLAP evolution equations



Asymptotic Freedom and Parton Model

pQCD approach to hadronic physics applies to Based on:
e INCLUSIVE e PARTON MODEL (PM)

e HARD-SCATTERING processes e ASYMPTOTIC FREEDOM (AF)

e HARD-SCATTERING = at least one momentum scale @ > Mpadron ~ 1 GeV
e at this scale the QCD effective coupling as(Q?) can be
sufficiently small to attempt a perturbative expansion
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Asymptotic Freedom and Parton Model

e INCLUSIVE = Parton Model picture

e factorization of long-distance and short-distance physics

1 P
a~(ﬂ6)®ahard®d+0<<p—T>> p>1

pr~Q o - non- i
X, hadron e > ocn f1, di: non-perturbative but
universal (process independent)

parton-parton

scattering at large pp X3 [ ] hard—cross Section (pQCD)

d: final-state fragmentation 2 hp
>C< deva) Fundtion as(p?) sufficiently small at large pr
1
2
—~ X, as(pT) ~ R T
h - initial-state o 5o In AZT
J i initial-state X1 Xi — inclusive cross section Qcb

distribution (structure) function

e higher-twist or power corrections

Is this picture correct?

e no rigorous (field theory) proof in the most general case
Is this picture self consistent and quantitative?

e improved parton model ("true" perturbative QCD)



Total cross sections: eTe~ annihilation

ot
erem = X hadrons @
S
<
=
S
<
e first perturbative correction (NLO QCD): O(«s)
P poog2 L .
)3
+ . = + + (1+—2)
Q Q P3 similar diagrams
P2 P2 2 2 BuT
| | dif!ferent kinematics
real emission on-shell lines
9 I 1 \1
- I I
’\/\/\/\/<+ +VW\€+% :R('+ M/\@\Nw+(l‘—>2)
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naive parton model virtual corrections :2 :2
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Total cross sections: eTe~ annihilation

e kinematics variables for real emissions (c.m. frame):

2pi-Q E
Xj = 7 = % xi >0
2
S e x;: energy fractions
0 a2
AN collinear 1//3 .
s (1—29) 50 %T e energy conservation:
N 013 — 0 .
! X1+ x+x3= 72(’)#%;’)3) ® =2
EN ol e angles:
\\X AN xy = 1 soft 2
\\ . 2p1-p3 = (p1+p3)° =
1 [) .
A collinear 2//3 = (Q_p2)2 - Q2_2P2Q
| . > (1-3) =0
‘T e — E 2F;1 E3(1 — cos¥13) =
=Q*(1—x) +x<1
0 N DRl e in particular:

N

: . . Y13 > 0= x — 1
e energy fractions x; lie within a triangle



Total cross sections: eTe~ annihilation

e real cross section: 1

O'R = / XmdXQdX35(2 — X1 — X — X3) |Mrea1(X1,X2,X3)|2
0

2 2
5 Qs X7 + X5
— oo Crle
‘Mreal(xl7x2ax3)‘ 90 F2ﬂ- (]_ — X]_)(l — X2)

e singularity not integrable fol dxlﬁ — oo (a disaster for QCD?)

— singular when : x;5 — 1

soft :w=E; -0~1t— 00 long-distance

InfraRed(IR) =
collinear : 9 -0~ \ — physics

e in the real world (QCD): physical cut-off € ~ My/Q ~ Agcp/@Q
e 1 1 1
2 2\ | = - N T
as(Q )/0 as(Q)In ; <+ finite but : In ; In (0D

0~ oo(l+as—+...) ~ 0o(1+1+...) = perturbative expansion does not make sense
Qs

IR singularities = non-perturbative phenomena are not power suppressed
= factorization between short/long distances breaks down? pQCD inconsistency?



