

Siqi Miao Ph.D. Student ML @ Georgia Tech

Siqi Miao¹ Georgia Tech

Zhiyuan Lu²

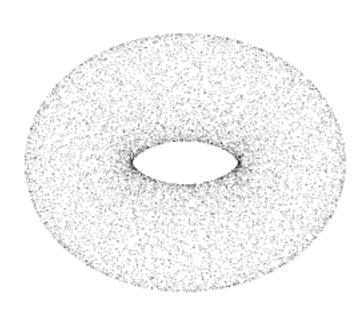
 Mia Liu³

Javier Duarte⁴

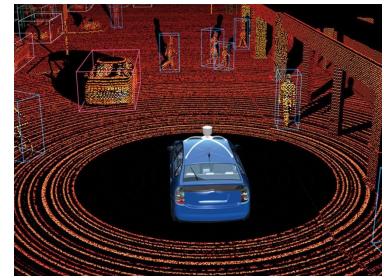
Pan Li¹

UC San Diego

Point Cloud Data

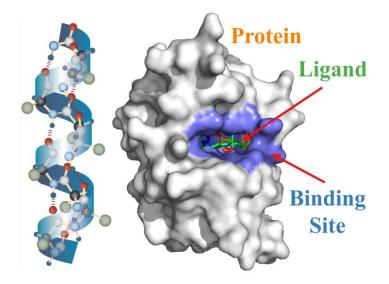


• Autonomous Driving



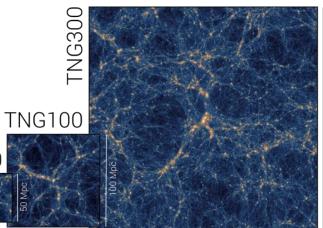
Neutrino Detection

• Drug Discovery

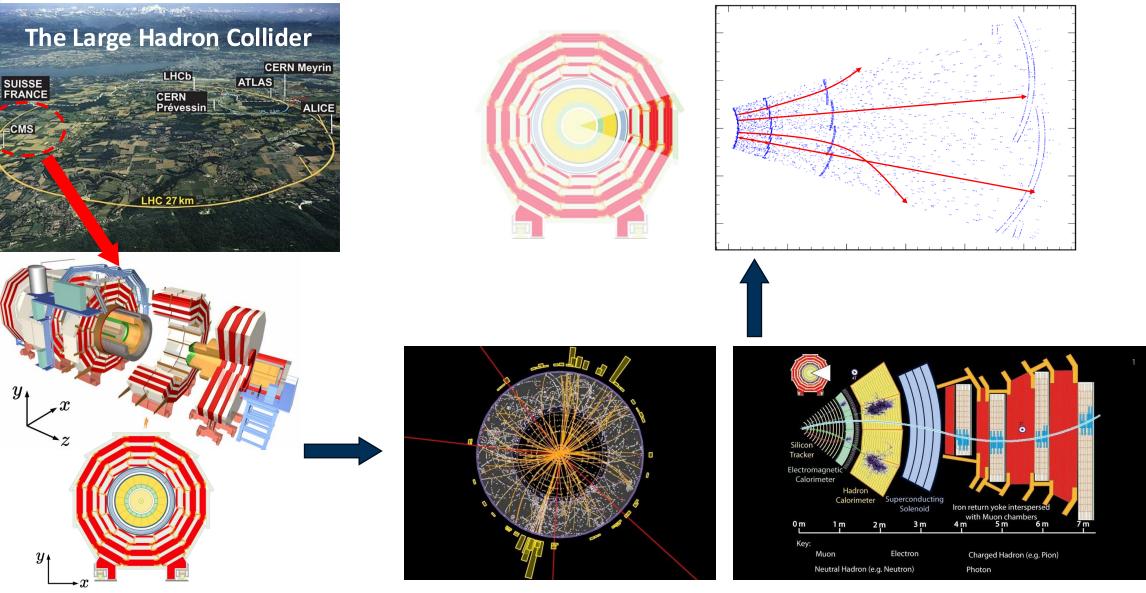


• Galaxy Evolution

TNG50



Point Clouds in High-Energy Physics

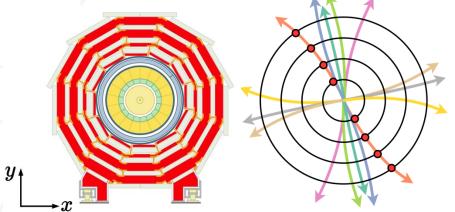


Detector Illustration

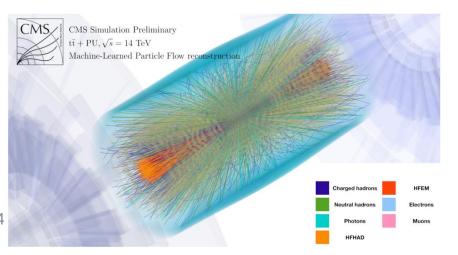
3

Point Clouds in High-Energy Physics

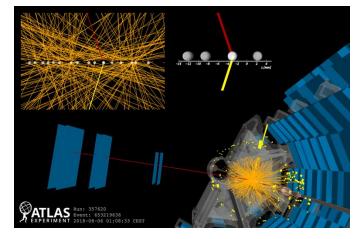
Particle Tracking [1]



• Particle-flow Reconstruction [3]

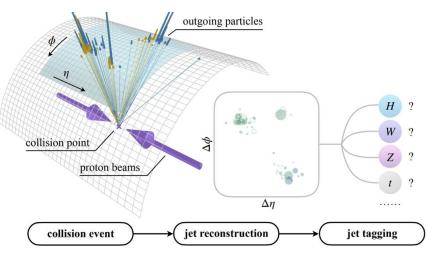


• Pileup Mitigation [2]



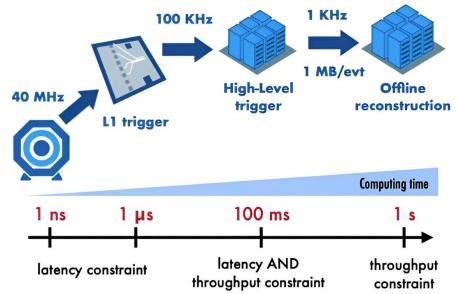
• Jet Tagging [4]

• • •



Current Computational Challenges

