
Awkward Array’s JAX backend and
complex-step autodiff as an alternative

Jim Pivarski

Princeton University – IRIS-HEP

December 17, 2024

1 / 12

Awkward Array has 4 backends

▶ "cpu": buffers (user data, indexes, offsets, etc.) are NumPy arrays,
computations are performed by NumPy functions or cpu-kernels.so

▶ "cuda": buffers are CuPy arrays, CUDA kernels are JIT-compiled by CuPy

▶ "typetracer": buffers are dataless Python objects that only infer types
(intended for Dask; currently only used by Dask)

▶ "jax": data buffers are JAX arrays, indexes are NumPy, ak.Array is
flattened/unflattened as PyTrees

When a backend is untested, it gets out of date. "jax" has 44 tests. ("cuda"
has 459 tests and "cpu" + "typetracer" has 2214 tests and are used daily.)

2 / 12

Awkward Array has 4 backends

▶ "cpu": buffers (user data, indexes, offsets, etc.) are NumPy arrays,
computations are performed by NumPy functions or cpu-kernels.so

▶ "cuda": buffers are CuPy arrays, CUDA kernels are JIT-compiled by CuPy

▶ "typetracer": buffers are dataless Python objects that only infer types
(intended for Dask; currently only used by Dask)

▶ "jax": data buffers are JAX arrays, indexes are NumPy, ak.Array is
flattened/unflattened as PyTrees

When a backend is untested, it gets out of date. "jax" has 44 tests. ("cuda"
has 459 tests and "cpu" + "typetracer" has 2214 tests and are used daily.)

2 / 12

Awkward Array has 4 backends

▶ "cpu": buffers (user data, indexes, offsets, etc.) are NumPy arrays,
computations are performed by NumPy functions or cpu-kernels.so

▶ "cuda": buffers are CuPy arrays, CUDA kernels are JIT-compiled by CuPy

▶ "typetracer": buffers are dataless Python objects that only infer types
(intended for Dask; currently only used by Dask)

▶ "jax": data buffers are JAX arrays, indexes are NumPy, ak.Array is
flattened/unflattened as PyTrees

When a backend is untested, it gets out of date. "jax" has 44 tests. ("cuda"
has 459 tests and "cpu" + "typetracer" has 2214 tests and are used daily.)

2 / 12

Awkward Array has 4 backends

▶ "cpu": buffers (user data, indexes, offsets, etc.) are NumPy arrays,
computations are performed by NumPy functions or cpu-kernels.so

▶ "cuda": buffers are CuPy arrays, CUDA kernels are JIT-compiled by CuPy

▶ "typetracer": buffers are dataless Python objects that only infer types
(intended for Dask; currently only used by Dask)

▶ "jax": data buffers are JAX arrays, indexes are NumPy, ak.Array is
flattened/unflattened as PyTrees

When a backend is untested, it gets out of date. "jax" has 44 tests. ("cuda"
has 459 tests and "cpu" + "typetracer" has 2214 tests and are used daily.)

2 / 12

Awkward Array has 4 backends

▶ "cpu": buffers (user data, indexes, offsets, etc.) are NumPy arrays,
computations are performed by NumPy functions or cpu-kernels.so

▶ "cuda": buffers are CuPy arrays, CUDA kernels are JIT-compiled by CuPy

▶ "typetracer": buffers are dataless Python objects that only infer types
(intended for Dask; currently only used by Dask)

▶ "jax": data buffers are JAX arrays, indexes are NumPy, ak.Array is
flattened/unflattened as PyTrees

When a backend is untested, it gets out of date. "jax" has 44 tests. ("cuda"
has 459 tests and "cpu" + "typetracer" has 2214 tests and are used daily.)