Total cross sections: eTe~ annihilation

e a closer look at the structure of the IR singularities
(rewrite numerator using x; + x2 + x3 = 2):

X12+X22 = 1+(1—X1—X2)2—2(1—X1)(1—X2) = 1+(1—X3)2—2(1—X1)(1—X2)
x2 + x3 14 (1—x3)?

(]. — Xl)(l — X2) N (1 — Xl)(]. — X2)
then split in two contributions:

1 B 1 1 1\ 1 1 1
(1—X1)(1—X2)_2—X1—X2 ].—X1 1—X2 _X3 1—X1 1—X2

-2 <— non singular

X—la: soft singularity ﬁ: collinear for 1953 — 0 ﬁ: collinear for 913 — 0
) non-singular sum of two independent
IM,eagl© ~ | interference | + | collinear (and soft) emissions
looks | term (IR limit ~ classical limit)
like




Total cross sections: eTe~ annihilation

Each of the singular terms

1 e probability of collinear splitting:

a51+(1 x3)?

Pag(x3) = CF
~ gndwos X3
3 agdwas 402 _
90 e —2: collinear spectrum
1923
2 ° ‘L"f bremsstrahlung spectrum
dX1 dCOSQ923 d19 d(,U3
dwoz = X3 Pog(x3) = ———= dx3 Pgg(x3) o —2> — o3 = 0,w3 =E3— 0
2= 7~ ag(x3) T cos iy 78 ag(x3) 7, w [923 — 0,w3 = E3 — 0]
! —Cra
O‘R = O‘o/ XmdX2dX35(2—X1—X2—X3)' < F S)
0 ™

L dcosidas 1 1
" UO{/—1 1 — cosvy3 /0 s Pag () 1—X3(1—2€051923) +(1<2)

phase-space factor:

m <~ / dX25 — X1 — Xo — )|17X1:x2)(3(172cosl923)
2



Total cross sections: eTe~ annihilation

e back to the full cross section:
add virtual terms = completely analogous to real terms but different kinematics
1

1 0o
~ / dxydxd(2 — x1 — Xz)/ dx3 \Mvirtual|2
0 0

e 5(2 — x1 — x2): momentum conservation

e UV: renormalized (running)

00 coupling ® finite

- dxz... UV region .

. 1 e same IR behaviour as real
loop integral : dxz ...~ ) .

0 matrix element apart from

dxs ... IR behaviour . ] .
Jo overall sign and kinematics

10



Total cross sections: eTe~ annihilation

e back to the full cross section:
e SIGN: it comes from UNITARITY

probability that p

everything happens £ = 1 = 1 + as(real — virtual)

(LO)  (+) (=)
e KINEMATICS:

1 1
d cos o3 1
R vV _ : _w PRV -
0" + o’ = finite + /_1 T cos 0o /0 dx3Pgg(x3) 17)(3(1726051923) 1| +(1«=2)
1 7“(1*2051923) 2 e x3 — 0 and ¥a3 — O:
—_ 1| =—2 X
M w 32 e kinematics differences are irrelevant in IR region

e total cross section is finite because real/virtual cancellation of IR singularities

e pQCD can consistentely applied to total cross section
11



Total cross sections: eTe~ annihilation

Two comments:

1. Matrix elements enhanced in soft and collinear e typical tructure of hadronic
regions (phase space is flat) final state: jets + soft particles

soft particles

JET

bunch of collinear
high-momentum
particles

2. The pQCD approach applicable to total cross section. What about less inclusive
quantities and other processes?
e IR behaviour is UNIVERSAL provided the measured quantity

fulfils some SAFETY CRITERIA 1o



General structure of pQCD cross sections

Cross section: o=cl0 4 oNLO |

e Leading-order (LO): — suppose m final-state partons

ete™ = 2jets

ol — / do®  «— Born level cross section

do® ~ do™ M= ({p})|* FT({pi})

