

Tau Experimental Challenges Mogens Dam Niels Bohr Institute ECFA e+e- Collider Miniworkshop: Two-fermion physics March 21, 2024

SPS

LHC

photo: J. Wenninger

FCC-ee

FCC-ee Conditions and Statistics

- a. τ Polarisation Measurement
- b. τ-lepton Properties and Lepton Universality

References:

- FCC CDR Volume 1
- MD, Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider, SciPost Phys.Proc. 1 (2019) 041, DOI: 10.21468/SciPostPhysProc.1.041
- MD, The τ challenges at FCC-ee, Eur. Phys. J. Plus **136**, 963 (2021)
 DOI: <u>10.1140/epjp/s13360-021-01894-y</u>

Will also be reporting from recent presentations by A. Lusiani:

- *Tau Physics at FCC*, 6th FCC Physics Workshop, Liverpool, Jan 2022
- *<u>Tau Lifetime measurements at FCC-ee</u>,* 6th FCC Physics Workshop, Krakow, Jan 2023
- Detector Requirements from Tau Physics, FCC Week, London, Jun 2023

τ Polarisation Measurement

 \Rightarrow assuming universality: $\sin^2\theta_W^{eff} = 0.23130 \pm 0.00048$

Experimental Aspects

Use τ decays as spin analysers (V-A)

- Two helicity states result in different kinematic distributions that are fitted to observed distribution of appropriate variables
- Divide (typically) into six decay modes

Important aspects

- Selection of $e^+e^- \rightarrow \tau^+\tau^-$ events
 - Backgrounds from qq, ee, $\mu\mu$, $\gamma\gamma$
- Interchannel separation
 - Most importantly, internally between $h+n\pi^{\circ}$ states => **Photon** and π° reconstruction
- Reconstruction of kinematic variables
- Selection efficiency and backgrounds as function of kin. variables

Important example (highest sensitivity) : $\tau^- \rightarrow \rho^- \nu \rightarrow \pi^- \pi^0 \nu$

Here polarisation is extracted from two angles

ALEPH

(b)

ALEPH

(d)

0.5

ΩV

ννι

ALEPH

(a)

evv

ALEPH

1000

ents/0.05

\$ 4000

200

0.25

0.5

200

1000

1000

0.25

0.25

0.5

0.75

Results and Precisions – case Aleph

		Obtained results	5	_					Eur.Pł	าys.J.C	20:40:	1-430,:	2001
	Channel	$\mathcal{A}_{ au}$ (%)	$\mathcal{A}_{e}~(\%)$										
ſ	hadron rho	$\begin{array}{c} 15.21 \pm 0.98 \pm 0.49 \\ 13.79 \pm 0.84 \pm 0.38 \end{array}$	$15.28 \pm 1.30 \pm 0.12$ $14.66 \pm 1.12 \pm 0.09$]]		······ Most p	orecis	se cha	anne	ls			
	a1(3h)	$14.77 \pm 1.60 \pm 1.00$	$13.58 \pm 2.11 \pm 0.40$										
	$a1(h2\pi^0)$	$16.34 \pm 2.06 \pm 1.52$	$15.62 \pm 2.72 \pm 0.47$				ل	<u> </u>			syst	tema	itics
	muon	$13.64 \pm 2.33 \pm 0.96 \\13.64 \pm 2.09 \pm 0.93$	$14.09 \pm 3.17 \pm 0.91$ $11.77 \pm 2.77 \pm 0.25$			Source	h	0	A_{τ} 3 h	$h 2\pi^{0}$	P		Incl
ł	pion inclusive	$14.93 \pm 0.83 \pm 0.87$	$14.91 \pm 1.11 \pm 0.17$			selection	-	0.01	-	-	0.14	$\frac{\mu}{0.02}$	0.0
	Combined	$14.44 \pm 0.55 \pm 0.27$	$14.58 \pm 0.73 \pm 0.10$			tracking	0.06	-	0.22	-	-	0.10	-
				-		PID	$0.15 \\ 0.15$	0.11	0.21	0.01	$0.47 \\ 0.07$	- 0.07	- 0.18
			ation lineite d			misid.	0.05	-	-	-	0.08	0.03	0.0
,	LEP mea	asurement stati	stics imited			photon	0.22	0.24	0.37	0.22	- 0.54	- 0.67	- 0.1
)	At FCC-e	ee, ~ 10 ⁵⁻⁶ larger	statistics:			τ BR	0.09	0.00	0.10	0.10	0.03	0.03	0.78
	Need (m	iuch) reduced si	vstematics			modelling	-	-	0.70	0.70	-	-	0.0
			,			MC stat	0.30	0.26	0.49	0.63	0.61	0.63	0.20
						TOTAL	0.49	0.38	1.00	1.52	0.96	0.93	0.8
					•** 				A_e				
	The sing	le most importan	t systematics			Source	h	ρ	3h	$h2\pi^0$	e	μ	Incl.
	(on the n	nost precise chan	nels) is due	• • •		tracking	0.04	-	-	-	-	0.05	-
			/			non- τ back.	0.11	0.09	0.04	0.22	0.91	0.24	0.1'

