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Overview

● GlueX DIRC

● Fast and Accurate Simulation

● PID Methods - 𝐊 +- / 𝜋 +-

○ Delta Log Likelihoods
○ Image Classification with Transformers
○ Performance
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Detection of Internally Reflected Cherenkov Light (GlueX DIRC) 
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Incoming charged track
𝐊 +- / 𝜋 +-

Photon propagation

● 48 fused silica bars segmented into 4 
bar boxes

● Two readout zones (optical boxes)

● Optical boxes contain distilled water 
and highly reflective focusing mirrors

● 6 x 18 PMT array for photon detection
○ One PMT - 8 x 8 sensor array

● Provides location and timing 
information for individual photons

Hit pattern on PMTs
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Incoming charged track
𝐊 +- / 𝜋 +-

Photon propagation

● 48 fused silica bars segmented into 4 
bar boxes

● Two readout zones (optical boxes)

● Optical boxes contain distilled water 
and highly reflective focusing mirrors

● 6 x 18 PMT array for photon detection
○ One PMT - 8 x 8 sensor array

● Provides location and timing 
information for individual photons

Hit pattern on PMTs

Goal: Characterize hit patterns from 𝐊 +- / 𝜋 +- as 
a function of < |𝙥| , 𝜃 , 𝜙 > (track)



Deep(er)RICH - Fast Simulation with Normalizing Flows
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Define a bijective function f(z), s.t.

Transform the density through a change of variables
Conditional on some parameters k

Maximize the likelihood of expected hit patterns under a base distribution

Analytic Likelihood Computation



Deep(er)RICH - Learning at the hit level
● Abstract away from fixed input sizes

○ Remain agnostic to photon yield

● Learn at the hit-level, conditional on < |𝙥| , 𝜃 , 𝜙 >

● Normalizing Flows unable to deal with discrete distributions
○ DIRC readout has fixed row,col coordinate system
○ Transform to x,y coordinate system (mm)
○ Smear uniformly over individual PMT pixels

TrackID    x (mm)     y (mm)     t (ns)        |𝙥|             𝜃            𝜙
1

1
 …

N

3.0 5.0 90.

3.0 5.0 90.
 …  …  …  …  …  …

4.0 7.0 -90.

4.0 7.0 -90.N 6
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Fast Simulation - GlueX DIRC
PionsKaonsKaons Pions
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Fast Simulation - GlueX DIRC
PionsKaonsKaons Pions

8Simulation is fast - O(0.5)us per hit (effective)



𝝅/𝑲 Separation
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PID in the Base Distribution - Normalizing Flow Method 
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Recall our bijection

Recall our analytical computation of the likelihood 
under a change of variables

We can compute the DLL under the base distribution 
- summed contribution over hits

Where the hypothesis of a pion/kaon is represented 
by individual networks



Working with Images - Vision Transformer Method  

● Remain agnostic to photon yield

● Individual tracks form “images” in optical boxes
○ Sparse point representations

● Possibility of overlapping hits
○ Same x,y - different times
○ Construct these as images as FIFO 
○ Tends to be low percentage of overlap
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Position

Time



Working with Images - Vision Transformer Method cont’d…  

12
[2] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international 
conference on computer vision. 2021.

● Hierarchical Vision Transformer (Swin) - encoder style feature extraction
○ Windowed attention - higher throughput

● Combine information through CNN - utilize skip connections for different 
resolutions

● Inject kinematics as concatenated information to DNN
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𝝅/𝑲 Separation - GlueX DIRC

PID is fast - O(9)us per track with transformer (effective)

NF method slightly slower given additional computation 
needed
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Validation of Fast Simulation through Transformer

Trained on tracks from NF (fast simulation) 
2x Original Dataset

Tested on MC sample



Conclusion

● Two Methods of PID
○ Both able to generalize over continuous phase space
○ Initial results show improved PID performance compared to classical methods
○ Transformer provides fast inference ~ 9us / track (effective)
○ NF method slightly slower - extra computation, overhead due to varying number of photons

● Fast and Accurate Simulation
○ “Skips” all track propagation and provides fast accurate patterns (see full simulations) 

■ Fast (NF) and full simulations ~ “indistinguishable”/same performance for a classifier 
(Transformer)

○ Generates optical boxes directly - conditional on track parameters < |𝙥| , 𝜃 , 𝜙 >
○ Ability to generate photons in batches - 0.5 us / photon (effective)
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Backup
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Deep(er)RICH - Learning at the hit level cont’d…

PMT # 1
Original mapping 
places us boundary

Shift to center of 
pixel

Smear uniformly - 
continuous density
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Preprocessing


