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Research with CMS Open Data
CMS Open Data datasets have DOI numbers: InspireHEP search reveals citations

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=references.reference.dois%3A10.7483%2FOPENDATA.CMS%2A


2023 Anomaly Detection paper
“Unravelling physics beyond the standard model with classical and quantum anomaly detection”

J. Schuhmacher, L. Boggia, V. Belis, E. Puljak, M. Grossi, M. Pierini, S. Vallecorsa, F. Tacchino, P. 
Barkoutsos, I. Tavernello

Authors from a mix of institutes: IBM Research, ETH Zurich (Theory & Particle Physics), Barcelona, 
CERN

Much hope for finding new physics phenomena at microscopic scale relies on the observations 
obtained from High Energy Physics experiments, like the ones performed at the Large Hadron 

Collider … We propose a supervised learning setting in which the signal sample is built perturbing 
the background sample, without relying on any specific BSM theory

https://arxiv.org/abs/2301.10787


“SM but not quite” – data scrambling
• SM simulation processed for an earlier autoencoder paper from 2012 AOD Open Data

• Variables considered for random scrambling include
• Momenta: jet scalar sum, lepton vector sum, highest pT lepton, MET components, lepton pseudorap.

• Isolation: lepton w.r.t charged hadrons, neutral hadrons, photons

• Counts: jets, b-tagged jets, leptons, 3 PF candidate types

• Scrambling must obey conservation laws and                                                                                
other “sensibility” constraints



“SM but not quite” – data scrambling
Each feature gets scrambled by sampling from 
a Gaussian with various methods of changing 
the std. dev.

3 scrambling strengths defined:



SVC networks
Support Vector Classifier: embeds data in a high-N space for separability by hyperplanes

Classical kernel: Gaussian
◦ Optimize the hyperparameter gamma 

Quantum kernel: 
◦ classical features (x) mapped to a quantum state space

◦ Quantum feature map φ

◦ Kernel evaluated on imb_cairo quantum processor, 6 qubits

◦ Distinction between numerical and hardware experiments



Training & Validation scheme

Goal is to determine whether a network trained on the 
“artificial” anomalies can identify “real” anomalies in 
the form of known BSM theories

Training & testing performed with:
◦ Background = SM mixture of W, Z, ttbar, and QCD 

◦ Signal = scrambled data

◦ 1000 events / class for each of 10 training sets

Highest performer in test dataset is used for the BSM 
samples

◦ High-mass VBF Higgs

◦ Rkk Graviton → ZZ → 4 leptons



Training & Validation scheme
Tests showed that standardizing the features before down-selecting harmed 
the performance significantly.

To choose the final training features, PCA outperformed various decision trees.

PCA features are then scaled to all share the same range



Training results
More features → better anomaly detection, including the BSM models

Fewer features needed if the scrambling is more extreme

Quantum struggles against the classical kernel for anomalies and Higgs



Training results
Does the QSVC appear less performant because the SVC is overfitted?

Doesn’t appear so: adding a bias to the SVC doesn’t change artificial anomaly 
finding, and allows the SVC to eclipse the QSVC even for gravitons



Quantum simulation vs hardware
The main results all use a simulated “perfect” quantum 
computer.

Hardware test performed with ibm_cairo
◦ 6 qubits used to make the kernel map

◦ Had to downscope to 50 events / class, and no external BSM 
samples

◦ Used previous optimized settings and chose 6 PCA features

Clearly the “noisy” hardware is not as performant! 
◦ Unclear how the simulated SVC and QSVC would do with only 50 

events / class

They conclude that this classification problem is not well suited 
to teasing out the future benefits of quantum computing



Summary
This paper is a great example of collaboration across disciplines!

Constructing this type of dataset from Open Data has now become even simpler
◦ 2012 AOD simulation

◦ This paper shared a dataset with an earlier paper

◦ MiniAOD and NanoAOD formats for 2015 and 2016 data are more accessible

For studies that don’t rely on future detector simulation, we hope to see 
NanoAOD Open Data rise in popularity w.r.t fast simulations like Delphes!

We look forward to reading your work using Open Data!

All datasets have 
a unique DOI that 
you are requested 
to cite in any 
applications or 
publications.


