
1

1

FCCPana – lightweight C++
analysis program for fast and
full simulations for FCCee

S.Chekanov (ANL)

May 6, 2024, CERN
Software general meeting

E2

2
FCCPana C++ analysis

 Why 100% CPP code?

FCCAnalyses heavy relies on Python users (I’m not .. even
after publishing Python books!)

Cannot complain much about Python, but we know its
limitation

Being looking for C++ code with an integration of external
libraries from L3/HERA/ATLAS for ML/constrained fits

Decided to put together a simple C++ code (<100k total size)

Used some code from ATLAS analysis (used in ~5 papers) and
made some simplifications

First version of this code can be find:

https://github.com/chekanov/FCCPana
Tested on 24 cores. Works well

https://github.com/chekanov/FCCPana

3
FCCPana C++ analysis

 Some useful features

Uses key4hep setup

Runs on any EDM (ROOT) files

Small (100KB), simple and fast! (Note: FCCAnalysis is 80 MB)

Can run on multiple cores (tested on 24 cores)

Can define systematics + multiple outputs via main.in input file

Can attach additional C++ libraries (simply put them to inc/ or src/)

Unified object definition

Works for both Delphes IDEA and CLD files without code change

Flexible. Program any analysis logic (even 4-level nested loops with
arbitrary selections!) using variables listed in analysis.h

4
FCCPana C++ analysis

 Small example

git clone https://github.com/chekanov/FCCPana

cd FCCPana

source setup.sh # setup key4hep

make # compile

mkdir -p data/IDEA_DELPHES

Add 2 EDM files for testing (DElphes)

cd data/IDEA_DELPHES

wget https://mc.hep.anl.gov/asc/hepsim/events/ee/240gev/py8_ZH_idea/rfast053/py8_ZH_idea_1.root

wget https://mc.hep.anl.gov/asc/hepsim/events/ee/240gev/py8_ZH_idea/rfast053/py8_ZH_idea_2.root

cd ../../

./A_RUN # run on 2 cores (or modify how many cores you need)

Similarly, run full simulations (CLD).

Copy files, define in A_RUN the directory with the EDM files, and run!

Find merged outputs inside “out”

5
FCCPana C++ analysis

 Program structure

All EDM-specific header files are in “aux” and predefined for fast and full
simulation

If data changes, there is a tool to recreate such header files

program “knows” how to handle different data record using pre-processor
statement

Program structure:

 Define a histogram name in inc/Histo.h

 Any global parameters are in inc/Global.h

 Initialize the histogram in src/Histo.cxx

 Apply selection cuts for your events in src/CutEvent.cxx

 Event loop in src/Loop.cxx - main analysis program. Do anything you want

Not sure what variable to use in src/Loop.cxx? Look at analysis.h. It lists all
variables from the input EDM file (it changes depending on fact or full simulation)

6
FCCPana C++ analysis

 Inside src/Loop.cxx

All variables from Delphes and full simulations are moved to unified representation of events

Currently the program fills 8 invariant masses from fast and full simulations (for truth and reco)

 // truth
 for(Int_t i = 0; i < MCParticles_; i++){
 if (MCParticles_generatorStatus[i] != 1) continue;
 TLorentzVector tl;
 float e=sqrt(MCParticles_momentum_x[i]* MCParticles_momentum_x[i]
+MCParticles_momentum_y[i]* MCParticles_momentum_y[i]
+MCParticles_momentum_z[i]*MCParticles_momentum_z[i]
+MCParticles_mass[i]*MCParticles_mass[i]);

tl.SetPxPyPzE(MCParticles_momentum_x[i],MCParticles_momentum_y[i],MCParticles_momentum_z
[i],e);
 LParticle p;
 p.SetP(tl);
 int pdg=MCParticles_PDG[i];
 p.SetType(pdg);
 p.SetStatus(MCParticles_simulatorStatus[i]);
 p.SetParent(0);
 p.SetCharge(MCParticles_charge[i]);
 if (abs(pdg)==11) true_electrons.push_back(p);
 if (abs(pdg)==13) true_muons.push_back(p);
 if (abs(pdg)==22) true_photons.push_back(p);
 };

Available vectors with objects:
jets, Ljets, Bjets, electron, muons, photons and truth level counterparts
Each element: extended TLorenzVector (+ any parameter you want!)

7
FCCPana C++ analysis

 Where it can fail

The code does not “understand” previous iteration of EDM files (<2023)
since they have “#” in the names (to indicate leading and subleading
objects)

ROOT (and C++) does not allow this.

TTree::MakeClass creates headers which cannot be compiled

The issue was brought to the ROOT team. Philippe Canal fixed this
problem, replacing “#” with “_”. But this feature has not been tested
(need dev branch of ROOT)

Meanwhile, use /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh
to create EDMs without “#”

8
FCCPana C++ analysis

 Conclusion

https://github.com/chekanov/FCCPana

Try to use it. If it fails, let me know

If there are significant changes in the event record of EDM, I will
show you how to re-generate header file to reflect such change

https://github.com/chekanov/FCCPana

	First Slide Example
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