2 / 12

JAX backend development

20222017 2018 2019 20212020

ReleasedIn Development Deprecated

two package names and repos

(now)

Uproot 5.x

Uproot 2.x

Uproot 1.x

Uproot 3.x
Uproot 4.x

Awkward 1.x
Awkward 0.x

submodule: awkward._v2

earlier concepts

Awkward 2.x
two package names and repos two git branches

two git
branches

2023 2024

▶ Jan 2021–Apr 2021: Anish Biswas as IRIS-HEP Fellow
▶ wasn’t possible at all, motivated Awkward v2 C++ → Python reimplementation

▶ Jan 2022–Jun 2022: Anish Biswas as CERN Contractor
▶ implemented map-like functions in PyTrees, reduce-like functions with LAX

▶ Jan 2024–Sep 2024: Saransh Chopra as IRIS-HEP Gap Year Fellow
▶ “on call” for feedback from autograd users; received very little

3 / 12

JAX backend development

20222017 2018 2019 20212020

ReleasedIn Development Deprecated

two package names and repos

(now)

Uproot 5.x

Uproot 2.x

Uproot 1.x

Uproot 3.x
Uproot 4.x

Awkward 1.x
Awkward 0.x

submodule: awkward._v2

earlier concepts

Awkward 2.x
two package names and repos two git branches

two git
branches

2023 2024

Saransh
Chopra

Anish
Biswas

▶ Jan 2021–Apr 2021: Anish Biswas as IRIS-HEP Fellow
▶ wasn’t possible at all, motivated Awkward v2 C++ → Python reimplementation

▶ Jan 2022–Jun 2022: Anish Biswas as CERN Contractor
▶ implemented map-like functions in PyTrees, reduce-like functions with LAX

▶ Jan 2024–Sep 2024: Saransh Chopra as IRIS-HEP Gap Year Fellow
▶ “on call” for feedback from autograd users; received very little

3 / 12

JAX backend development

20222017 2018 2019 20212020

ReleasedIn Development Deprecated

two package names and repos

(now)

Uproot 5.x

Uproot 2.x

Uproot 1.x

Uproot 3.x
Uproot 4.x

Awkward 1.x
Awkward 0.x

submodule: awkward._v2

earlier concepts

Awkward 2.x
two package names and repos two git branches

two git
branches

2023 2024

Saransh
Chopra

Anish
Biswas

▶ Jan 2021–Apr 2021: Anish Biswas as IRIS-HEP Fellow
▶ wasn’t possible at all, motivated Awkward v2 C++ → Python reimplementation

▶ Jan 2022–Jun 2022: Anish Biswas as CERN Contractor
▶ implemented map-like functions in PyTrees, reduce-like functions with LAX

▶ Jan 2024–Sep 2024: Saransh Chopra as IRIS-HEP Gap Year Fellow
▶ “on call” for feedback from autograd users; received very little

3 / 12

JAX backend development

20222017 2018 2019 20212020

ReleasedIn Development Deprecated

two package names and repos

(now)

Uproot 5.x

Uproot 2.x

Uproot 1.x

Uproot 3.x
Uproot 4.x

Awkward 1.x
Awkward 0.x

submodule: awkward._v2

earlier concepts

Awkward 2.x
two package names and repos two git branches

two git
branches

2023 2024

Saransh
Chopra

Anish
Biswas

▶ Jan 2021–Apr 2021: Anish Biswas as IRIS-HEP Fellow
▶ wasn’t possible at all, motivated Awkward v2 C++ → Python reimplementation

▶ Jan 2022–Jun 2022: Anish Biswas as CERN Contractor
▶ implemented map-like functions in PyTrees, reduce-like functions with LAX

▶ Jan 2024–Sep 2024: Saransh Chopra as IRIS-HEP Gap Year Fellow
▶ “on call” for feedback from autograd users; received very little

3 / 12

Limitations on the JAX backend

▶ JAX’s JIT-compilation is a non-starter: XLA requires array sizes to not be
dependent on data values at compile-time, and that rule is broken
throughout Awkward’s codebase.

▶ JAX’s PyTree extension mechanism exclusively works on map-like
operations: f (x⃗) = f (xi) for all components xi of array x⃗ .

▶ We were lucky enough that JAX’s LAX library has segmented reductions.

▶ I’m not completely sure all of the above works: Anish was fighting corner
cases to the end and we don’t have much user feedback.

4 / 12

Limitations on the JAX backend

▶ JAX’s JIT-compilation is a non-starter: XLA requires array sizes to not be
dependent on data values at compile-time, and that rule is broken
throughout Awkward’s codebase.

