

Trigger-Level Physics Analysis at the CMS Experiment

Enhancing the Phase Space for the Analysis of Inclusive H \rightarrow bb Production through Trigger-Level Analysis at the CMS Experiment

Adelina Lintuluoto

Gentner day April 24th 2024

The Standard Model of particle physics is incomplete

The Standard Model of particle physics is incomplete

Protons collide in the center of experiments such as the CMS detector

The Standard Model of particle physics is incomplete

Higgs boson (H) production is rare at the LHC

At CMS, events are selected by a two-tiered trigger system

The HLT hardware consists of CPU and GPU units

Online reconstruction aims to provide low latency

Offline reconstruction aims to provide the best physics objects for analysis

The vast majority of events are permanently lost

It can be difficult to distinguish desired interactions from other processes 1010 Total 10⁹ 10^{8} gQ 107 for sol LHC Rate 10⁶ 'n 10^{34} cm⁻² 10⁵ 10^{4} 10³ 10² 0 ggh S 10¹ Events / **VBF***H* 10⁰ ttH VH g 00000 10^{-1} 10-2 Η 10-3 CC-BY Ihc-xsecs.ord 10⁻⁴ 10^{0} 10^{1} 10² g Q Q Q QCenter-of-mass \sqrt{s} / TeV

Scouting increases the event rate — allowing analysis of previously unexplored phase spaces

Access to unexplored phase spaces is achieved by lowering the trigger thresholds

Scouting reaches full efficiency

earlier

Potentially revealing new physics that was

previously overlooked due to higher

thresholds

-

More resources

-

More resources

Offloading to GPU

Advanced

reconstruction

	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
	CIEN-EF-2024-005 2024/01/26 CMS-EXO-23-007
	Enriching the physics program of the CMS experiment via data scouting and data parking
Mar 2024	The CMS Collaboration*
24	Abstract
üv:2403.16134v1 [hep-ex]	Specialized data-taking and data-processing techniques were introduced by the CMS experiment in Run 1 of the CERN LHS to enhance the sensitivity of sacrabes for the sensitivity of sacrabes for the sensitivity of sacrabes for termed data seconting and data parking, extend the data-taking capabilities of CMS beyond the original design specifications. The newed data-saccuting parking trades complete even information for higher event rates, while keeping the data bandroi/dth within limits. Data parking involves storing a large amount of raw detector data collected by algorithms with low trigger thresholds to be processed when sufficient events of the sacrability of the sensitivity of the sensitivity of the sensitivity of the calculated power is availables to high such data. The sensitivity program of the performance, and physics results obtained with that accounting and data parking in CMS over the last decade are discussed in this Report, along with new developments aimed at further improving low-mass physics sensitivity over the next years of data taking.
arX	To be submitted to Physics Reports
	© 2024 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
	-se ublauer a na an ar centerennen muneer

Trade-off: Offline reconstruction vs Unexplored phase spaces

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
CERN-EF-2024-008 2024/01/26 CMS-EX0-23-007
Enriching the physics program of the CMS experiment via data scouting and data parking
JEI The CMS Collaboration*
≥ †⊂ Abstract
Specialized data-taking and data-processing techniques were introduced by the CMS experiment in Run 1 of the CERN LHC to refunce the sensitivity of avarbes for experiment in Run 1 of the CERN LHC to refunce the sensitivity of avarbes for the result of the original design psecifications. The novel data-scouting strategy trades complete event information for higher event rate, while keeping the data bandwidth within limits. Data parking involves storing a large amount of raw detector data completed with information for higher thresholds the processed when sufficient computational power is available to handle such data. The research program of the therefore the last decade are discussed in this Report, along with new developments taking.
To be submitted to Physics Reports
© 2024 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
see appensis a tor the list of collaboration memores

Comparison of Comparison of resolution momentum 34 fb⁻¹, 2022 (13.6 TeV) 34 fb⁻¹, 2022 (13.6 TeV) 1.5 1.4 1.4 1.3 1.04 $p_{T}^{scout} > / p_{T}^{off} >$ CMS CMS |η| ≤ 1.3 |η| ≤ 1.3 1.3 < |η| ≤ 2.5 1.3 < |η| ≤ 2.5 1.02 The scouting 1.00 1.2 reconstruction 1.1 is comparable 0.98 with that 1.0 achieved offline 0.96 0.9 0.8 0.94 250 500 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 750 scout (GeV) p_{T, ave} (GeV) — Offline — Offline - - Scouting - - Scouting

