

The Einstein Telescope beampipe vacuum system: Exploring novel techniques and materials for a costeffective design solution.

Carlo Scarcia (on behalf of ET vacuum team at CERN)

24/04/2024

The Einstein Telescope (as conceived in CDR 2020)

- 6 interferometers nested in a triangular shape.
- 200-300 m underground.
- Each vertex comprises two interferometers :
 - ET Low Frequency (LF) [3 Hz to 40 Hz]: large cryogenic silicon test masses (10 – 20 K), new suspensions suspension system, new wavelength, etc.
 - **ET High Frequency (HF) [30 Hz to ~10kHz]**: high-power laser and circulating light power, large mirrors, etc.

Goal: x10 better sensitivity than VIRGO

RWITHAACHEN

UNIVERSITY

Bundesministerium für Bildung

und Forschung

Surface

Source: Rowlinson et al., Feasibility study of beam-expanding telescopes in the interferometer arms for the Einstein Telescope.

The Einstein Telescope: beampipe vacuum system

The **10 km long** optical cavities require **ultrahigh vacuum** to reduce the noise due to gas pressure fluctuations along the laser trajectory to a level ≈10 times lower than the sum of the other noises.

RINTHAACHEN UNIVERSITY

für Bildung

Surfaces

und Forschung

The vacuum system impact on budget

If VIRGO vacuum system costs are scaled to ET dimensions [1]:

Civil engineering & services (54%)
Vacuum system* (33%)
Optics and lasers (7%)
Suspension system (3%)
Cryogenics (3%)
Installation (1%)

ET collaboration, Einstein Telescope preliminary cost book, 2020
 ET Science Team, Einstein gravitational wave Telescope conceptual design study, 2011

RNTHAACHEN UNIVERSITY

Bundesministerium für Bildung

und Forschung

Surfaces

*including towers
(~<10% of the vacuum system budget [2])</pre>

GW and particle accelerators community join the forces

NSF Workshop on Large Ultrahigh-Vacuum Systems for Frontier Scientific Research (2019)

Collaborations as of today:

Credit: LIGO

The gravitational waves and particle accelerators community joined the forces toward the study of cost-effective designs, materials, and techniques for the next generation of gravitational wave detectors.

für Bildung

МΠ

NIST

Caltech

GW and particle accelerators community join the forces

The main objectives are:

Bundesministerium für Bildung

und Forschung

Surfaces

- Coordinate the contributions of all parties involved in the study of ET beampipes.
- Design, manufacture, assemble, and test a **pilot sector** of the selected ET beampipe vacuum systems.
- Preparation and writing of the '**Technical Design Report**' for the vacuum systems of the ET's arms, including cost estimations.
- Contact and sharing of information with **Cosmic Explorer community**.

CERN technical involvement

Examples of ongoing activities: Design

Straight beampipe module (LIGO/VIRGO like)

3-4 mm thick tube

- Requires bellows & stiffeners.
- Discontinuous production.

Credit: LIGO

1-2 mm thick tube

- No bellows & stiffeners.
- Lower kg/m of material.
- Continuous production.
- Less current input if Joule effect bakeout.

Credit: CERN

Examples of ongoing activities: Materials

Bundesministerium für Bildung

und Forschung

Surfaces.

RWITHAACHEN UNIVERSITY

AStS: Austenitic Stainless Steel, FStS: Ferritic Stainless Steel, MS: Mild Steel. Vacuum Fired (950°C, 2h), Air baked (450 °C, 5d). Measurement error: ±40%; Detection limit: 50% of background

Examples of ongoing activities: Materials/Vacuum

Bakeout/Layout cost optimization

- Bakeout temperature and duration
- **Pumps size** and **distribution**

Bundesministerium für Bildung

und Forschung

Vacuun

Surfaces.

RWITHAACHEN UNIVERSITY

Pumps integration

- Vacuum system sectorization
- Compact design
- Commercial instruments and pumps

Examples of ongoing activities: Prototyping

Objectives

Verify water outgassing modelling

Ultimate pressure after 80°C and 150°C bakeout

Test the effect of the increasing pumping speed during bakeout on ultimate pressure

> **RWITHAACHEN** UNIVERSITY

Bundesministeriur für Bildung

und Forschung

Surfaces

Examples of ongoing activities: Prototyping

RNTHAACHEN UNIVERSITY

Bundesministeriur für Bildung

und Forschung

Surfaces

Outlook: ET beampipe pilot sector

The pilot sector aims to **test the design, fabrication, installation and commissioning** of the proposed **beampipes and support system**. It also aims to compare the feasibility of a selected number of technical choices.

