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Reconstructed Jet: pjTet =72 GeV/c
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Hard partonic scatterings (“jets”) form early in a collision (prior to Quark Gluon Plasma "QGP”) formation. 00 02 04 OLN%S et S help:
They then may traverse and be quenched by the QGP, resulting in columnated sprays of particles which are ¢
algorithmically clustered together along with a heavy background of other particles.

Motivation Quench Jets and Test NN Biases
Standard jet background pt correction Monte Carlo generators for jets in Full JETSCAPE hydro: most accurate o 0 fm
Is Area Based (“AB”): subtract event vacuum (JETSCAPE in this study) are simulations available for quenching, é N 10! Brick 2 fm
median background pr density (ppke) robust. but computationally very expensive = |© bl
scaled by jet area: = Train neural networks (NN) with jet = Compare hydro w/cheaper MC © 0 Brick 6 fm
pgorrected — pdetector _ | At parameters to correct : using constant length “brick” QGP by |z~ 101 Hydre ©-5%
p%etector N prcI:‘orr comparing: !

Results in jet-by-jet residual pt errors: = Tighter §py distributions » constituent pr distribution | For lead jets from JETSCAPE

opr =ppt — pr}ruth — Better measured pr}ruth resolution * biasesin NN* values of dpy & 24 selected with p € [30,31] GeV/c
which are dominated by background However NN AllReco” results shown here 9 p
density fluctuations. The corrected jet ;o 4 enching modifies jet parameters [e
pTt Spectrum is statistically corrected = May bias NN background corrections SOTEENETE G e
on an ensemble level for dpr toobtain  _ Mgy pias final jet measurements, but -
the truth-spectra. by how much? 1-
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Train Neural Networks >

e« Use FASTJET to simulate realistic Label Additional Training Parameters’ —2 7 lFor leCIad.jek;csAfron’E;ggle]):gP\E//
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Au+Au collisions at vVSNN — NNagp (none) = = Hydro, p7=20.0 QGP Brick, fr= 10.0 e Brick 0 fm
200 GeV +h NNang Angularity: o = ) . prAR;, where ¢ 5.50 - " ] QGP Brick, pr= 15.0 Brick 2 fm
c /C W.lt runs over all constituents, and AR, is - :y:ro' eT:ig'g 885 E?:EE gﬁ: %8:8 Brick 4 fm
hydrodynamically modelled QGP the n-¢ distance from the constituent S 5.00 yaro, pr=at. QGP Brick, pr= 40.0 Brick 6 fim
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flow and jet quenchin to the jet axis > _ -
et . 8 : NNnNcons The number of jet constituents 8 4.50 Brick 8 fm
* Embed MC vacuume-jets into NNpTeons pr of the highest-pr constituents (lim- — . X
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* to highest pr geometrically 2 0075] ¢ MN:pTeons X’*."‘ '.“
reco jet (jet+background) % ' + NN:AllReco . ’ *+:* - (a) Constituent pr relative to o .(c) Needed: (6pt) = 0 a.nd o(6pt)
. e | .’." 5. ’:.0.1_4.’.."4:’?‘}5_3: |n|t|at|ng parton D show hydro |ndependent of quenCh|ng and pT*
. 0050 KT ok AP Y X T
Train neural networks: g AT SR quenching ~ 3.5 fm QGP brick Result: (6pr) and o (8pr) both evolving
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ice:gsaet?ct)f;Eiiliilas%gense £ 0025 “.”._::‘::::;:.’:{:,,: ggt - » (b) 8pr distributions using .(are biased). Biases agree with (a): bias
’ g NNajReco (€VOlve) w.rt. quenching In hydro = 3.5m QGP brick
layers: 100, 50, 50 nodes et A | | | Vagtoe, *MC parameter for pp of jets’ initiating partons
* Map measured jet input -15 -10 -5 O 5 10 15 ‘
paereters to tiuth er)t for 5 opr = p§oT- — pirth Eff L E . T ° Generate full spectra of leading jets
pr " =Pt ect on Experimen , ILsp ng ]
neural networks NN generate significantly tighter - — o in pp and with 3.5 fm QGP bricks
distributions of opr S 105 £ o 3.5 fm: Quenched » Embed quenched jets into heavy-ion
e = -~ e A 35fm:NN___, Unfolded
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* Using the best available MC generators * Possible to continue investigation . -  Compare measured quenching Raa
for heavy ion collisions, neural networks by using MC to train NN on _ 10 = (spectrum ratio to pp) to actual Raa
(NN§) f:an gdd.3|gn|f|cantdlscrlmlnatlon quenched jets g 09 F 5 1 S Guenhed T AB Wietho:
to distinguish jets from backgrounds * However, verification via S« 0.8 2 8 o 0.9 ;g R I e AB method
depending on training data correctness measurement is non-trivial —E’: 82 = O t O - = T 83 = e U NNy L biawsed
* Jetquenching adds significant biasesto ¢ [Ljkely better to train ML only on 05 E © s 2 7 A~ & 0.6 =& . ’ k N ¥
NN background corrections, which are the background (unaffected by jet 04 & Bias propagated 0.5 B ;@3 > S @
compounded in spectra unfolding guenching) and use to 8123 3 from NN bias 8;1 3 QI R v
* Errorsinthe suppression of the jet pr compare/reject background 0.1 i_ 0.2 3 ,
spectra ratio (Rp ) for leading jets is very combinatorial jets 01:5 ' 20 — 25 — 30 — 35 — 40 — '45 0.1 — Results for ALLNN's
Slgmflcant (up to ~30% for every NN, up *except the NN trained only on the background p [GGV/C] 015 B |2|()| N 2|5 B 3|() B 3|5 N 4|() B |45
to ~47% for NNNconst)* (which mimics the AB method and is unbiased) T piet [GeV/c]
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