¢! b 5+( ZP:

total phase-space: d¢™ =

. p P ¢ li[l 53

o |M%°°({Pi})|2i tree-level QCD matrix element (depends on the process)

e F7({pi}): phase-space (measurement) function that defines the physical quantity
we want to compute (including experimental cuts)

e F"({pi}) = 1 = total cross section

13



General structure of pQCD cross sections

Cross section: o=cl0 4 oNLO |

e Next-to-leading order (NLO): — add real and virtual contributions

oMo — do” —I—/ doV
m—+1 m

. 1-1
same structure as Born level but: M® — M<, and M — M %%

do® : divergent
m-+1

o divergences arise from integration of M%< over IR region

/ doV : divergent
m

e divergences arise in loop integral MX1°°P from its IR region

14



NLO: real emissions

We can easily compute the matrix elements in the IR region:
IR behaviour of QCD matrix elements is UNIVERSAL

p1 9 p1 9
pi +Dpj
real emission : ~ .
. IR region .
Pyl | (pisoft) Pm
(i |l py)

Factorization formulae:

2
|Mf,:ef1(p1, s Pise s P ,pm+1)‘ ~ |,/\/lf7r7ee(pl’ .

e Vj;: process independent singular factor

pi = 2(p; +pj)

q
[ DGLap
collinear limit : =Vij= z)T/P,/(Z) splitting
function _
Cry

pj = (1= 2)(pi +py)

e analogous formulae for soft limit (eikonal factorization)

2
aPi“‘Pj»---»Pm)‘ : VU

15



NLQO: virtual corrections

We can easily compute the matrix elements in the IR region:
IR behaviour of QCD matrix elements is UNIVERSAL

P1 9
virtue ll emission % IR Ienl()n S . / \/U
P (p; soft) Pm loop
Factorization formulae: (i Il ;)
1-loo 20 tree 2
|Mm p(pl"."pm)| __‘Mm (pl,...,pm)‘ '/ VU
loop

inserting into: MO = finite + a{\IIDfrOCgiOII

NLO m tree m+1 m
1R region = /d¢ )‘M ‘ / [F (“'>pi>pj>“‘)_F (..-,Pi+Pja--'

17J

° difFerences in total phase space irrelevant in IR region
e same structure as at Born level
e F™({pi}): phase space restriction for the physical quantity

16



Infrared safety

IR cancellation < FOD( . piooopj,.) = FO L pi+p;,...)

SAFETY CRITERIA

. . (i.e. non-perturbative IR limit
(Sterman—Wel n berg). physics is power soft limit p; — 0 IR safety
suppressed) collinear limit  p; || p; collinear safety

Kinoshita-Lee-Nauenberg (KLN) theorem (quantum mechanics) in pQCD:
e perturbative observables must be IR and collinear safe
e for a suitable defined inclusive observable, there is a cancellation between the
soft and collinear singularities occurring in the real and virtual contributions
e physical observables always requires the cancellation

In other words:
e the measured/computed quantity cannot resolve long-distance phenomena

e its value should remain the same by:
e adding a (many) soft particles
e replacing a particle by two (many) collinear particles

Observables that respect the above constraint are called infrared safe observables.

Infrared safety is a requirement that the observable is calculable in pQCD. 1



IR/collinear safe obervables

Examples:

e Event shape distributions (Thrust T, Sphericity S, and many more ... )
e Jet cross section

e Qualitative definition: collimated spray of
high-energy particles

soft particles

e Quantitative studies = precise definition

JET

bunch of collinear
high-momentum
particles

of jet necessary (in particular: low energy

particles have to be assigned to jet to
have IR safety)

Need a JET ALGORITHM fulfilling the following requirements:

e |R/collinear safe

e simple to implement in the experimental analyses
e simple to implement in theoretical calculations

e small hadronization (non-perturbative) corrections



Processes with initial-state hadrons

e parton model:

