

# Experience of a former Gentner Student

Eva Sicking CERN Experimental Physics Department Detector Technology Group

25th Wolfgang Gentner Day - CERN 24 April 2024

## Main steps and activities in High-Energy Physics



|                             | Institutes                                                     | Univer      | sität             |                                            | FREIBURG | CERN                                                                          |
|-----------------------------|----------------------------------------------------------------|-------------|-------------------|--------------------------------------------|----------|-------------------------------------------------------------------------------|
|                             | Years                                                          | 20072009    | 20092012          | 20122015                                   | 2016     | 2016today                                                                     |
|                             | Experiment                                                     | ALICE       | ALICE             | CLICdp                                     | ATLAS    | CMS & CLICdp                                                                  |
|                             | Status                                                         | MSc student | PhD student       | Fellow & Postdoc                           | Postdoc  | Staff                                                                         |
| HEP<br>activity             | Physics analysis<br>Simulation<br>Detector hardware            |             |                   |                                            |          |                                                                               |
| Detector<br>techno-<br>logy | Gas detector<br>Scintillator tile detector<br>Silicon detector |             |                   |                                            |          |                                                                               |
| Detector<br>type            | PID: Transition Radiation<br>Tracker<br>Imaging Calorimeter    |             |                   |                                            |          |                                                                               |
| Supervision                 | Formal supervision                                             |             | 1x summer student | 2x summer students<br>1x technical student |          | 3x technical students, 1x trainee (MSc)<br>5x doctoral students<br>5x fellows |
|                             | Thesis supervision                                             |             |                   | 1x MSc                                     |          | 2x PhD, 1x MSc<br>3x PhD, 1x MSc ongoing                                      |
|                             | Team size                                                      |             |                   |                                            |          | Increasing from 3 to ~10                                                      |

Indefinite CERN contract since end of 2022



## Master student

## Physik Diplom (~MSc): ALICE experiment





- Thesis work in time with planned start up of the LHC (2008)
- Joined Münster university group working on ALICE Transition Radiation Detector (TRD)
  - $\circ$  Charged particle **tracking** and **e**/ $\pi$  separation via Transition Radiation emitted by light electrons

## Assembly of ALICE TRD supermodules in Münster



### Installation of "power bus bars"



### Connecting services of top layer





- Assembly work with fellow students and postdocs
  - Mechanical structure
  - Installation of readout units ("chambers")
  - Connecting low and high voltage, gas supply (Xe-CO<sub>2</sub>), water cooling, Ethernet, glass fibres (trigger, readout)
- First visit of CERN
  - Supermodule repair and re-assembly before installation





Lowering chamber into supermodule

# CERN

## First measurements with TRD supermodules



- Noise measurements
  - Verify connectivity and grounding
- Record cosmics ray data
  - First tests of reconstruction software
  - Alignment of sub-components → <u>Diplomarbeit</u>







## **Gentner Doctoral student**

## PhD studies in ALICE (University of Münster / CERN)



My main work topics in ALICE Offline group

- 1. **Data quality monitoring** of first collision data with focus on ALICE's barrel tracking detectors ITS and TPC
- 2. **Geant4** (and Fluka) detector simulations of ALICE, as alternative to Geant3
- 3. **Physics analysis** of first proton-proton collision data, to better understand soft particle production

Major external events

- 2009: Talk Geant4 workshop
- 2010: Talk <u>CHEP</u> (co-author)
- 2010: Talk ALICE overview, MPI@LHCC
- 2010: European School of High-Energy Physics
- 2011: Poster Annecy Quark Matter
- 2011: CERN-Fermilab Hadron Collider Physics School
- 2012: Talk Rencontres de Blois
- 2012: Talk Geant4 technical forum
- 2012: Talk Collider cross talk (theory/experiment)
- 2012: Talk <u>MPI@LHC</u>
- 2013: Talk LHC seminar

## Thesis timeline

- 04.2009: First working day
- 10.2011: Starting write-up
- 08.2012: <u>Thesis</u> submission
- 09.2012: Defense

## ALICE data quality monitoring



- Data taking started in November 2009
- Analysed reconstructed pp and Pb-Pb collision data for tracking detectors ITS and TPC
  - Search for non-active or miscalibrated detector areas
  - Verify that detector status from data is mirrored in simulations
  - Study stability of reconstruction results over time (runs)





# CERN

## **ALICE** detector simulations

ALICE simulations using the Virtual Monte Carlo (VMC)



- Optimised and validated existing implementation of Geant4 simulation in the ALICE simulation framework
- Performed first large-scale ALICE Geant4 simulations on the ALICE computing grid
- Established Geant4 as the second official transport Monte Carlo besides Geant3



First use of Geant4 in systematic uncertainties



## Study origin of particle production in pp collisions





High-energy pp collision

- Potentially more than one parton-parton interaction
- Each parton-parton interaction can produce di-jets