to photon and π^{o} identification

modelling

TOTAL

-

0.12

-

0.09

-

0.25

-

0.91

0.40

0.47

0.40

0.40

Incl. h

0.08

0.18

0.05

0.15

0.78

0.09

0.26

0.87

Incl. h

0.17

-

0.17

γ and π^0 reconstruction in τ decays – case Aleph

⇒ Key: Overall detector design; good ECAL pattern recognition essential

Full simulation study of a LAr Calorimeter

On average, EM showers are very smooth

Example: photon/ π^0 separation in a LAr Calorimeter

Hadronic migration matrix – aleph and LAr Study

aleph	LAr Study
Recon \rightarrow $h\nu$ $h\pi^0\nu$ $h2\pi^0\nu$ $h3\pi^0\nu$ $h4\pi^0\nu$ Gen \downarrow $h\nu$ 0.9270 0.0670 0.0047 0.0010 0.0003 $h\pi^0\nu$ 0.0457 0.8756 0.0728 0.0053 0.0006 $h2\pi^0\nu$ 0.0044 0.1470 0.7499 0.0900 0.0087 $h3\pi^0\nu$ 0.0008 0.0288 0.3098 0.5768 0.0837	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
each of the considered channels [22]	considered channels
• Aleph was already pretty good • LAr study points to possible improvements ALEPH MI decay channels $T \rightarrow \pi^{*} 3 \pi^{0} v_{\tau}$	LAr Study – no radiated photons Recon \rightarrow $\pi^{\pm}\nu$ $\pi^{\pm}\pi^{0}\nu$ $\pi^{\pm}2\pi^{0}\nu$ $\pi^{\pm}3\pi^{0}\nu$ $\pi^{\pm}4\pi^{0}\nu$ Gen \downarrow $\pi^{\pm}\nu$ $\pi^{\pm}\pi^{0}\nu$ $\pi^{\pm}2\pi^{0}\nu$ $\pi^{\pm}3\pi^{0}\nu$ $\pi^{\pm}4\pi^{0}\nu$ $\pi^{\pm}\pi^{0}\nu$ 0.0351 0.9338 0.0300 0.0011 0.0001 $\pi^{\pm}2\pi^{0}\nu$ 0.0084 0.1314 0.8050 0.0546 0.0003 $\pi^{\pm}3\pi^{0}\nu$ 0.0031 0.0360 0.2673 0.6138 0.0792
²⁰⁰ ²⁰⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰	Table 9.2: The migration matrix of hadronic τ decays for events not containing any radiation photons. Each row shows the fraction of e.g. $\tau \to \pi^{\pm} \nu$ decays classified as each of the considered channels
$\gamma\gamma$ mass of additional photons in hemispheres where one π° has been already identified	

τ-lepton properties and Lepton Universality

- Mass
- Lifetime
- Leptonic branching fractions

Universality of Fermi constant

Andreas Crivellin and John Ellis.