DIS pp-scattering
e /
\\//e hard scattering

f(x) - parton distribution

hard scattering hard scattering

e perturbative calculation of hard
scattering — initial-state IR

w VIRTUAL

divergences

e kinematics differences (incoming parton have different momenta: xp and zxp):
e irrelevant in soft limit z — 1 = cancellation of soft sinuglarities
e relevant in collinear limit z # 1 = no cancellation of collinear singularities 1



Processes with initial-state hadrons

hard scattering

hard scattering hard scattering

f(x) - parton distribution

rp

VIRTUAL

Physical interpretation:
e there are non-perturbative terms that are not power suppressed (initial-state
collinear singularities ~ regularized by a physical cut-off related to the hadron size)
e collinear singularities depend on each initial-state hadron and are universal (process
independent) = non-perturbative (singularity) terms can be absorbed (factorized)
in non-perturbative parton densities: f(x) — f(x, @?) (scaling violation)
e f(x, Q%) not computable in absolute value but its Q*-dependence (rellated to

collinear singularities) UNIVERSAL and COMPUTABLE in pQCD

(DGLAP evolution equations) 20



Hard processes with initial-state hadrons in pQCD

Pl e gl

naive parton model virtual real
e pQCD calculation leads to IR (soft and collinear) divergences

e completely inclusive final-state (IR/coll. safe) = cancellation of soft and
FINAL-STATE collinear singularities

e initial-state: one single parton (not fully inclusive) = uncancelled
INITIAL-STATE collinear singularities = general feature of any IR/coll. safe
hard scattering processes with colliding hadrons

P 2 ) [ ] kJ_ ~ HPN OQ
d6? 1 92 Q 1.2 Q .2
- 045(02) ? ° di; — dk_2J- — @
0 o 0 0 kJ_ Qo kJ_

e regularized by physical cutoff Qg

(Qo ~ 1 GeV, l/QO — average distance between partons inside hadron)



Hard processes with initial-state hadrons in pQCD

physical interpretation: = sensitivity to IR cut-off
= long-distance phenomena included in QCD corrections

First problem: How to remove sensitivity to IR cutoff?
(i.e. How to identify partonic subprocesses dominated by short-distance interactions?)

e higher-order corrections

n
1|>,n-(ou 2 o ko2_
l' - . as(Q7) o K2 e logarithmic
ky-gap (] .
collinear spectrum
Q? dk2 QZ Q2 1
2 1 2 :
as(Q — =as(Q)In— ~ O(1 In — ~ ———< since Qy ~ Mhadron ~ NQcD
s( )/Qg ki S( ) QO ( ) Qg Oés(Qz) adron Q

e one parton emission — corrections of O(1) = not power suppressed

e resume these corrections to all-order in perturbation theory (include many emissions) 22



Hard processes with initial-state hadrons in pQCD

Second problem: Reliable estimate requires resummation of log corrections to all orders in a5

e both problems (sensitivity to IR cutoff, all-order resummation) solved by
UNIVERSAL FACTORIZATION OF COLLINEAR SINGULARITIES

e exploit analogy with renormalization
e since parton densities are not calculable in pQCD, assume

naive parton model f(z) — f°(z) bare parton density

e f0(z) = parton density at some non-perturbative scale Qp
e then, absorb collinear singularities in redefinition (~ renormalization) of parton density

for (as(Q2) Q—z)

2 f(Q?) true (physical) parton density
0

n
e overall singular factor: T (as(Qz), 8—?) contains all [QS(Q2) .In 8_:}
1] 0

e this procedure works if I is an universal factor (depends only on hadron)
(independent of hard scattering and factorizable from it)

23



Universal factorization of collinear singularities

e heuristic argument (detailed proof much more involved) based on power counting

for collinear singularities in physical gauge

phase-space factor

d Sk ~ dk"Kdipd(cos 0)
) dzlmuthdl angle

6 emission angle

g\ 0—0: dcost) ~ do?

e correction to partonic cross
section due to radiation of
collinear parton of momentum k

e to identify collinear singularities
look for 1/Q? behaviour in
squared matrix element

