
Development of traccc as-a-Service (aaS)
Miles Cochran-Branson1, Yuan-Tang Chou1, Xiangyang Ju2, Haoran Zhao1

1University of Washington Department of Physics, 2Lawrence Berkeley National Lab

Objective

Implement a custom backend to run the rule-
based tracking accelerator traccc as-a-service.
The main goals of this approach are to:
• Increase throughput
• Optimize coprocessor resource utilization
• Decrease per-event cost

Upcoming HL-LHC Challenges

Increased collisions at the interaction point in the
HL-LHC will lead to massive challenges in resolving
dense detector environments such as below:

Figure: ⟨µ⟩ = 200 pileup event in Track-ML detector

Even if we do not reach ⟨µ⟩ = 200, computation
times scales superlinearly with pileup:

Figure: CPU compute time scales exponentially with ⟨µ⟩ .

This provides an excellent environment for
the use of coprocessors to parallelize track
reconstruction.

Heterogeneous Computing

The standard computing paradigm for coprocessors
is heterogeneous computing where CPUs and co-
processors such as GPUs are connected on the same
node.
• Advantages of heterogeneous regime

1 Many working examples
2 Most coprocessor code written with this architecture in

mind
• Disadvantages of heterogeneous regime

1 Can be harder to implement new tools in existing
frameworks

2 Can be inefficient in use of resources

As-a-service Paradigm

The as-a-service (aaS) paradigm offloads expensive
coprocessor operations to a dedicated GPU server
• Advantages of aaS regime

1 Can be easier to integrate with production framework
(e.g. Athena)

2 Potentially improve scalability and resource utilization
• Disadvantages of aaS regime

1 Often no working implementations
2 Can introduce server latency

Traccc

• A possible solution to tracking problem using
coprocessors within ACTS

• Set of standalone tools developed to demonstrate
effective track reconstruction with accelerators
such as GPUs

• Uses a combinatorial Kalman filter for track
finding/fitting

Figure: Traccc-architecture

Current architecture of traccc includes
the full-chain track reconstruction chain
implemented on GPUs

Traccc as-a-service

The main components of the as-a-service approach:
• A standalone version of the traccc tracking

algorithm
• A custom backend using NVIDIA Triton inference

server
• A client to send data and receive fitted tracks
Performance metrics and ways to increase
throughput:
• Send multiple client requests to the server to

reduce latency
• Increase the number of Triton model instances

loaded onto the server to sustain multiple current
requests

Testing was done on the perlmutter HPC NERSC
at LBNL with data sent through localhost. Fu-
ture iterations could include other HPC servers,
cloud-based servers, or a dedicated GPU cluster
at P1.

Results

Standalone tests of the server performance with data
sent but without fitted tracks received are shown
below.

Figure: Throughput and GPU utilization improvement with an
increase in Triton model instances per GPU

Conclusion

We observe an increase in GPU utilization from
45% to near 100% corresponding to an increase
in throughput of ∼1.5 times.

Acknowledgements

This research was only possible with funding from
the WATCHEP fellowship and computing resources
provided by Lawrence Berkeley National Laboratory
(LBNL). We also wish to thank the traccc team for
their help and guidance.

References

Email: miles.cb@cern.ch, Contribution ID 60

mailto:miles.cb@cern.ch