- Large-sized point clouds
 - Over <u>60k points/cloud</u> for the tracking task
- Large amount of data
 - LHC can produce 1 billion particle collisions per second (<u>1PB data/sec!</u>) [5]
- Online compute & low latency requirement
 - Data preprocessing <u>can't be done offline!</u>

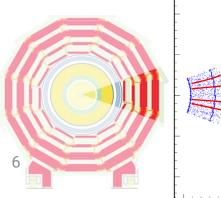


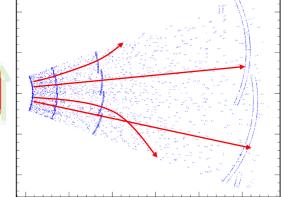
Current Computational Challenges

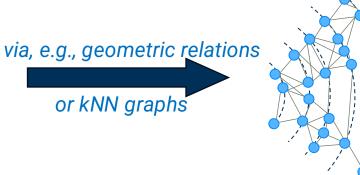
- Large-sized point clouds
 - Over <u>60k points/cloud</u> for the tracking task
- Large amount of data
 - LHC can produce 1 billion particle collisions per second (<u>1PB data/sec!</u>) [5]
- Online compute & low latency requirement
 - Data preprocessing <u>can't be done offline!</u>

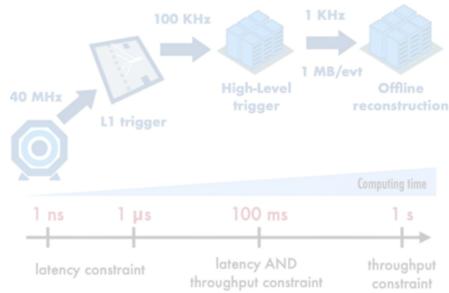
Popular solutions

- Graph Neural Networks [2, 3, 4, 5, 6, 7]
- By converting point clouds to graphs