MATRIX ELEMENT:

p

vertex (physical gauge):

propagator: pi - e(pj) oo 0
r I 1 1 e because phy5|cal (transverse)
(p—k)?2  2p-k  2p%O(1 — cosf) 050 92 polarization (p - £(p) = 0)

- 24
® pi X P +O(0)



Universal factorization of collinear singularities

e squaring the matrix element (DIS case)

vertex
0.0 1 o .6 1
02 02 0 0202 " oy
logarithmic not sufficient
singular singular
propagator

DIRECT INTERFERENCE

e only direct contributions can lead to collinear singularities in physical gauge
(in covariant gauge interferences also contribute but final gauge invariant result is the same)

25



Universal factorization of collinear singularities

e decompose DIS partonic cross section in , >
two-particle irreducible (2Pl) subgraphs = !
e 2P| = cannot be disjoint by cutting only two lines

N collinear singularities

N PR .
+ =+ - AN q .° -eece denende:
P N\ /W_\ N » process dependent but no

NOT Gaghaa\ "
- leads to collinear singularities
but process independent
+ + .. P 2PI (universal 2 — 2 parton
scattering processes)

NOT + .. P 2PI

7



Universal factorization of collinear singularities

e introduce arbitrary factorization scale pr and split last (upper) k-integration

Q@ 4k2
— cee T ahard(:u'%)
/Qz di J
@ Kk

: K
HE dk? 2
— ... —T —F>f05f 2
/Qg sz_ <Q§ (1E)
NIVERSAL FACTORIZATION FORMULA (factorization theorem of coll. sing.)
o(p. Q?) = / 0 Brava o(20, 05(Q%). 12) oz, i2)

a=q,q,8

® Ghard.a(2p, as(Q?), u2): properly defined (subtracted) partonic cross section
(no col. sing., computable order by order in pQCD)

o fi(z,u2): process independent and scale-dependent parton densities
(unlike those of naive parton model)

e @: hard scale

27



Universal factorization of collinear singularities

h . .
! e same argument applies to hard-scattering processes

in hadron-hadron collisions

e only one new feature w.r.t. lepton-hadron collisions:
diagrams with interferences between the two colliding
partons

e in physical gauge, again collinear suppressed by power

ho .
) COUntIng

FACTORIZATION FORMULA:

1 1
o(p1,p2, Q%) = Z/o 0'21/0 dzy f1 a(z1, u7) fob(22, 1F)
a,b

X Ghard.ab(Z1P1, 22P2, s (Q?), 1F)

28



Main features of factorization theorem

1. Introduction of arbitrary factorization scale pf
2. Scale dependent parton densities
3. Scale dependence of f(z, @) calculable in pQCD

Physical cross section o(Q?) cannot depend on 1ir: 0(Q?) ~ Ghara(s(Q?), u2) - (1)
= ur dependence in Gpara(as(Q?), u%) and f(u%) compensate

e in principle: choose arbitrary pp
e in practice:

6hard(as>ﬂF) = Qs [6'(0) + 0456(1)(0/:“F) + .+ 04376(”)(0/:“/:) +.

e ("M (Q/uF) contain terms a7 (In }%)” from integration of log collinear spectrum
when k| > ur

e if up very different from Q = |In u% >1
= reliability of fixed-order expansion spoiled

e set: urp ~ Q 29



Main features of factorization theorem

wavelength decreases

Scale dependence of f(z, @?) comes from resummation of large collinear logs

e physical consequence: SCALING VIOLATION (e.g. in DIS, violation of Bjorken

scaling at large @2, structure functions F;(x, Q%) depends logarithmically on Q?)

e physical picture: resolution power of hard-scattering probe increases with @2

scattering off
small Q?