Here, a new-physics effect at a relative sub-per-mille level compared to the SM would suffice to explain the anomaly. This could be achieved by a heavy new lepton or a massive gauge boson affecting the determination of the Fermi constant that parametrises the strength of the weak interactions. As the Fermi constant can also be determined from the global electroweak fit, for which Z decays are crucial inputs, FCC-ee would again be the perfect machine to investigate this anomaly, as it could improve the precision by a large factor (see "High precision" figure). Indeed, the Fermi constant may be determined directly to one part in 10⁵ from the enormous sample (>10¹¹) of Z decays to tau leptons.

Fermi constant is measured in $\boldsymbol{\mu}$ decays and defined by

$$G_{\rm F}^{(e)}G_{\rm F}^{(\mu)} = \frac{192\pi^3}{m_{\mu}^5 \,\tau_{\mu}}$$

Assuming (e,μ) universality, the Fermi constant then is

$$G_{\rm F} \equiv G_{\rm F}^{(e)} = G_{\rm F}^{(\mu)} = \sqrt{\frac{192\pi^3}{m_{\mu}^5 \tau_{\mu}}}$$

Experimentally known to 0.5 ppm (µ lifetime)

Similarly can define Fermi constant measured in τ decays

$$G_{\rm F}^{(e)}G_{\rm F}^{(\tau)} = \frac{192\pi^3 \mathscr{B}(\tau \to {\rm e}\nu\nu)}{m_\tau^5 \,\tau_\tau}$$

$\frac{G_{\rm F}^{(\tau)}}{G_{\rm F}^{(\mu)}} = \frac{m_{\mu}^{5}\tau_{\mu}}{m_{\tau}^{5}\tau_{\tau}}\mathscr{B}(\tau \to \mathrm{e}\bar{\nu}\nu)$								
Current	45 ppm	1700 ppm	2200 ppm					
precision:	Belle	Belle	LEP					

FCC-ee: Will see 5x10¹¹ τ decays Statistical uncertainties at the 10 ppm level How well can we control systematics?

m_{τ}	Use J/ ψ mass as reference (known to 2 ppm)	tracking
$ au_{ au}$	Laboratory flight distance of 2.2 mm \Rightarrow 10 ppm corresponds to 22 nm (!!)	vertex detector
B	No improvement since LEP (statistics limited) Depends primarily $e^{-}/\pi^{-} \& e^{-}/\rho^{-}$ separation	ECAL dE/dx

On the τ lifetime measurement, see <u>link</u>

Tau Mass

- World average:
- Until recently, best in world: BES3 (threshold scan)
- ◆ Best at LEP: OPAL
 - About factor 10 from world's best
 - \square Main result from endpoint of distribution of pseudo-mass in $\tau {\rightarrow}~3\pi^{\pm}(n\pi^{0})v_{\tau}$
 - Dominant systematics
 - Momentum scale: 0.9 MeV
 - \star ECAL scale: 0.25 MeV (including also π^0 modes in analysis)
 - \star Dynamics of τ decay: 0.10 MeV
- ♦ Same method from Belle new World's best

Systematics

- * Knowledge of beam energy.: 0.07 MeV
- ✤ Reconstruction of charged particles : 0.06 MeV
- * Fit model: 0.04 MeV
- Imperfections of simulation:

 $m_{\tau} = 1776.61 \pm 0.08 \text{ (stat.)} \pm 0.11 \text{ (syst.) MeV}$

Pseudo-mass:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

0.04 MeV

 m_{τ} = 1776.86 ± 0.12 MeV

 $m_{\tau} = 1776.96 + 0.18 = 0.21$ (stat.) + 0.25 = 0.17 (syst.) MeV $m_{\tau} = 1775.1 \pm 1.6$ (stat.) ± 1.0 (syst.) MeV