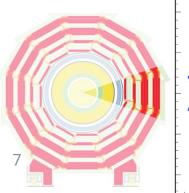
• Leveraging the sparsity in the data, GNNs can be fast once graph is built

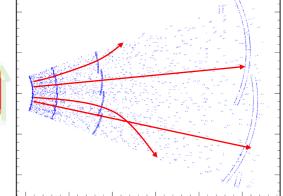
Current Computational Challenges

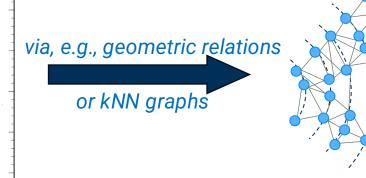
- Large-sized point clouds
 - Over <u>60k points/cloud</u> for the tracking task
- Large amount of data
 - LHC can produce 1 billion particle collisions per second (<u>1PB data/sec!</u>) [5]
- Online compute & low latency requirement
 - Data preprocessing <u>can't be done offline!</u>

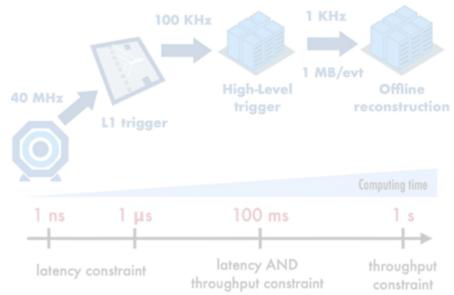
Popular solutions

- Graph Neural Networks [2, 3, 4, 5, 6, 7]
- By converting point clouds to graphs









1.

2.

۲

memory access

GNNs are not fast enough!

Building graphs can be expensive

Irregular computation & random

Not hardware friendly!

kNN may have $\mathcal{O}(n^2)$ complexity!

Our Solution: LSH-based Efficient Point Transformer (HEPT)

100x+ faster than GNNs! (on GPUs)

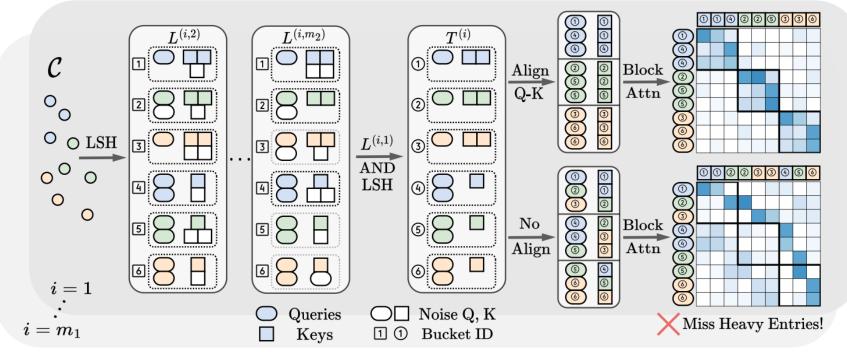
*On the tracking task, ~60k points/cloud

• We present HEPT, an efficient point transformer based on OR & AND LSH

- No graph construction
- Only regular computations
- Linear complexity

• Architecture

- Assign hash codes using OR & AND E2LSH. Similar items share close 1D hash codes
- Sort items based on hash codes. Then compute block-diagonal attention