### Study jet properties via two-particle angular correlations

- Information about jet fragmentation
- New method to probe multi-parton interaction and their contribution to particle production
- Improve event generators

Particles in near side jet cone: Comparison of data to event generators





## Fellow and Staff: CLIC Detector and Physics

## Detector and physics at CLIC

- Compact Linear Collider: CLIC
  - Future e<sup>+</sup>e<sup>-</sup> collider option for time after HL-LHC

- CLIC detector and physics (CLICdp)
  - Detector development for CLIC
    - My focus: highly granular calorimeters, Calorimetry R&D collaboration: CALICE
  - Physics potential of CLIC
    - My focus: Higgs physics



## Calorimetry R&D for future collider experiments (2012–2015)

CALI(CO



### Test beam analysis:

Tungsten Analogue HCAL: Scintillator tiles + SiPMs



### Beam test at CERN SPS:

- Data analysis, detector simulation and <u>publication</u>
- Studied detector response, shower shapes for different particle types
- Detailed study of systematic uncertainties
- $\rightarrow$  Two summer student projects on data analysis and simulation: Note





### Hardware:

W-AHCAL results limited by understanding of

- SiPM temperature dependence
- Uniformity of tile response
- Inter-tile cross-talk
- → Technical student project on SiPM and scintillator lab measurements to improve understanding (<u>MSc thesis</u>)

## SiPM and scint. characterisation setup based on electron gun





## Physics potential of CLIC (2012–2017)

- Physics benchmark process  $e^+e^- \rightarrow H\nu\nu$ ;  $H \rightarrow Z\gamma$
- Event simulation, detector simulation, analysis and <u>publication</u>
- Contribution to the overview <u>publication</u> on Higgs physics at CLIC







 $M(jj\gamma)$  (GeV)



### Precision of Higgs couplings in model independent fit

### Eva Sicking: Experience from a former Gentner Student

## **CLIC** communication and outreach



- Co-editor and author of 3 CERN Yellow Reports on CLIC as input to European Particle Physics Strategy Update 2019/2020
  - 1. Updated staging baseline of CLIC (2016)  $\rightarrow$  link
  - 2. CLIC physics, accelerator & detector summary (2018)  $\rightarrow$  link
  - 3. Detector Technologies for CLIC (2019)  $\rightarrow$  link



- Corresponding author of "Nature Physics" article on CLIC for focus issue on European Strategy Update (2020) → link
- Co-author for outreach article on CLIC in "Europhysics News" (2018) →link







FOCUS ISSUE Back to the future of particle physics



## Staff: CMS Calorimeter Endcap Upgrade

## Current CMS Calorimeter Endcap







- At the end of the LHC life time, CMS calorimeter endcaps will have suffered severe radiation damage
- Requires replacement for operation of HL-LHC
- Requirements
  - Needs to be able to cope with harsh radiation environment and pileup

## $CE \rightarrow in Highly Granular CAL orimeter concept$



### CE as highly granular sampling calorimeter

- **CE-E:** electromagnetic section
  - 26 layers
  - All silicon
- CE-H: hadronic section



- Joined HGCAL with background from Linear Collider • calorimeter R&D
- Started with beam tests .
- Then took on silicon sensors & radiation hardness

### **Project scale and challenges:**

- By far largest project based on silicon sensor in HEP
  - ~620m<sup>2</sup> of silicon: 3x area of ATLAS/CMS trackers
- First full-size imaging calorimeter •
  - Pave the way for all future collider detectors (e.g. CLIC, FCC)  $\rightarrow$
- First application of 8" sensors in a detector at CERN (cost reduction)
  - Very large and fragile objects  $\rightarrow$
  - Develop novel production process together with industrial suppliers
  - Radiation hardness gualification
  - Needed novel irradiation facilities  $\rightarrow$

### Main silicon sensor types

# "Low-density" sensor with 199 cells

8" =

20cm

20k sensors\*

\* needed in the final detector



"High-density" sensor with 445 cells

### 24 April 2024

### Eva Sicking: Experience from a former Gentner Student

## HGCAL beam tests (2016–2018)



HGCAL 6-inch prototype: ~12'000 silicon channels



### Event display: 250 GeV $\pi^{-}$





- → PhD theses [1,2]
- → CMS thesis award / <u>Springer thesis</u> by Gentner student (annually for 3 CMS theses out of ~100 CMS theses)

### CALICE AHCAL layer: 576 scintillator tiles + SiPMs



- Test beams with electrons and hadrons
- Close collaboration between CALICE and CMS
- Journal publications [1,2,3,4,5]

### 24 April 2024

## CERN HGCAL silicon sensor activity (since 2016)



### Built up CERN HGCAL silicon team

- 10+ persons at a time with 25-100% working time
  - From student to senior staff
  - Often first hardware experience
  - Regularly rotating team composition