Tau mass prospects at FCC-ee

- Belle II statistical uncertainty is 45 ppm with 190 fb⁻¹, 175 M tau pairs
- ► FCC-ee statistical uncertainty with 8.10¹² Z, 2.7.10¹¹ tau pairs would be 1.1 ppm
 - neglecting surely better FCC-ee efficiency
- Belle II dominant systematics expected very reduced at FCC-ee
 - beam energy (1 ppm at FCC-ee)
 - track momentum scale (2 ppm calibration maybe possible at FCC-ee with $m_{J/\psi}$)
- alignment systematics can be expected to scale with statistics
- Imiting systematics from empirical fit function, 0.05 MeV or 28 ppm
- may expect to reduce this limiting systematic uncertainty to 1/2 of 14 ppm at FCC-ee
- guestimate FCC-ee tau mass precision at 14 ppm

detector requirements

baseline performance is adequate, no gain expected from improvements

Tau Lifetime

• Current world average: $\tau_{\tau} = 290.3 \pm 0.5$ fs (1700 ppm)

- Best in world (Belle): τ_τ = 290.17 ± 0.53 stat ± 0.22 syst fs
 - **Large statistics:** 711 fb⁻¹ @ Y(4s): 6.3M $\tau^+\tau^-$ events
 - □ Use 3 vs. 3 prong events (1.1M events)

Reconstruct 2 secondary vertices + primary vertex

 \square Measure flight distance \Rightarrow proper time

 \square Dominant systematics: Vertex detector alignment to \thicksim 0.25 μm

Vertex detector positioned outside 15 mm beam pipe

- Best at LEP (DELPHI): $\tau_{\tau} = 290.0 \pm 1.4_{stat} \pm 1.0_{syst}$ fs
 - **Low statistics:** ~ 250,000 $\tau^+\tau^-$ events

Three methods:

Decay length (1v3 + 3v3), impact parameter difference (1v1), miss distance (1v1)

- □ Lowest systematics from decay length method (1v3)
- \square Dominant systematics: Vertex detector alignment to 7.5 μm
 - Alignment with data (qq events): statistics limited

 \square Vertex detector: 7.5 μm point resolution at 63, 90, and 109 mm

MD comments in red

Tau Lifetime at FCC-ee(Z) uncertainty budget

 $au_{ au}$ precision [ppm]

- 9.6 statistical
- 2.0 length scale of vertex detector (typical length = 10 mm, knowledge \approx 20 nm !!)
- 9.0 $\sigma(m_{\tau})$
- 12.0 average tau pair production radiative energy loss
- 3.5 systematics optimistically expected to scale with statistics
 - detector alignment
 - background
 - fit model

18.3 total

detector requirements to limit effects below 1/2 of statistical uncertainty

- impact parameter resolution for tau decay tracks $\leq 70/2 \cdot \sqrt{3} = 61 \,\mu$ m ...factor 10 too pessimistic
- taking into account that each single event measurement uses three tracks
- uncertainty on average length scale of vertex detector elements $\leq 9.6/2 = 4.8$ ppm ~ 50 nm

other detector requirements

- ► 75× precision improvement for simulation of radiation in tau pair production
 - not detector but worth noting
 - \blacktriangleright 30× assumed to be more realistic in the uncertainty bugget

Mogens Dam / NBI C

Tau Leptonic Branching Fractions

World average

□ B(τ→evv) = 17.82 ± 0.05 %

; B(τ→μνν) = 17.39 ± 0.05 %

◆ Dominated by Aleph @ LEP

□ B($\tau \rightarrow evv$): 4400 ppm = [4000 (stat.) \oplus 2000 (syst.)] ppm ; B($\tau \rightarrow \mu vv$): 4400 ppm = [4000 (stat.) \oplus 1800 (syst.)] ppm

• Three uncertainty contributions dominant in the Aleph measurement, all limited by stats, size of test samples, ...

