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INTRODUCTION
With high energy physics becoming much more
data-driven in the past few years, the introduction
of machine learning models to perform inference on
certain observables has become much more preva-
lent.

The most common uses in this domain are:

• Anomaly Detection

• Classification

• Regression

But with generative models / LLMs coming into the
fold, there is an opportunity to create models to per-
form much more complex tasks such as:

• Unfolding to rectify poor detector perfor-
mance on some observables

• Detector Simulation to simulate events at a
much quicker rate than traditional analytic
methods.

PROBLEM FORMULATION
Approach: Create a model inspired by the success
of LLMs such as RoBERTa[1] that can be generally
pretrained on data and finetuned to perform infer-
ence on many different tasks that come up in high
energy physics. As a use case, we use the dileptonic
tt̄ decay.
Motivation:

• LLMs and in particular, the multi headed at-
tention mechanism, has demonstrated very
good performance in areas of contextual learn-
ing and modeling sequential data.

• Rather than use a variety of models for differ-
ent tasks in high energy physics, we introduce
one model that can do the work of many dif-
ferent models and achieve high performance
standards.

METHODOLOGY

• Step a) PreTrain: Using masked language modeling, we mask a particle’s kinematics and ask the model
to predict those kinematics using the surrounding information.

• Step b) Test model: Using the predicted lepton, neutrino, and b quark information, we can calculate the
predicted kinematics for our tt̄ system and compare to the mlb method.

• Step c) Finetune: The model configuration that performed the best on our pretraining task is stored and
reused on downstream tasks such as:

– Toponium Classification

– Initial State Classification

– Unfolding/Reconstruction
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CONCLUSION
Future Directions:

• Add generative tasks such as detector simula-
tion to the capabilities of Bumblebee.

• Search for more model-agnostic ways of de-
tecting Toponium and understand why its
predictions are so good.

• Add mixed states to Initial State Classification
in an attempt to get a better performance on qq̄
signal region.

Overall, the model has been shown to perform very
well due to its ability to gather inherent

knowledge of the system through pretraining via
masked language modeling. Utilizing multi headed

attention, the model can generalize quite well to
different tasks such as classification and unfolding
tasks, saving quite a lot of effort in inference tasks
to make a specialized model for each new task that

comes up.

PERFORMANCE PLOTS
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Figure 1: (Left) Resolution of tt̄ mass compared to the an-
alytic method of mlb weighting.

Figure 2: (Right) Score distribution of toponium vs. tt̄
classification (AUC: 0.9
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Figure 3: Bumblebee Embedding Structure


