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Can Neural 
Networks help?Hard partonic scatterings (“jets”) form early in a collision (prior to Quark Gluon Plasma ”QGP”) formation. 

They then may traverse and be quenched by the QGP, resulting in columnated sprays of particles which are 
algorithmically clustered together along with a heavy background of other particles.

Motivation
Standard jet background 𝑝! correction 
is Area Based (“AB”): subtract event 
median background 𝑝! density (𝜌"#$) 
scaled by jet area: 

𝑝!%&''(%)(* = p!.*()(%)&' − 𝜌"#$A,()

Results in jet-by-jet residual 𝑝! errors:
𝛿𝑝! ≡ 𝑝!%&'' − 𝑝!)'-).

which are dominated by background 
density fluctuations. The corrected jet 
𝑝! spectrum is statistically corrected 
on an ensemble level for 𝛿𝑝! to obtain 
the truth-spectra.

Monte Carlo generators for jets in 
vacuum (JETSCAPE in this study) are 
robust.
⇒ Train neural networks (NN) with jet 
parameters to correct : 
                      𝑝!.*()(%)&' → 𝑝!%&''
⇒ Tighter 𝛿𝑝! distributions
⇒ Better measured 𝑝!)'-). resolution

However
Jet quenching modifies jet parameters
⇒ May bias NN background corrections
⇒ May bias final jet measurements, but 
by how much?

Train Neural Networks
• Use FASTJET to simulate realistic 

Au+Au collisions at 𝑠// =
200	GeV/𝑐 with 
hydrodynamically modelled QGP 
flow and jet quenching

• Embed MC vacuum-jets into 
backgrounds

Match only the leading processes:
• highest 𝑝! scattered parton (IP) 

to
• highest 𝑝! ”truth jet” (without 

bkg) geometrically close 
( Δ𝜂0 + Δ𝜙0 < 0.3)

• to highest 𝑝! geometrically close 
reco jet (jet+background)

Train neural networks:
• Sequential model, RELU 

activation functions, 3 dense 
layers: 100, 50, 50 nodes

• Map measured jet input 
parameters to truth jet 𝑝! for 5 
neural networks
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sets of background particles, and therefore their sets of
background sets of particles are saved into an external
file. When processing the events with bricks of QGP (or
without any QGP) only the particles of the leading truth
jets are kept; the background particles are discarded, and
the truth jet particles are embedded into a set of back-
ground particles from a hydro event before being cluster-
ing into reco-jets.

The distribution of the number of background of par-
ticles per hydro event is plotted in Fig. 2; distributions
in �, ⌘, and pT are also given in in the Appendix in
Fig. A.11.

FIG. 2. Distribution of the numbers of background particles
per event.

C. Jet Clustering and Matching

The input data for each event consists of the set of
particles associated with only the highest pT initiating
parton, which are clustered into the truth jets, and the
set of background particles generated from a hydro event.
(For all jets generated in an hydro event, then the truth
jet is always clustered with the background particles in
the same event). In each event, the following process
was followed, utilizing FastJet [21] version 3.4.2 for all
jet clustering with jet resolution parameter R = 0.4.

1. Only the highest-pT initiating parton scattering
(IP) for all hard scatterings in each event is used.

2. Cut events with IP pseudorapidity ⌘IP > |1.0|.

3. All final-state particles resulting from the se-
lected IP are clustered into anti�kT jets.
All jets relative to the IP within distance⇣
�R ⌘

p
(⌘jet � ⌘IP)2 + (�jet � �IP)2

⌘
of �R <

0.4 are considered. If there are no such jets, the
event is discarded. If there are, the highest-pT of
these jet is selected as the truth jet with ptruthT,jet .

4. If the jet was generated in a hydro-event, use the as-
sociated background particles. Otherwise, use the
background particles from a hydro event. Cluster

these particles into kT jets, remove the two highest
pT jets, and record the median jet-pT density as
⇢bkg.

5. Cluster the jet constituents and the background
particles together into anti�kT jets. Select all re-
sulting jets that are within �R < 0.3 of the truth
jet. If there are none, discard the event. Otherwise,
the highest-pT of these jets is the “reco jet” with
precoT,jet.