▶ JAX’s PyTree extension mechanism exclusively works on map-like
operations: f (x⃗) = f (xi) for all components xi of array x⃗ .

▶ We were lucky enough that JAX’s LAX library has segmented reductions.

▶ I’m not completely sure all of the above works: Anish was fighting corner
cases to the end and we don’t have much user feedback.

4 / 12

Limitations on the JAX backend

▶ JAX’s JIT-compilation is a non-starter: XLA requires array sizes to not be
dependent on data values at compile-time, and that rule is broken
throughout Awkward’s codebase.

▶ JAX’s PyTree extension mechanism exclusively works on map-like
operations: f (x⃗) = f (xi) for all components xi of array x⃗ .

▶ We were lucky enough that JAX’s LAX library has segmented reductions.

▶ I’m not completely sure all of the above works: Anish was fighting corner
cases to the end and we don’t have much user feedback.

4 / 12

Limitations on the JAX backend

▶ JAX’s JIT-compilation is a non-starter: XLA requires array sizes to not be
dependent on data values at compile-time, and that rule is broken
throughout Awkward’s codebase.

▶ JAX’s PyTree extension mechanism exclusively works on map-like
operations: f (x⃗) = f (xi) for all components xi of array x⃗ .

▶ We were lucky enough that JAX’s LAX library has segmented reductions.

▶ I’m not completely sure all of the above works: Anish was fighting corner
cases to the end and we don’t have much user feedback.

4 / 12

Occasionally, the JAX tests fail and have to be patched

5 / 12

Can we get autodiff without JAX?

▶ HIPS/autograd is a simpler library; Awkward v1’s PR #120 wraps
elementwise_grad (forward autodiff of mappers as a dectorator).

▶ If forward autodiff is acceptable, a backend based on an eager primal +
tangent array would let us control program flow and get 100% coverage.

▶ If backpropagation is necessary, we could at least get dask-awkward’s
coverage by using our own typetracer or Dask DAGs.

▶ How hard is it to implement autodiff, anyway?

6 / 12

Can we get autodiff without JAX?

▶ HIPS/autograd is a simpler library; Awkward v1’s PR #120 wraps
elementwise_grad (forward autodiff of mappers as a dectorator).

▶ If forward autodiff is acceptable, a backend based on an eager primal +
tangent array would let us control program flow and get 100% coverage.

▶ If backpropagation is necessary, we could at least get dask-awkward’s
coverage by using our own typetracer or Dask DAGs.

▶ How hard is it to implement autodiff, anyway?

6 / 12

Can we get autodiff without JAX?

▶ HIPS/autograd is a simpler library; Awkward v1’s PR #120 wraps
elementwise_grad (forward autodiff of mappers as a dectorator).

▶ If forward autodiff is acceptable, a backend based on an eager primal +
tangent array would let us control program flow and get 100% coverage.

▶ If backpropagation is necessary, we could at least get dask-awkward’s
coverage by using our own typetracer or Dask DAGs.

▶ How hard is it to implement autodiff, anyway?

6 / 12

Can we get autodiff without JAX?

▶ HIPS/autograd is a simpler library; Awkward v1’s PR #120 wraps
elementwise_grad (forward autodiff of mappers as a dectorator).

▶ If forward autodiff is acceptable, a backend based on an eager primal +
tangent array would let us control program flow and get 100% coverage.

▶ If backpropagation is necessary, we could at least get dask-awkward’s
coverage by using our own typetracer or Dask DAGs.

▶ How hard is it to implement autodiff, anyway?

6 / 12

Theory of autodiff: complex numbers

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html

https://researchrepository.wvu.edu/faculty_publications/426

Calculating a derivative of f : R → R to O(h2) by finite differences:

f ′(x) ≈ 1

2h

(
f (x + h)− f (x − h)

)
but too-small h has large cancellations and too-large h steps over bumps in f .

Instead, take a step h = iε on a function F (z) = f (z) for z ∈ R with F (z) = F (z):

F ′(x) ≈ 1

2iε

(
F (x + iε)− F (x − iε)

)
=

1

ε
Im

(
F (x + iε)

)

No more additive cancellations and the step is perpendicular to bumps in f .

