
func_adl Status
G. Watts (UW/Seattle)

2024-11-05

What Does func-ADL do?

G. Watts (UW/Seattle)

func-ADL

Functional Analysis Description Language

Functional: as in the programming paradigm.
• Can be expressed in multiple programming

languages.
• Does not require special syntax – uses the

host programming language
• Based on Microsoft Research’s LINQ. Has

ended up in C#, Javascripot, F#, etc.
• LINQ: Language Integrated Query
• Monads!

Data processing features of a ADL:
• Group, ungroup data
• Aggregate
• Split
• Select
• Transform
• Extensible, though this isn’t trivial to do.

https://en.wikipedia.org/wiki/Language_Integrated_Query

IRIS-HEP func_ADL implementation

G. Watts (UW/Seattle)

All python, all the time…

Transform & concatenate:
• Transforms the event into a list of jets
• Concatenates the jets into a single list

(removes the event boundary)

Filters: Removes jets less than 30 GeV

Transforms: Converts the 𝑝𝑇 to GeV

Result: Asks for jets as an in-memory
awkward array

Using it with ServiceX 3.0 Front End

Func_adl

ServiceX Spec
and Delivery

G. Watts (UW/Seatte)

The Code

G. Watts (UW/Seattle)

Front End

Back End

• Func_adl – Code that wraps up the python code and query along with type information.
• ServiceX 3.0 frontend Library – glue between ServiceX and a func_adl query (see prev slide).

• Takes the wrapped up query and ships it to ServiceX
• func-adl-types-atlas Loads a AnalysisBase container, uses ROOT to scan the xAOD type schema, and

generates a yaml file with the type specifications
• func_adl_servicex_type_generator Generates python type-shed files given a yaml type description
• func_adl_type_generator Scripts and CI that automates building type files

• func_adl_xAOD Converts query & type information into C++ to run on EventLoop or CMS’s miniAOD
framework.

• func_adl_uproot Converts query into uproot code to run directly on ntuple’s (anything uproot can deal
with).

https://github.com/iris-hep/func_adl
https://github.com/ssl-hep/ServiceX_frontend
https://github.com/gordonwatts/func-adl-types-atlas
https://github.com/gordonwatts/func_adl_servicex_type_generator
https://github.com/iris-hep/func_adl_type_generator
https://github.com/iris-hep/func_adl_xAOD
https://github.com/iris-hep/func_adl_uproot

Type Generator

G. Watts (UW/Seattle)

Version 2.0.1 of the typeshed file

Type information

Type shed files

• Allows an IDE to help you with types
• Informs backends of types (or C++ errors!)
• Catches errors at the client vs on the backend

https://github.com/iris-hep/func_adl_type_generator/actions/runs/10987529386

Team

G. Watts (UW/Seattle)

• Gordon Watts – lead, PI, xAOD backend, most of the front end, etc.
• Mason Proffitt – Graduate student, uproot backend, graduates in March
• Roger Janusiak – Graduate student, joining in January
• Artur Cordeiro Oudot Choi – Postdoc joining December 1st

• Will discuss his contributions over the next month

Status

G. Watts (UW/Seattle)

Most front-end code is now in stable production
• We need to finish moving everything to 3.13
• Mason recently discovered some bugs that prevent some idioms from

being processed correctly
• There are a number of new features we are looking at

• But none of them are high priority right now
• The backend code is also in production

• As we get new requests we add new features – but this is fairly
slow right now.

Biggest Friction:
• Documentation!!!
• Real use cases to drive further development

https://github.com/iris-hep/func_adl/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement

Documentation

G. Watts (UW/Seattle)

The most extensive documentation is for xaod usages (github)

A JupyterBook of active documentation

Good:
• Quite extensive
• Looks at each use-case in isolation
• Describes how to calibrate an xAOD

Bad:
• All documentation is based around R21
• PHYSLITE is much easier to use (so well

behind the current state of the code)
• Does not show how to use complex cases
• Does not introduce func-adl

Hopeful:
• Roger Janusiak (grad student) joins IRIS-HEP

in January and has already started exploring
this repo
• R22 and PHYSLITE is his first task

https://gordonwatts.github.io/xaod_usage/intro.html
https://github.com/gordonwatts/xaod_usage

More Complex Use Cases

G. Watts (UW/Seattle)

Building a script that will extract a Long-Lived Particle DNN training dataset from a xAOD derivation
• Not PHYSLITE
• Combine later with PHYSLITE (result per-jet)

Request fairly complex data:
• Calorimeter clusters
• Muon segments
• Tracks

Currently driving the development of the backend

Waiting to be released…

Development Issues

G. Watts (UW/Seattle)

SerivceX 2.0 front-end allowed for a local light-weight version of the backend
• Could develop the backend code locally
• Run it in a container
• Full access to logs, errors.
• Edit the backend code and it would be picked up in the next run

3.0 loses that ability
• Need development work to fix that

Conclusion

• Good
• Code is in production

• Has been used to help other analyses

• Have enough people to do this work…

• Challenges
• Big shift in team personal!

• xAOD expertise is limited to one person

• Low-level work is limited by shift in tools

G. Watts (UW/Seattle)

