

Exploring Biases in Neural Network Jet Background Estimation in Heavy-Ion Collisions

David Stewart (Wayne State University)

They then may traverse and be quenched by the QGP, resulting in columnated sprays of particles which are algorithmically clustered together along with a heavy background of other particles.

Motivation

Standard jet background $p_{\rm T}$ correction is Area Based ("AB"): subtract event median background $p_{\rm T}$ density ($\rho_{\rm bkg}$) scaled by jet area:

 $p_{\rm T}^{\rm corrected} = p_{\rm T.}^{\rm detector} - \rho_{\rm bkg} A_{\rm jet}$

Results in jet-by-jet residual $p_{\rm T}$ errors: $\delta p_{\mathrm{T}} \equiv p_{\mathrm{T}}^{\mathrm{corr}} - p_{\mathrm{T}}^{\mathrm{truth}}$

which are dominated by background density fluctuations The corrected jet $\langle N \rangle = 1259$ rrected $\sigma = 89$ o obtain

Monte Carlo generators for jets in vacuum (JETSCAPE in this study) are robust.

 \Rightarrow Train neural networks (NN) with jet parameters to correct :

 $p_{\rm T}^{\rm detector} \rightarrow p_{\rm T}^{\rm corr}$

 \Rightarrow Tighter $\delta p_{\rm T}$ distributions

 \Rightarrow Better measured p_{T}^{truth} resolution

However

Jet quenching modifies jet parameters \Rightarrow May bias NN background corrections \Rightarrow May bias final jet measurements, but by how much?

eural Networks

Quench Jets and Test NN Biases

simulations available for quenching, but computationally very expensive \Rightarrow Compare hydro w/cheaper MC using constant length "brick" QGP by comparing:

- constituent $p_{\rm T}$ distribution
- biases in NN* values of δp_{T}

- Use FASTJET to simulate realistic 1100 Au+Au^N collisions at $\sqrt{s_{NN}} =$ 200 GeV/c with hydrodynamically modelled QGP flow and jet quenching
 - Embed MC vacuum-jets into backgrounds

Match only the leading processes:

- highest $p_{\rm T}$ scattered parton (IP)
- highest $p_{\rm T}$ "truth jet" (without bkg) geometrically close
- $(\sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3)$

to

1000

to highest $p_{\rm T}$ geometrically close recojet (jet+background)

Train neural networks:

- Sequential model, RELU activation functions, 3 dense layers: 100, 50, 50 nodes
- Map measured jet input parameters to truth jet $p_{\rm T}$ for 5 neural networks

- quenching \approx 3.5 fm QGP brick
- (b) $\delta p_{\rm T}$ distributions using NN_{AllReco} (evolve) w.r.t. quenching

Effect on Experiment

- Result: $\langle \delta p_{\rm T} \rangle$ and $\sigma(\delta p_{\rm T})$ both evolving (are biased). Biases agree with (a): bias in hydro \approx 3.5 fm QGP brick *MC parameter for $p_{\rm T}$ of jets' initiating partons
 - Generate full spectra of leading jets in *pp* and with 3.5 fm QGP bricks
 - Embed quenched jets into heavy-ion

Conclusions

- Using the best available MC generators for heavy ion collisions, neural networks (NNs) can add significant discrimination to distinguish jets from backgrounds depending on training data correctness
- Jet quenching adds significant biases to NN background corrections, which are compounded in spectra unfolding
- Errors in the suppression of the jet $p_{\rm T}$ spectra ratio (R_{AA}) for leading jets is very significant (up to ~30% for every NN, up to ~47% for NN_{Nconst})*
- Possible to continue investigation by using MC to train NN on quenched jets
- However, verification via measurement is non-trivial
- Likely better to train ML only on the background (unaffected by jet quenching) and use to compare/reject background combinatorial jets

*except the NN trained only on the background (which mimics the AB method and is unbiased)

- background
- Use NN to background subtract
- Statistically correct for $\delta p_{\rm T}$ for "measurement"
- Compare measured quenching R_{AA} (spectrum ratio to pp) to actual R_{AA}

Supported by DOE NP Grant DE-FG02-92ER40713