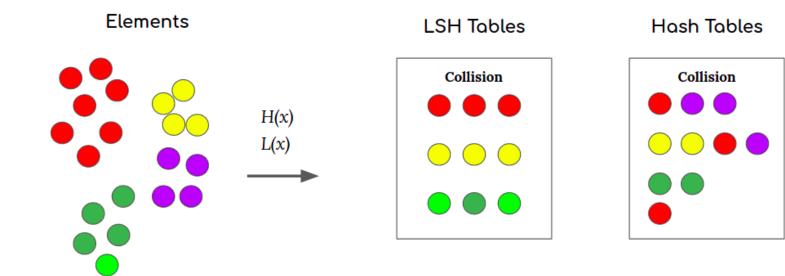
Our Solution: LS<u>H</u>-based <u>Efficient Point Transformer (HEPT)</u>

Summary

- HEPT is a point cloud serialization model
 - point clouds --> <u>1D seq</u> via <u>LSH</u>
 - enable the use of <u>efficient sequence models</u>
 - *randomized* serialization patterns

Ο 0 LSHe.g., 2 Efficient I ocal window attn 5 Sequence 0 ⁰ (5) State-space models Model 3 \bigcirc \bigcirc

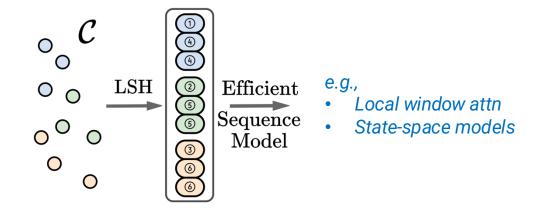
- Prelim: locality-sensitive hashing (LSH)
 - LSH hashes *similar items* to the same or *similar buckets* w/ high prob.



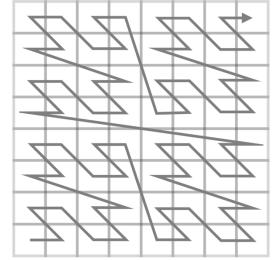
Our Solution: LSH-based Efficient Point Transformer (HEPT)

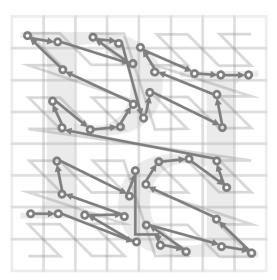
Summary

- HEPT is a point cloud serialization model
 - point clouds --> <u>1D seq</u> via <u>LSH</u>
 - enable the use of <u>efficient sequence models</u>
 - *randomized* serialization patterns
- Different from concurrent work [8], which
 - use *fixed* serialization patterns
 - *hard to analyze* to provide theoretical guarantees
 - <u>cannot preserve</u> certain locality patterns



(a) Z-order

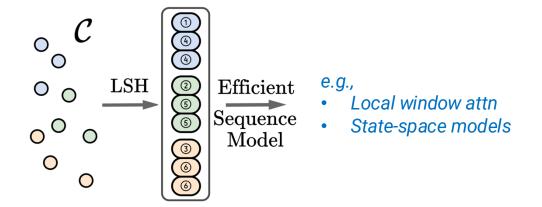


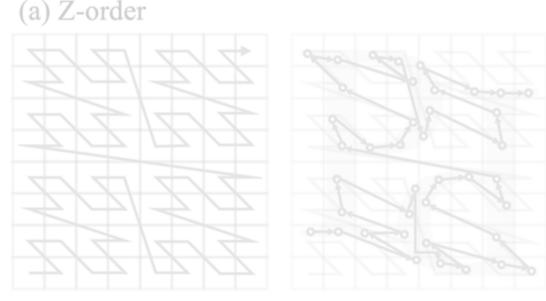


Our Solution: LSH-based Efficient Point Transformer (HEPT)

Summary

- HEPT is a point cloud serialization model
 - point clouds --> <u>1D seq</u> via <u>LSH</u>
 - enable the use of <u>efficient sequence models</u>
 - *randomized* serialization patterns
- Different from concurrent work [8], which
 - use *fixed* serialization patterns
 - *hard to analyze* to provide theoretical guarantees
 - <u>cannot preserve</u> certain locality patterns
- HEPT:
 - <u>No hand-crafted</u> serialization patterns!
 - Provable capability to preserve locality!
 - Can work even for <u>high-dim data</u>!





