
  1

Fast Calorimeter Simulation

FastML
Oct. 15, 2024Based on 2308.03876

Oz Amram

https://arxiv.org/abs/2308.03876


  2

The Need for Fast Simulation
● Calorimeter simulation 

is a significant part of 
LHC computing 

● For HL-LHC, computing 
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Model
Goal : Train a generative ML model to mimic physics based 
simulation (Geant) with high accuracy & significant speedup

‘CaloDiffusion’
Pure Noise Noise + Image Real Image
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Dataset: Calo Challenge 
● Community challenge to compare 

generative models for Calorimeter 
simulation

● Standard datasets to allow 
comparison
– Dataset1: ATLAS-like geometry
– Dataset2: 45 layers, 6480 total 

voxels
– Dataset3: 45 layers, 40,500 total 

voxels

https://calochallenge.github.io/homepage/
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Average Showers

Geant

Diffusion
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Dataset 1 Results
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Results: Datasets 2 & 3

Dataset 3 (40k voxels)

Dataset 2 (6.5k voxels)
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Comparisons to Other Approaches
● CaloChallenge now 

concluded →  
comparisons of all 
approaches 

● CaloDiffusion achieved 
the highest quality 
results 

50 total 
submissions

Full results here

Some complicated evaluation 
metric… 

https://indico.cern.ch/event/1253794/contributions/5588599/attachments/2749348/4784940/CaloChallenge.C.Krause.pdf
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Fast? 
● Geant ~100s/shower
● Diffusion time per shower 

depends on batch size
● Up to 1000x speedup if 

run on GPU’s
● Further work improving 

this even more
– Better model → less 

diffusion steps → linear 
speedup 
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Outlook
● ML models can be a fast & accurate 

substitute for calorimeter simulations! 
● CaloDiffusion leading is leading 

approach
● Public results on CMS HGCal soon!



  13

Backup
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Optimizing for Cylindrical Data
● Regular convolutions assume pure translation symmetry
● Our data : phi is periodic, and R & Z not translation invariant

(graphics source)

Shower 
input

‘Radius 
input’

‘Layer 
input’

+

+

Implement cylindrical convolutions 
to respect periodic boundary of phi

Allow convolutions to be conditional on 
R & Z by using additional channels

‘Circularly’ pad phi dimension 
before 3D conv Additional input channels

https://indico.cern.ch/event/1159913/contributions/5062708/attachments/2540386/4373088/ml4jets2022_vqvae.pdf
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Embedding Irregular Geometries
● Dataset 1 (ATLAS detector) is cylindrical but has irregular structure in 

layers
– Different radial / angular bins in each layer → can’t apply cylindrical convolutions
– Previous approaches have used fully connect networks or very large 1D CNN’s

● Learn an embedding that maps input into regular cylindrical structure 
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Quantifying Performance
● Train a NN classifier to distinguish between Geant 

showers and CaloDiffusion showers
● Quantify sample quality based on AUC on holdout set

– AUC → 0.5 means synthetic showers are indistinguishable from 
‘truth’

Dataset 1 
(ATLAS-like)

Dataset 2 Dataset 3

Classifier 
AUC *

~0.65 ~0.55 ~0.55

AUC much less than 1 →
Very similar showers!

Additional metrics in backup
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Outlook
● Using diffusion models we can generate synthetic 

calorimeter showers
● Utilized several optimizations for cylindrical calorimeter 

geometries & new embedding approach for irregular shapes
● Classifiers struggle to distinguish between Geant & 

CaloDiffusion showers
● Future work: improve generation time, more complicated 

geometries
● See paper for more details, 

– Code and pretrained models available on github 

https://arxiv.org/abs/2308.03876
https://github.com/OzAmram/CaloDiffusionPaper
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Technical Details
● ‘logit’ transformation of voxel energies and then standard scale to zero mean 

and unit variance
– Correct preprocessing important for diffusion process, related to scale of added noise

● Denoising network uses ‘U-net’ architecture with cylindrical convolutions
– Two conditional inputs : shower energy and diffusion step
– ~400k params for dataset1 and 2, 1.1M for dataset3

● 400 diffusion steps, ‘cosine’ noise schedule (2102.09672)
● Choices for training objective: 

– Datasets 1 and 2 : Network is trained to predict noise component of image
– Dataset 3 : Network trained to predict weighted average of noise component and un-

noised image, 
● More stable, recommended by 2206.00364

● Sampling uses DDPM algorithm (2006.11239)

http://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2206.00364
http://arxiv.org/abs/2006.11239


  19

Additional Metrics
● Distance metrics:

– Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
● Use implementation proposed for CaloChallenge, based on high level shower features

– We find that the computation of FPD is slightly biased, ie non-zero values even 
comparing different random samples of Geant to each other 

– Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

Dataset 1 
(ATLAS-like)

Dataset 2 Dataset 3

FPD
 (D-G / G-G) 0.035 / 0.008 0.095 / 0.008 0.275 / 0.011

KPD
(D-G / G-G)

0.007 / 0 0.0001 / 0 0.0007  / 0

https://arxiv.org/abs/2211.10295
https://github.com/CaloChallenge/homepage/pull/1
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Embedding Details
● First find superset of all radial/angular bins → embedding space
● For each layer, embedding in radial dimension is an M_i x M_* 

matrix 
– M_i (M_*) is number of radial bins in layer i (embedding space)
– Initialize weights be proportional to area overlap of bins + 10^-3 * 

Gaussian noise
● Reverse matrix is M_* x M_i, initialized to pseudo-inverse of 

embedding matrix
● For now, enforcing phi symmetry, energy is split evenly among phi 

bins (not learnable)
● Found small benefits of conditioning on phi in addition to R & Z

– There is slight non-uniformity in phi in the energy distributions of dataset1