7 / 12

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html
https://researchrepository.wvu.edu/faculty_publications/426

Theory of autodiff: complex numbers

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html

https://researchrepository.wvu.edu/faculty_publications/426

Calculating a derivative of f : R → R to O(h2) by finite differences:

f ′(x) ≈ 1

2h

(
f (x + h)− f (x − h)

)
but too-small h has large cancellations and too-large h steps over bumps in f .

Instead, take a step h = iε on a function F (z) = f (z) for z ∈ R with F (z) = F (z):

F ′(x) ≈ 1

2iε

(
F (x + iε)− F (x − iε)

)
=

1

ε
Im

(
F (x + iε)

)

No more additive cancellations and the step is perpendicular to bumps in f .

7 / 12

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html
https://researchrepository.wvu.edu/faculty_publications/426

Theory of autodiff: complex numbers

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html

https://researchrepository.wvu.edu/faculty_publications/426

Calculating a derivative of f : R → R to O(h2) by finite differences:

f ′(x) ≈ 1

2h

(
f (x + h)− f (x − h)

)
but too-small h has large cancellations and too-large h steps over bumps in f .

Instead, take a step h = iε on a function F (z) = f (z) for z ∈ R with F (z) = F (z):

F ′(x) ≈ 1

2iε

(
F (x + iε)− F (x − iε)

)
=

1

ε
Im

(
F (x + iε)

)

No more additive cancellations and the step is perpendicular to bumps in f .

7 / 12

https://www.hedonisticlearning.com/posts/complex-step-differentiation.html
https://researchrepository.wvu.edu/faculty_publications/426

Theory of autodiff: dual numbers

The derivative of f from its complex extension F ,

f ′(x) ≈ Im

(
F (x + iε)

)
/ε

is exact if ε > 0 and ε2 = 0. The complex numbers don’t have this property, but
imagine an abstract algebra in which this is true.

This algebra is called “dual numbers,” and it’s the space-time extension used in SUSY.
The Taylor expansion of a quantum field in superspace has exactly 2 terms, identified
as a fermion field and a boson field.

For autodiff, the two components are the primal array and tangent array. Implementing
autodiff is as hard as implementing complex extensions for every real function.

But if we already have a complex implementation of all of our functions, we can set
ε = 10−8 to get 10−16 errors (typical errors in double-precision floating-point).

8 / 12

Theory of autodiff: dual numbers

The derivative of f from its complex extension F ,

f ′(x) ≈ Im

(
F (x + iε)

)
/ε

is exact if ε > 0 and ε2 = 0. The complex numbers don’t have this property, but
imagine an abstract algebra in which this is true.

This algebra is called “dual numbers,” and it’s the space-time extension used in SUSY.
The Taylor expansion of a quantum field in superspace has exactly 2 terms, identified
as a fermion field and a boson field.

For autodiff, the two components are the primal array and tangent array. Implementing
autodiff is as hard as implementing complex extensions for every real function.

But if we already have a complex implementation of all of our functions, we can set
ε = 10−8 to get 10−16 errors (typical errors in double-precision floating-point).

8 / 12

Theory of autodiff: dual numbers

The derivative of f from its complex extension F ,

f ′(x) ≈ Im

(
F (x + iε)

)
/ε

is exact if ε > 0 and ε2 = 0. The complex numbers don’t have this property, but
imagine an abstract algebra in which this is true.

This algebra is called “dual numbers,” and it’s the space-time extension used in SUSY.
The Taylor expansion of a quantum field in superspace has exactly 2 terms, identified
as a fermion field and a boson field.

For autodiff, the two components are the primal array and tangent array. Implementing
autodiff is as hard as implementing complex extensions for every real function.

But if we already have a complex implementation of all of our functions, we can set
ε = 10−8 to get 10−16 errors (typical errors in double-precision floating-point).

8 / 12

Theory of autodiff: dual numbers

The derivative of f from its complex extension F ,

f ′(x) ≈ Im

(
F (x + iε)

)
/ε

is exact if ε > 0 and ε2 = 0. The complex numbers don’t have this property, but
imagine an abstract algebra in which this is true.

This algebra is called “dual numbers,” and it’s the space-time extension used in SUSY.
The Taylor expansion of a quantum field in superspace has exactly 2 terms, identified
as a fermion field and a boson field.