large Q2 —_—

2
very large (Q)°

p

/\/\/\O proton

p<p

constituent quark

—— ap < zp

virtual fluctuation of
constituent quark

e increasing Q% = more
probable to scatter off
lower-momentum parton

e shift of partons from higher
to lower x

e scaling violation: positive at
small-x and negative at
large-x

30



Main features of factorization theorem

SCALING VIOLATION:

+
O NC

04

02

H1 and ZEUS
® HERA NC ¢'p 0.5 fb™!
Vs =318 GeV
gy = 0.002 O ZEUS HERA II
Xy = 00002 é% ‘# O ZEUS HERA I
? o H1HERA I

% Tj b

Il K ¥ .”?bimﬁeg%ﬁ § Xy = 0032
!xi:.:mx xmgm "$M“wﬁg¥ % Xgy = 0.08

e | M

Xy =0.25

2 3 4 5

10
QY/GeV?

H1 and ZEUS

® HERA NCep 04"
m HERA NCe'p 0.5
Vs = 318 GeV
O Fixed Target
=== HERAPDF2.0 ¢ p NLO
=== HERAPDF2.0 ¢'p NLO

large-x values: dominated by valence quarks (Q> 1+ — F )

e small-x values: dominated by gluons and sea quarks (Q> 1 — R 1) 31



Main features of factorization theorem

scale-dependent parton densities f(x, Q%) not calculable in pQCD

can be extracted from experimental data (in principle from a single experiment)
MORE IMPORTANT: Scale dependence predicted (calculable) by pQCD
need experimental information from a one experiment at one input scale
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

e 2P| kernel: P; = P(as(k?.), z)

M
~sw+k, ® zj: fraction of longitudinal momentum transferred
1
L along the cascade = x; = Hj:1 z;

~aip+ ki
® propagator: k_12 k%

i Li
e logarithmically dominant kinematical region:
Q®>ki, >k, 1 >...>k >QF ki-ordering

gk, 1 X
e @) = £+ [ 550 [ Patanth ). an) £ (202, )
1n Jx n

Q@

~

32



DGLAP evolution equations

@ dk?, 1
@) = 1000 + [ S8 [ patid )z 7 (2.2,
Q Ln /X

2
0
Taking derivative of f(x, Q%) w.rt. Q:

P9 [ L@ 1 (5 0%)

e 1st order differential equation = can be solved by giving initial condition f (f, Qg)
from experiment (parton densities at a single input scale Qo)

e ( no longer arbitrary IR cutoff

e probability P(as(@?),z) = perturbatively calculable (no collinear singularities)

as power series expansion in ag

33



DGLAP evolution equations

Probabilistic interpretation = system of coupled equations w.r.t. flavours of partons

df,(x, Q? - . _

%Q?) = Pgq @ fq+ Pgg @ fg+ Pgg ® f; similiar with g & @

df,(x, @?)

dn Q2 = Pgq @ fq + Pgq © fg + Pgg © fg
d
where convolution f ® g = / ?zf (;) g(z) (= longitudinal momentum conservation)
0
Q?

qél e P,,: probability of parton evolution
In b(p) — a(zp) by radiating a bunch of

partons with ¢’ s of the same order

(911~ qgi2 ~ ...~ @) in the rapidity
interval Ay = 1

z

a
xr
d
dInQ?

h

34



DGLAP evolution equations

a |
I
z |
I
@=- =
a

s\ 2
Puslosz) = 2P0+ (5) P+

2w

° soIving.DGLAP equations with Pizo), PS)VLO), P:_SZVNLO),
= equivalent to resumme large:
. . 1
leading logs a7 In" Q% next-to-leading logs af In" Q%
e emission of an additional parton without k -ordering costs a power of as
(with no enhancing In @ factor)

35



DGLAP evolution equations

DGLAP probabilities at LO:

q q
1 +22 3 z 1-=z virtual
Pgq(z) = Cr [m + 5(5(1 — Z)] < , 0 %
z 11—z g B virtual P
Peg(z) = 2Ca =2 +— +2z(1 - 2) <§ o +€§? ) @