Selection efficiency:	1180	;	1150 ppm
♦ Non-τ⁺τ⁻ background:	1630	;	1150 ppm
✤ Particle ID:	1070	;	1200 ppm

- Prospects at FCC-ee
 - Enormous statistics \Rightarrow **5 ppm**

u Systematic uncertainty is hard to guestimate at this point.

- Depends intimately on the detailed performance of the detector(s)
 - At the end of the day, between LEP experiments, δ_{syst} varied by factor ~3

With the large statistics, much will be learned. Suggest a factor 10 improvement wrt Aleph: ~190 ppm

⇒ Key: Overall detector design, including tracking, calorimetry, PID, muon system ⊕ redundancy

Canonical tau lepton universality plot extrapolation to FCC-ee

Mogens Dam / NBI Co Alberto Lusiani (SNS & INFN Pisa) - FCC Week 2023, London, June 5-9, 2023

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce 1.7 x 10¹¹ τ⁺τ⁻ pairs
- Factor ~3 higher statistics than Belle2 projection; plus higher boost ($\gamma = 26$) Boost is advantageous for many studies
- Potential for very precise $\sin^2\theta_w$ determination via **\tau polarisation** measurement • ECAL performance crucial
- Improved Lepton universality test by about two orders of magnitude.

• Expressed via tau decay based Fermi constant

$$\frac{\delta G_{\rm F}^{(\tau)}}{G_{\rm F}^{(\tau)}} = \left[5 \cdot \frac{\delta m_{\tau}}{m_{\tau}} \oplus \frac{\delta \tau_{\tau}}{\tau_{\tau}} \oplus \frac{\delta \mathscr{B}(\tau \to e\nu\nu)}{\mathscr{B}(\tau \to e\nu\nu)} \right]$$
$$= \left[(5 \cdot 14) \oplus 19 \oplus 190 \right] \text{ ppm} \simeq 200 \text{ ppm} \text{ today, 2800 ppm}$$
$$= \text{Overall improvement by factor 14 w.r.t. current precision !!} \text{ECAL crucial}$$

Overall

Summary, detector requirements

τ physics sets very strong detector requirements; good benchmark for detector design

Vertexing

Lifetime measurement to 10 ppm corresponds to 22 nm flight distance !

Tracking

□ Two-track separation: collimated topoligies, 3-, 5-, 7-, 9- ... prong decays

Extremely good control of momentum and mass scale

τ mass measurement

Low material budget: Minimize secondary tracks from hadronic interaction in material

Calorimetry

 \square Clean γ and π^0 reconstruction from ${\sim}0.2$ to 45 GeV is key

□ Collimated topologies: Important to be able to separate γs from close-lying hadronic showers

Muon system:

□ High efficiency, low background muon ID

◆ PID

□ Necessary for separation of π/K modes (0 – 45 GeV momentum range)

 \Box e/ π separation at low momenta (where calorimetric separation is most difficult)

 \Box Even provides e/ μ separation

Redundancy: Provides valuable handle to create test samples for study of calorimetry etc.

Summary, detector requirements

 τ physics sets very strong detector requirements; good benchmark for detector design

Vertexing

Lifetime measurement to 10 ppm corresponds to 22 nm flight distance !