[8] Wu, Xiaoyang, et al. Point Transformer V3: Simpler Faster Stronger. CVPR, 2024.

11

Theoretical Results

- The sparsity in the data lays the foundation of building an efficient model
 - i.e., a point primarily interacts with its local neighbors
- Our efficient transformer is built based on this property, with theoretical guarantees

Theoretical Results

- The sparsity in the data lays the foundation of building an efficient model
 i.e., a point primarily interacts with its local neighbors
- Our efficient transformer is built based on this property, with theoretical guarantees
- Analyzed & compared two popular techniques
 - random Fourier features (RFFs) & locality-sensitive hashing (LSH)
 - Used by RFA [9], Performer [10], Reformer[11], SMYRF [12], HyperAttn [13], etc.
 - by examining the trade-off between
 - <u>approximation error</u> (ϵ) & <u>computational complexity</u> (Flops, F)

Theoretical Results

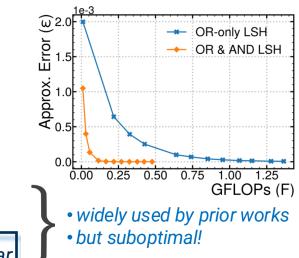
- The sparsity in the data lays the foundation of building an efficient model
 - i.e., a point primarily interacts with its local neighbors
- Our efficient transformer is built based on this property, with theoretical guarantees
- Analyzed & compared two popular techniques
 - random Fourier features (RFFs) & locality-sensitive hashing (LSH)
 - Used by RFA [9], Performer [10], Reformer[11], SMYRF [12], HyperAttn [13], etc.
 - by examining the trade-off between
 - <u>approximation error</u> (ϵ) & <u>computational complexity</u> (Flops, F)

Theoretical Results

•••

1. <u>RFFs</u> are consistently <u>worse than LSH</u> under subquadratic complexity

2. LSH is better. However, OR-only LSH can't sufficiently reduce the error if F is near-linear

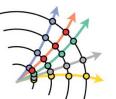


3.

Utilizing OR & AND LSH significantly improves performance, exponentially reducing the error w/ near-linear complexity

Empirical Results

Tasks

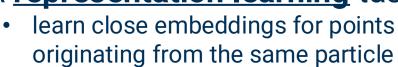


A representation learning task

• Hits from a particle Track to reconstruct

(a) Charged Particle Tracking

• PCs



A **binary point classification** task

 predict if a neutral particle is from pileup collisions or not

HEPT achieves SOTA accuracy!

Table 1: Predictive performance on the three datasets. The **Bold**^{\dagger}, **Bold**^{\ddagger}, and **Bold** highlight the first, second, and third best results, respectively. <u>Underline</u> indicates the best transformer baselines.

	Tracking-6k (AP@k)	Tracking-60k (AP@k)	Pileup-10k (AUC)
Random	5.88	5.71	4.22
SOTA GNNs	91.00^{\ddagger}	90.89^{\ddagger}	40.26
Reformer	72.37	72.47	36.70
SMYRF	72.98	71.18	25.20
HyperAttn	71.49	70.22	25.31
Performer	73.17	72.07	28.36
FLT	72.55	71.45	25.26
ScatterBrain	73.35	72.06	30.95
PointTrans	72.33	70.81	40.26
FlatFormer	<u>74.22</u>	70.23	38.61
GCN	79.61	75.38	40.10
DGCNN	90.74	88.66	33.75
GravNet	90.11	87.99	40.10
GatedGNN	80.98	78.42	40.26
Performer- $k_{\rm HEPT}$	71.97	69.20	32.81
$\mathbf{SMYRF} extsf{-}k_{ extsf{HEPT}}$	83.19	71.04	40.31^\ddagger
FlatFormer- $k_{\rm HEPT}$	88.18	85.06	39.99
HEPT	92.66^{\dagger}	91.93^\dagger	40.39^{\dagger}

Table 3: Ablation studies of HEPT.