+osa— z)é(llCA 2Ny

Peg(z) = Tr [22 +(1— 2)2} <é—lq
Peq(z) = Cr {1—}—(127—2)2} <§;

e P,y(z) positive for z < 1 (as it should be for probabilities)

e z— 1: soft singularity = Pgq ~ 2Cr(125)+ and Pgg ~ 2Ca(135)+

. 2Ca 2Ce
e z — 0: enhancement of Pgz ~ =2 and Pgq ~ =F

36



DGLAP: large-x limit

e x — 1: only soft-parton (gluon radiation)
a e evolution dominated by by
' Paq ~ 2C < ! ) Pes ~ 2C ( ! )
~Y ~Y A
Falw, Q2 ~ < } (1—2) =0 9 f\1-z), = 1-z),
e note: large log
1 X
/dz< ! ) :—/ %Z -
X 1—z), 0o 1—=z

falx, Q%) = fi(x, Q5) - (1 — x)™ falx, @) ~ (1 —x)"
1 Q2 o
(1—x)P =exp{p,In(1—x)} :exp{/ dz 26, / d_C72 S(qz)}

1-2)4 Joz ¢ 27
QZ
./ da” S(q2): - QS(QS)

e both for quarks and for gluons

(6% —In
@ 9 Bo  as(Q?)
2
e p, = W%o In gjggg = p, > 0 for Q > Qy = power suppression increases with Q? 37




DGLAP: small-x limit

i_._ e x — 0: multiple soft gluon exchanges in the
! gooooe evolution dominate (with radiation of many
" g"ﬁm
‘ govoo hard gluons)
z—0 o . . .
e evolution driven by gluon density
2C,
Peg ~ A
z

2) 1
xfg(x, @) = xfe(x, Q) x exp {\/ f’% In zjg%i'n ;}

1

In <: strong rise of gluon density

faster than any power of In % though slower than any power of %

l Oés(Qg) . . . 2
7 In (@Y steepness increases with Q

gluon self interactions = peculiar feature of non-abelian gauge theory

38



DGLAP and experimental data

s H1 and ZEUS H1 and ZEUS
W e HERA NCe'p 0.5 b ': i ® HERANCep 0.4
6 Js = 318 GeV G = HERANC ¢'p 0.5fh™"
=0.002 O ZEUS HERA II Of, Wil T = 00005, 221 és :F?’::d(’;:;get
1 | sy =0omz | 94 &ﬁ O ZEUS HERA I i) == HERAPDF2.0¢'p NLO
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e DGLAP evolution equations give quantitative description of observed scaling violation

e scale dependence well described by the pQCD



THANK YOU!
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BACKUP SLIDES
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IR/collinear safe obervables

2-jet event

3-jet event

Need a quantitative measure that would allow us to classify events as 2- or 3-jets, both

in theoretical calculations and in experiment.
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Jet algorithms

CLUSTERING:

o define "distance" between two particles: y; = %

e dj: dimensionful resolution variable (distance measure)

e merge particles with minimum yj; until a fixed resolution ycyu¢:

Yij > Yeut vU

Compute distances between particles for all particle pairs: dj; = min (pt, ,ptj )ARz/F\’2
and the particle—beam distances for all particles: dig = pfip, where R is a jet radius and
AR = \/(yi — yj)> + (¢i — ¢;)? is a distance between particles in the (y — ¢)-plane.
Find smallest dj; and dg:
e dj < dig: recombine the two particles and add the particle ij to the list of particles
e dj > dig: call i particle a jet and remove form particle list

ke algorithm: Cambridge/Aachen algorithm: anti-k; algorithm:
(p=1) (p=0) (p=-1)

d;j = min (pt,,ptj)AR JR?  dj = ARZ/R? dj = min (p 3 )AR2/R2 N