Tracking

Design your detector with care! □ Two-track separation: collimated topoligies, 3-, 5-, 7-, 9- ... prong decays

• Extremely good control of momentum and mass scale

Low material budget: Minimize secondary tracks from

Calorimetry

 \Box Clean y and π^0 reconstruction from

Collimated topologies

Muon system:

□ High efficiency, low

♦ PID

 \Box Necessary for separation of π/K modes (0 – 45 GeV momentum range)

 $\Box e/\pi$ separation at low momenta (where calorimetric separation is most difficult)

 \Box Even provides e/ μ separation

Redundancy: Provides valuable handle to create test samples for study of calorimetry etc.

spares

$Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$

 $\sigma(p_T)/p_T = 2.7 \times 10^{-2}$

Limit set at

Br(Z $\rightarrow \mu \tau$) < 12 × 10⁻⁶

Best at LEP

□ World's best until recently:

♦ ATLAS now at 9.5 × 10⁻⁶

Assumed momentum resolution at $p_T = 45.6$ GeV including contribution (0.9×10^{-3}) from beam-energy spread:

1.01

 $\sigma(p_T)/p_T = 1.8 \times 10^{-3}$

Findings:

□ Sensitivity scales ~ linear in momentum resolution

□ Irreducible background (from $\tau \rightarrow \mu \nu \nu$) \Rightarrow sensitivity $\propto 1/\sqrt{L}$

 \Box Similar sensitivity for Z \rightarrow et

Sensitivity for signals down to

BRs of ~10⁻⁹

e۶

OPAL DATA 91-94

Z.Phys. C67

(p-p_{beam})/o_p

- □ 7.5 x 10⁻⁷ LHC/ATLAS (20 fb⁻¹; no candidates) □ 1.7 x 10⁻⁶ LEP/OPAL (4.0×10^6 Z decays: no candidates)
- In e⁺e⁻, clean experimental signature:
 - Beam energy electron vs. beam energy muon
- Main experimental challenge:
 - **Catastrophic bremsstrahlung energy loss** of muon in electromagnetic calorimeter
 - \ast Muon would deposit (nearly) full energy in ECAL: Misidentification $\mu \rightarrow e$
 - ✤ NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4 x 10⁻⁶
 - * Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - \star If dE/dx mesaurement available, (some) independent e/ μ separation at 45.6 GeV
 - Could give handle to determine misidentification probability $P(\mu \rightarrow e)$
- ♦ FCC-ee:
 - □ Misidentification from catastrophic energy loss corresponds to limit of about $Br(Z \rightarrow e\mu) \simeq 10^{-8}$ □ Possibly do $\mathcal{O}(10)$ better than that $Br(Z \rightarrow e\mu) \sim 10^{-9}$ (probably even 10^{-10} with IDEA dE/dx)

10⁻¹⁰ – 10⁻⁸ sensitivity depending on detector design and performance

Current limits:

□ $Br(\tau^- \rightarrow e^-\gamma) < 3.3 \times 10^{-8}$ BaBar, 10.6 GeV; 4.8 × 10⁸ e⁺e⁻ $\rightarrow \tau^+\tau^-$: 1.6 expected bckg □ $Br(\tau^- \rightarrow \mu^-\gamma) < 4.4 \times 10^{-8}$ 3.6 expected bckg

- Main background: Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$ $\Box \tau \rightarrow \mu\gamma$ decay faked by combination of γ from ISR/FSR and μ from $\tau \rightarrow \mu\nu\overline{\nu}$
- At FCC-ee, with 1.7 x 10^{11} $\tau^+\tau^-$ events, what can be expected?

Boost 8-9 times higher than at B-factories

- Detector resolutions rather different, probably especially ECAL
- \square Parametrised study of signal and the main background, $e^+e^- \rightarrow \tau^+\tau^-\gamma$, performed

Presented at tau2018

□ From study (assuming 25% signal & background efficiency), projected BR sensitivity

2 x 10-9

□ With the recently suggested crystal ECAL, possible a factor of about 6-10 better

• Current limits:

♦ FCC-ee prospects

□ Expect this search to have *very low* background, even with FCC-ee like statistics

 \Box Should be able to have sensitivity down to BRs of $\leq 10^{-10}$

• Many more decay modes to search for when time comes. Need PID for most