For autodiff, the two components are the primal array and tangent array. Implementing
autodiff is as hard as implementing complex extensions for every real function.

But if we already have a complex implementation of all of our functions, we can set
ε = 10−8 to get 10−16 errors (typical errors in double-precision floating-point).

8 / 12

A complete autodiff library on one slide (NumPy & CuPy)
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin

class diffarray(NDArrayOperatorsMixin):
@classmethod
def _build(cls, complex_array):

self = cls.__new__(cls); self._array = complex_array
return self

def __init__(self, primal, tangent=None):
if issubclass(primal.dtype.type, np.float32):

self._array = primal.astype(np.complex64)
elif issubclass(primal.dtype.type, np.float64):

self._array = primal.astype(np.complex128)
else:

raise TypeError("array must be float32 or float64")
if tangent is None:

self._array += 1j * self._step_scale
else:

self._array += tangent * 1j * self._step_scale
@property
def _step_scale(self):

return 1e-4 if issubclass(
self._array.dtype.type, np.complex128) else 1e-8

@property
def primal(self):

return np.real(self._array)
@property
def tangent(self):

return np.imag(self._array) / self._step_scale

def __array_ufunc__(self, ufunc, method, *args, **kwargs):
return self.__array_function__(ufunc, None, args, kwargs)

def __array_function__(self, func, types, args, kwargs):
functions that would be misinterpreted on complex
if func.__name__ == "abs":

out = args[0].copy()
out[out.real < 0] *= -1
return type(self)._build(out)

if func.__name__ == "real":
return type(self)._build(args[0]._array)

if func.__name__ == "imag":
return type(self)._build(args[0]._array * 0)

if func.__name__ in ("less", "less_equal", "equal",
"not_equal", "greater", "greater_equal"):

args = [getattr(x, "_array", x).real for x in args]
return func(*args, **kwargs)

all other functions
args = [getattr(x, "_array", x) for x in args]
kwargs = {

k: getattr(v, "_array", v) for k, v in kwargs.items()
}
out = func(*args, **kwargs)
return type(self)._build(out) if issubclass(

out.dtype.type, np.complexfloating) else out

def __getitem__(self, where):
out = self._array[where]
return type(self)._build(np.asarray(out)) if isinstance(

out, np.complexfloating) else out
9 / 12

A complete autodiff library on one slide (NumPy & CuPy)
>>> import numpy as np
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-20, 20, 10000)
>>> da_x = diffarray(x)
>>> da_y = np.sin(da_x) / da_x
>>> abs(da_y.tangent - ((x*np.cos(x) - np.sin(x)) / x**2)).max()
3.9683650809863025e-10

>>> plt.plot(x, da_y.tangent)
>>> plt.plot(x, (x*np.cos(x) - np.sin(x)) / x**2, ls="--")

10 / 12

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?

11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?

11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?

11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?

11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?

11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

So, what’s wrong with it?

▶ Bad stuff happens at points where the function isn’t infinitely differentiable
(same for other autodiff libraries: consider the derivative of ReLU).

▶ Can we do second (or higher) order derivatives? No.
(https://dl.acm.org/doi/10.1145/2168773.2168774)

▶ Differentiate with respect to multiple arguments? Probably!

▶ Backpropagation: we might need to use our typetracer and/or Dask DAGs.

▶ Usable in Numba: in principle, and that’s an interesting possibility,
considering that JAX can’t and applying e.g. Enzyme is complicated.

What else? Can anyone find a reason why this is not sufficient?
11 / 12

https://dl.acm.org/doi/10.1145/2168773.2168774

What are our options?

1. Keep the JAX backend in Awkward Array, tweaking as necessary.

2. Drop the JAX backend and. . .

2.1 give up on autodiff.

2.2 make a new autodiff mini-library that is Awkward-friendly that. . .

2.2.1 just uses the complex-valued implementations we already have.

2.2.2 implements a conventional autodiff.

2.3 hide an autodiff implementation inside Awkward that. . .

2.3.1 just uses the complex-valued implementations we already have.

2.3.2 implements a conventional autodiff.

12 / 12