Jet mass

Jet mass

Validating the scouting strategy by searching for $Z \rightarrow bb$ production at high momentum transfer

Feasibility study — systematic uncertainties with greatest impact included

Validating the scouting strategy by searching for $\mathbf{Z} \rightarrow \mathbf{bb}$ production at high momentum transfer

200

Summary

- Scouting broadens the range of events that are captured by CMS, providing the potential to reveal new physics
- Resolutions of scouting objects approach those achieved by the offline reconstruction
- Scouting jets are valuable in searches for boosted boson decay into hadronic final states

Thanks to Günter Quast, Clemens Lange, Paris Sphicas, the CMS Trigger Studies Group — Elisa Fontanesi & Patin Inkaew, the DAZSLE group — Jennet Dickinson and many more!

BACKUP

Standard Model Higgs boson

Gluon fusion 000000000 g Н observed 88% of the total **g** ′000000000 **Vector Boson Fusion** observed W.Z Н 7% of the total W,Z Associated prod. with Z/W W.Z observed W,Z 3% of the total Associated prod. with top 000000000 Н observed 1% of the total

Observed (5 σ) production modes:

- Gluon gluon fusion, VBF (Run-1)
- ttH, VH (Run-2)

Observed (5 σ) decay modes:

- To bosons: $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow \gamma \gamma$
- To fermions: $H \rightarrow \tau \tau$, $H \rightarrow bb$

The transverse momentum spectra is altered by EFT operators

Relative contribution from different production modes change with transverse momentum

p_T > 800 GeV

The VBF production mode is isolated by targeting the two forward going quarks

The VBF production mode is isolated by targeting the two forward going quarks

VBF analysis strategy

- Require H candidate jet with $p_T > 450$ GeV and 2-prong substructure
 - Minimum p_T set by trigger limitations
- Apply jet flavour tagger selection
 - Tagger is decorrelated from H candidate mass
- Events failing tag selection are used to estimate non-resonant background (soft QCD interactions)
- Fit to H jet soft drop mass distribution

VBF analysis strategy

QCD background estimation

- Control potential shape effects introduced by the tagger (simulation)
- Control discrepancies
 in tagger selection
 between data and
 simulation

Top quark background estimation

- Control for
 normalisation
 differences in data
 and simulation
- Control discrepancies in tagger selection between data and simulation

Simultaneous fit of ggF and VBF

ggF category

138 fb⁻¹ (13 TeV) GeV **CMS** Preliminary Data Bkg. Unc. 2 3000 2500 3000 - DDB Pass W QCD ggF category Z(qq) Z(bb) Single t Bkg. H - VBF 2000 1500 1000 500 (Data - Bkg)/ o_{Dr} 140 120 160 m_{sp} [GeV]

summed over p_T bins

VBF category summed over m_{jj} bins

Simultaneous fit of ggF and VBF

Using the scouting strategy to search for boosted H production

40% likelihood of correctly identifying signal jets \rightarrow 0.6% likelihood of misidentifying QCD jets

Jet mass resolution of roughly 10%

Using the scouting strategy to search for boosted H production

Using the scouting strategy to search for boosted H production

Validating the scouting strategy by searching for boosted Z \rightarrow bb production

Validating the scouting strategy by searching for boosted Z \rightarrow bb production

Performing a more exploratory analysis of searching for inclusive boosted H production

- Work is still ongoing
- Expected significance exceeds that of Run 2 analysis, even with 1/3 the integrated luminosity cds.cern.ch/record/2721858

Parton interactions often give rise to a cascade of quarks and gluons that form hadrons

Parton interactions often give rise to a cascade of quarks and gluons that form hadrons

Final-state particles are clustered to reduce the complexity of the final-state

H decay also result in final-states involving jets

Online reconstruction uses similar but simplified algorithms to the offline reconstruction