	Tracking-60k
HEPT w/o $k_{ m HEPT}$	72.28
OR-only LSH	71.42
OR-only LSH*	78.22
OR & AND LSH	70.98
OR & AND LSH*	88.54

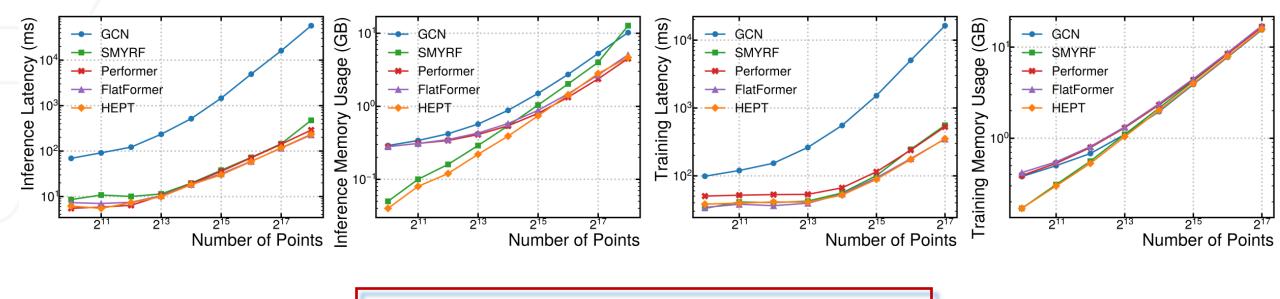
(b) Pileup Mitigation

0

• LC

Empirical Results

Scalability Analysis



HEPT is one of the *most efficient* transformers!

Achieve over 100x speedup on GPUs compared to GNNs on Tracking-60k (60k points/cloud)

Ongoing Work

- Further improving HEPT for the tracking task (potentially include other tasks)
- Integrating HEPT with FlashAttention 2

Table 2: Comparison of Attention Computation Method, Inference Speeds, and Block Size on A100

Attention Method	Speed at BS 100 (ms)	Speed at BS 500 (ms)	Speed at BS 1000 (ms)
Original HEPT	25.34	56.68	91.41
FlashAttention 2	17.05	20.49	23.20
FlexAttention	34.06	35.26	35.84

Conclusion

- Paper: <u>https://arxiv.org/abs/2402.12535</u>
- <u>GitHub: https://github.com/Graph-COM/HEPT</u>



Siqi Miao¹

Zhiyuan Lu²

Mia Liu³

Javier Duarte⁴

Pan Li¹

UC San Diego

References

- 1. Siqi Miao et al. Locality-sensitive hashing-based efficient point transformer with applications in high-energy physics. ICML, 2024.
- 2. J Arjona Martínez et al. Pileup mitigation at the large hadron collider with graph neural networks. The European Physical Journal Plus, 2019.
- 3. Pata, Joosep, et al. MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks. The European Physical Journal C, 2021.
- 4. Qu, Huilin, and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 2020.
- 5. Gaillard, M. Cern data centre passes the 200-petabyte milestone. 2017.
- 6. DeZoort, Gage, et al. Charged particle tracking via edge-classifying interaction networks. Computing and Software for Big Science, 2021.
- 7. Thais, Savannah, et al. Graph neural networks in particle physics: Implementations, innovations, and challenges. arXiv preprint, 2022.
- 8. Wu, Xiaoyang, et al. Point Transformer V3: Simpler Faster Stronger. CVPR, 2024.
- 9. Peng, Hao, et al. Random feature attention. ICLR, 2021.
- 10. Choromanski, Krzysztof, et al. Rethinking attention with performers. ICLR, 2021.
- 11. Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. ICLR, 2020.
- 12. Daras, Giannis, et al. Smyrf-efficient attention using asymmetric clustering. NeurIPS, 2020.
- 13. Han, Insu, et al. Hyperattention: Long-context attention in near-linear time. ICLR, 2024.