6. Record ptruthT,jet , precoT,jet, and other event parameters
used to train Neural Networks. A list of which pa-
rameters are used to train each neural network is
listed in Table I.

TABLE I. Neural network (NN) training parameters

Label Additional Training Parameters†

NNAB (none)
NNAng Angularity: ↵ ⌘

P
i pT,i�Ri, where i

runs over all constituents, and �Ri is
the ⌘-� distance from the constituent
to the jet axis

NNNcons The number of jet constituents
NNpTcons pT of the highest-pT constituents (lim-

ited to 10) in the reco jet
NNAllReco All parameters listed in this chart

together
†ptruthT,jet , p

reco
T,jet, Ajet, & ⇢bkg, are used with each NN

D. Neural Network Training

The neural networks (NN’s) were trained using the
TensorFlow library. Each NN was composed of a Sequen-
tial model using RELU activation functions with three
dense layers of 100, 50 and 50 nodes respectively, with
an additional final layer of a single node for the output
value (ptruthT,jet ). Each NN was trained with 12 epochs.

In order to train the neural networks, an set of events
with an approximately uniform spectrum of ptruthT,jet was
generated for events without any quenching. Each of the
five NN’s listed in Table I were trained on this data set.
A representation of the results of NNAllReco is given in
Figures 3-4. Fig. 3 plots the ptruthT,jet spectrum, the pcorrT,jet
spectrum generated by correcting precoT,jet with NNAllReco

and also the pcorrT,jet spectra corrected using the AB method
(without any NN).

NN generate significantly tighter 
distributions of 𝛿𝑝!

Quench Jets and Test NN Biases 
Full JETSCAPE hydro: most accurate 
simulations available for quenching, 
but computationally very expensive
⇒ Compare hydro w/cheaper MC 
using constant length “brick” QGP by 
comparing:
• constituent 𝑝! distribution
• biases in NN* values of 𝛿𝑝!

For lead jets from JETSCAPE 
selected with 𝑝̂! ∈ 30,31 	GeV/𝑐

a

b

Bias Results
• (a) Constituent 𝑝! relative to 

initiating parton 𝑝! show hydro 
quenching ≈ 3.5 fm QGP brick

• (b) 𝛿𝑝! distributions using 
NN1223(%& (evolve) w.r.t. quenching

• (c) Needed: 𝛿𝑝! ≈ 0 and 𝜎 𝛿𝑝!  
independent of quenching and ?𝑝!*
Result: 𝛿𝑝! 	and 𝜎 𝛿𝑝! 	both evolving 
(are biased). Biases agree with (a): bias 
in hydro ≈ 3.5 fm QGP brick

*MC parameter for 𝑝!  of jets’ initiating partons
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• Generate full spectra of leading jets 
in pp and with 3.5 fm QGP bricks

• Embed quenched jets into heavy-ion 
background

• Use NN to background subtract
• Statistically correct for 𝛿𝑝! for 

“measurement”
• Compare measured quenching 𝑅11 

(spectrum ratio to pp) to actual 𝑅11Results for N!""#$%&

Results for All NN’s

Bias propagated 
from NN bias

Conclusions
• Using the best available MC generators 

for heavy ion collisions, neural networks 
(NNs) can add significant discrimination 
to distinguish jets from backgrounds 
depending on training data correctness

• Jet quenching adds significant biases to 
NN background corrections, which are 
compounded in spectra unfolding

• Errors in the suppression of the jet 𝑝! 
spectra ratio (𝑅11) for leading jets is very 
significant (up to ~30% for every NN, up 
to ~47% for NN/%&45))*

AB method
not biased

• Possible to continue investigation 
by using MC to train NN on 
quenched jets
• However, verification via 

measurement is non-trivial
• Likely better to train ML only on 

the background (unaffected by jet 
quenching) and use to 
compare/reject background 
combinatorial jets

*except the NN trained only on the background 
(which mimics the AB method and is unbiased)

For lead jets from JETSCAPE 
selected with 𝑝̂! ∈ 30,31 	GeV/𝑐
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