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Point Cloud Data

• Neutrino Detection • Galaxy Evolution 

• Autonomous Driving • Drug Discovery
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Point Clouds in High-Energy Physics
The Large Hadron Collider
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Point Clouds in High-Energy Physics

• Particle Tracking [1] • Pileup Mitigation [2]

• Jet Tagging [4]• Particle-flow Reconstruction [3]

The Large Hadron Collider

...
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Current Computational Challenges 

• Large-sized point clouds
• Over 60k points/cloud for the tracking task

• Large amount of data
• LHC can produce 1 billion particle collisions per 

second (1PB data/sec!) [5]

• Online compute & low latency requirement
• Data preprocessing can’t be done offline!
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via, e.g., geometric relations

or kNN graphs

Current Computational Challenges 

• Graph Neural Networks [2, 3, 4, 5, 6, 7]
• By converting point clouds to graphs

Popular solutions

• Leveraging the sparsity in the data, 
GNNs can be fast once graph is built
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via, e.g., geometric relations

or kNN graphs

Current Computational Challenges 

GNNs are not fast enough!

1. Building graphs can be expensive
• kNN may have 𝒪(𝑛2) complexity!

2. Irregular computation & random 
memory access
• Not hardware friendly! 

Popular solutions
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• Graph Neural Networks [2, 3, 4, 5, 6, 7]
• By converting point clouds to graphs



• We present HEPT, an efficient point transformer based on OR & AND LSH
• No graph construction

• Only regular computations

• Linear complexity

• Architecture
• Assign hash codes using OR & AND E2LSH. Similar items share close 1D hash codes

• Sort items based on hash codes. Then compute block-diagonal attention

Our Solution: LSH-based Efficient Point Transformer (HEPT)

100x+ faster than GNNs! (on GPUs)
*On the tracking task, ~60k points/cloud
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Our Solution: LSH-based Efficient Point Transformer (HEPT)

e.g.,
• Local window attn
• State-space models

Summary
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• Prelim: locality-sensitive hashing (LSH)
• LSH hashes similar items to the same or similar buckets w/ high prob.

• HEPT is a point cloud serialization model
• point clouds --> 1D seq via LSH
• enable the use of efficient sequence models
• randomized serialization patterns



Our Solution: LSH-based Efficient Point Transformer (HEPT)

Summary
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• Different from concurrent work [8], which
• use fixed serialization patterns
• hard to analyze to provide theoretical guarantees
• cannot preserve certain locality patterns

[8] Wu, Xiaoyang, et al. Point Transformer V3: Simpler Faster Stronger. CVPR, 2024.

and point/vision mamba…

e.g.,
• Local window attn
• State-space models

• HEPT is a point cloud serialization model
• point clouds --> 1D seq via LSH
• enable the use of efficient sequence models
• randomized serialization patterns



Our Solution: LSH-based Efficient Point Transformer (HEPT)

Summary

11

[8] Wu, Xiaoyang, et al. Point Transformer V3: Simpler Faster Stronger. CVPR, 2024.

• HEPT:
• No hand-crafted serialization patterns!
• Provable capability to preserve locality!
• Can work even for high-dim data!

• HEPT is a point cloud serialization model
• point clouds --> 1D seq via LSH
• enable the use of efficient sequence models
• randomized serialization patterns

e.g.,
• Local window attn
• State-space models



• The sparsity in the data lays the foundation of building an efficient model
• i.e., a point primarily interacts with its local neighbors

• Our efficient transformer is built based on this property, with theoretical guarantees

Theoretical Results
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• Analyzed & compared two popular techniques
• random Fourier features (RFFs) & locality-sensitive hashing (LSH)

• Used by RFA [9], Performer [10], Reformer[11], SMYRF [12], HyperAttn [13], etc.

• by examining the trade-off between
• approximation error (𝜖) & computational complexity (Flops, 𝐹)

Theoretical Results
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• by examining the trade-off between
• approximation error (𝜖) & computational complexity (Flops, 𝐹)

Theoretical Results

1. RFFs are consistently worse than LSH under subquadratic complexity

2. LSH is better. However, OR-only LSH can’t sufficiently reduce the error if 𝐹 is near-linear

3. Utilizing OR & AND LSH significantly improves performance, exponentially reducing the error w/ near-linear complexity

•widely used by prior works
•but suboptimal!

Theoretical Results
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Empirical Results

• Tasks

• A representation learning task
• learn close embeddings for points 

originating from the same particle

• A binary point classification task
• predict if a neutral particle is from 

pileup collisions or not

HEPT achieves SOTA accuracy!
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Empirical Results

• Scalability Analysis

HEPT is one of the most efficient transformers!

Achieve over 100x speedup on GPUs compared to GNNs on Tracking-60k (60k points/cloud)
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Ongoing Work

• Further improving HEPT for the tracking task (potentially include other tasks)

• Integrating HEPT with FlashAttention 2

17



• Paper: https://arxiv.org/abs/2402.12535

• GitHub: https://github.com/Graph-COM/HEPT

Conclusion

Siqi Miao1 Mia Liu3 Javier Duarte4 Pan Li1Zhiyuan Lu2
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