•

24 April 2024

- Broad scope of activities
  - Setup development
  - Sensor irradiation
  - Sensor characterisation
  - Full sensors and small test structures from same wafer

 $\rightarrow$  1 <u>MSc thesis</u>, 2 PhD theses [<u>1</u>,<u>2</u>]

- → 3 PhD, 1 MSc theses ongoing
- → Strongly benefit from existing infrastructure and know-how in EP-DT/SSD, -CMX and -ESE













### Eva Sicking: Experience from a former Gentner Student

## New LCD-HGCAL cleanroom (since 2017)











- New 60m<sup>2</sup> ISO 7 cleanroom
- Renovated from ground up to host CERN HGCAL silicon qualification center
- New temperature-controlled semi-automatic probe station



## Novel system for silicon sensor testing



System for large-area multi-pad silicon sensor characterisation

- Modular probe- and switch-card design, adaptable to different sensor layouts
- Essential tool for identification of problems in design, production process, sensor handling, as well as for production sensor testing



- HGCAL silicon sensor production ongoing: 2023–2025
  - Sample test ~2'000 sensors of 30'000 sensors needed for HGCAL
  - Tests system in operation at 5 institutes

### NIM A 2019 06 007, open hardware publication

### 24 April 2024

### Eva Sicking: Experience from a former Gentner Student

## Silicon radiation hardness qualification Per-cell leakage current

- HGCAL silicon sensors produced in new 8" process ٠
- Requires validation of radiation hardness of bulk and oxide layer
- Neutron irradiation in new 8" neutron-irradiation • facility: Rhode Island Nuclear Science Centre (RINSC)



sensor area visible in IV and CV data

after neutron irradiation

First tests with irradiated sensors assembled into detector modules





### Charge collection after warming up silicon



### **RINSC reactor beam port**



### Aluminum container hosting 8" partial sensors



### 2023 JINST 18 P08024

#### Eva Sicking: Experience from a former Gentner Student

## Training and outreach











- Co-chair of CERN summer student lecture programme (since 2023)
- 2023 EURIZON detector school
  - Member of organisation committee and lecturer
- Lectures on detector requirements at future colliders (@TIPP17, BTTB20, TREDI20)
- CERN Academic training lecture "CLIC detector"
- German teachers programme: Lectures on particle detectors
- Supervision of student exercises
- CERN tour guide (e.g. ALICE, CLIC)

## Some thoughts on

- Range of work topics
- CERN fellow application
- CERN staff applications
- Application for indefinite contract at CERN
- Postdoc time outside CERN
- Maternity, part time work
- Important role of supervisor







## Backup

## **HGCAL: ML-based detector simulation**



Usage of machine-learning (ML) techniques within HGCAL:

- Full Geant4 detector simulations are very time intensive
- Investigate if ML tools can be used to simulate electromagnetic showers
- Used Wasserstein Generative Adversarial Neural Network (WGAN)
- Simulation speed-up by up to factor 20'000 while reproducing detailed shower properties





|                                | std. (2017) CPU | Intel <sup>©</sup> Xeon <sup>©</sup> CPU E5-1620 | NVIDIA <sup>©</sup> GTX <sup>™</sup> 1080 GPU |
|--------------------------------|-----------------|--------------------------------------------------|-----------------------------------------------|
| $20\mathrm{GeV}\mathrm{e}^+$   | 550 ms [x1]     | 10 ms <b>[x55]</b>                               | 0.4 ms [ <b>x1375</b> ]                       |
| $80{ m GeV}{ m e}^+$           | 2200 ms [x1]    | 10 ms <b>[x220]</b>                              | 0.4 ms <b>[x5500]</b>                         |
| $150\mathrm{GeV}~\mathrm{e^+}$ | 4000 ms [x1]    | 10 ms <b>[x400]</b>                              | 0.4 ms <b>[x10000]</b>                        |
| 300 GeV e <sup>+</sup>         | 8000 ms [x1]    | 10 ms <b>[x800]</b>                              | 0.4 ms [ <b>x20000</b> ]                      |

## HGCAL-inspired: ML-based shower reconstruction

200

100

X [cm



ML4Reco: End-to-end reconstruction approach to reconstruction software

- Algorithm uses distance-weighted Graph Neural Network, trained with Object Condensation, a graph segmentation technique
- Promising reconstruction performance (efficiency, resolutions) of particles and jets in up to 200 pile-up (PU) events
- Less than 10s execution time for 200 PU events scaling linearly with number of detector hits (on NVIDIA 2080 Ti GPU)
- Adding tracks as additional network input to achieve end-to-end particle flow algorithm



### ML4Reco status

## Test structures from HGCAL-sensor wafers



- CERN
- Hexagonal sensor from circular wafer
- Remaining space used for small sized test structures, e.g. diodes
- 8-inch wafers (~20 cm), diodes with 0.5 × 0.5 cm<sup>2</sup> active area