From Q4 2024:

- 2 tubes Ø 1 m x 36 m
- AISI 441 (thickness 4 mm)
- VIRGO-like solution (straight tube)

RNTHAACHEN

Outlook: ET beampipe pilot sector

Typical tests are:

- Installation and alignment of supports and beampipes.
- In-situ welding and assembly.

für Bildung

und Forschung

- Integration of thermal insulation, instrumentation and vacuum components.
- Leak detection procedure during fabrication and assembly.
- Pumpdown time.
- Bakeout: temperature distribution and efficiency.
- Ultimate partial pressures and outgassing rates.
- Validate the calculated vibration transmission matrix.

RVNTHAACHE

• Efficiency of the methods used to reduce the quantity of dust

³D model of the pumping module

Further readings

[Beampipes for Gravitational Wave Telescopes 2023]

- A.T. Perez Fontenla, Materials and their production processing for ET's beampipes
- <u>G. Favre, Manufacturing and welding options</u>
- G.J. Deleglise Design of beampipes for GWT
- C. Scarcia, Sectorisation, pumping system, commissioning and operation of ET beampipes
- I. Wevers, Vacuum measurements of materials and coatings for GWD beampipes
- L. Marques Antunes Ferreira, Options for surface finishing of beampipes for gravitational wave telescopes
- P. Cruikshank, Leak Detection: from component production to system installation
- L. Scibile, Installation and logistics (manufacturing facility, storage, transport, timeline)
- J. Hansen, The ET pilot sector at CERN
- G. Pigny, Control systems
- J.A. Ferreira Somoza, Cost assessment guidelines

[XIII ET Symposium]

C. Scarcia, ETO: Vacuum Pipe project

[2nd ET annual meeting]

- C. Scarcia, CERN vacuum pipe results
- L. Scibile, CERN vacuum pipe planning and perspective

C. Garion and P. Chiggiato, Presentation of the technical challenges for vacuum tube manufacturing [Einstein Telescope Industry Webinar]

Thank you for your attention

home.cern

Gravitational Wave Detectors: the vacuum system

Vacuum characterization of ferritic alloys

H₂ content

	Steel grade	H ₂ content [ppm at.]
Ferritic StS	304L	80
	AISI 430 (BA)	8.3
	AISI 441	6.8
	AISI 444	1.5
Mild steel	ULC-IF	3.7
	FB580	2.8
	S315MC	2.7
	S355J2+AR	2.0
	S355J2+N	1.6
	ARMCO	1.2
	S355J2H	7.8
	P355N	1.0

Concentration calculated from quantity of H₂ (considered to be uniformly distributed) extracted with TPD (up to 850°C) Background removed

> Bundesministerium für Bildung

und Forschung

Surfaces. Coatings

Vacuum characterization of ferritic alloys H₂ content

für Bildung

und Forschung

Vacuum

Surfaces. Coatings

Vacuum characterization of ferritic alloys H₂O pressure modeling

Bundesministerium für Bildung

und Forschung

ET corrugated prototypes

RWITHAACHEN UNIVERSITY

Vacuum layout

Bakeout + UHV pumping

Simulating in ET 1 NEG every 50 m $(1500 \text{ ls}^{-1} \text{ for } \text{H}_2\text{O})$

Angle valve

ET corrugated prototypes

Bundesministerium für Bildung

und Forschung

Surfaces

ET corrugated prototypes

RWITHAACHEN UNIVERSITY

Bakeout scheme Bake-out: 80°C - 7 days 10^{-4} S only $S + S_x$ Experimental verification of 10^{-5} $\rm H_2O$ partial pressure at $\rm L/2$ [mbar] beneficial effects of increased pumping speed during heating 10^{-6} 10^{-7} Bake-out start 10^{-8} Increase of pumping speed 10^{-9} Gain ≈ x100 10^{-10} We could exploit the use of NEG pumps [SAES proposal, 2010] 10^{-11} 10 100 Time [days]

Examples of ongoing activities: Prototyping

Bundesministerium für Bildung

und Forschung

Surfaces.

- **1. Good matching between** the **model** and **experimental data**.
- 2. The model's predicted water partial pressure values generally align with the values from the mass spectrometer signal.
- 3. The increase of pumping speed during the bakeout is proven to be a viable solution to shorten the duration.

Examples of ongoing activities: Vacuum

RWITHAACHEN UNIVERSITY

Power supply max current: 400A

Examples of ongoing activities: Vacuum

Chamber: AISI 441 (400 x 1.5 x 2050 mm)

Surfaces.

Bundesministerium für Bildung

und Forschung

RWITHAACHEN UNIVERSITY Max temperature according to heat transfer model: 64°C Max recorded temperature: 66°C