N-Jettiness and LHC Jet Masses at NNLL

Iain Stewart MIT & Harvard

Boost workshop, Princeton May 2011

N-Jettiness Event Shape $\mathcal{T}_N = \mathcal{T}_N(q_a, q_b, q_1, \ldots, q_N)$ $T_N \rightarrow 0$ for *N*-jets $\mathcal{T}_N = \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \ldots + \mathcal{T}_N^N$ Factorization Friendly

IS, Tackmann, Waalewijn arXiv: 1004.2489

Want to calculate N-jet exclusive cross-sections. eg. differential jet masses

Jouttenus, IS, Tackmann, Waalewijn arXiv: 1102.4344

- Why? *•* sum logs beyond the parton shower (up to NNLL)
	- realistic estimates for theory errors
	- *•* test and tune Monte Carlo
	- reweight Monte Carlo (eg. Higgs Search)

Exclusive Jet Measurements Exclusive Jet Measurements

- *•* signal may prefer N-jets (eg. top is 2, 4, or 6) $\frac{1}{2}$ $(e_8, \text{top is } 2, 1, 0, 0)$
-

 \Rightarrow Be exclusive in the number of jets

- $\blacktriangleright\ pp\to H(\to WW^*)+0,1,2$ jets
- \blacktriangleright Also relevant for $H \to \gamma\gamma$

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Typical Event with Hard Interaction:

Factorization:

"cross section can be computed as product of independent pieces"

Shower MC programs assume factorization:

Events with a Hard Interaction:

Events with a Hard Interaction:

SCET = Soft-Collinear Effective Theory

QCD

QCD

JCD

Factorization Friendly Observables

eg.
$$
e^+e^- \rightarrow 2 \text{ jets}
$$

dijet event shape

 $e = e_1 + e_2 + e_s$

$$
\frac{d\sigma}{de} = H(Q) \int de_1de_2de_s J(e_1)J(e_2)S(e_s)\delta(e - e_1 - e_2 - e_s)
$$

Not as friendly for resummation: soft radiation grouped by jet algorithms Procedures that introduce multiple jet or soft scales see eg. Ellis, Hornig, Lee, Vermilion, Walsh; Banfi, Dasgupta, Khelifa-Kerfa, Marzani; Kelley, Schwartz, Zhu

N -Jettiness \mathcal{T}_N *pp* \rightarrow jets, $pp \rightarrow W/Z + \text{jets}, \ldots$ circular boundaries, put the class that are the class them in the class them in the class them in the class th typically preferred experimentally. For an N-jettiness cross section calculation using $m \to iets$, $m \to W/Z + iet$ \sqrt{N} cise in the next section. We will also briefly explore the shape of the jet regions obtained using N-jettiness with timess. T_N

consider an inclusive N-jet sample with jet energies $E_i\,$ & directions \hat{n}_i determined by anti-kT (or any suitable algorithm) $\mathbf{1}$, the only missing ingredient for an evaluation $\mathbf{1}$ consider an Inci \mathbf{v} ve N-iet sample with iet energies E_i & power-suppressed effects, as expected in \mathbf{p} . For \mathbf{p} . Fo mined by and is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n where $\hat{\mathbf{w}}$ is the jet energy, and \mathbf{w} is the jet direction. rections \hat{n}_i determined by anti-kT (or any suitable algorithm) *Ei*

$$
q_i^{\mu} = E_i(1, \hat{n}_i)
$$
\n
$$
q_b^{\mu} = \frac{1}{2} x_a E_{cm}(1, \hat{z}), \qquad x_a x_b = \frac{Q^2}{E_{cm}^2} = \frac{(q_1 + \dots + q_N + q)^2}{E_{cm}^2}
$$
\n
$$
\ln \frac{x_a}{x_b} = Y = \dots
$$
\n
$$
(\text{set } x_a = x_b = 1 \text{ for cases with MET})
$$

 $\mathcal{T}_N = \sum |\vec{p}_{kT}| \min \bigl\{ d_a(p_k), d_b(p_k), d_1(p_k), d_2(p_k), \ldots, d_N(p_k) \bigr\}$ *k* \overline{t} factor beam axis, and \overline{t} are the light-cone momentum \overline{t} measure *k*

- *^N* ⁺ *···* ⁺ *^T ^N q*1 *T* 1 *T b da,b*(*pk*), *d^j* (*pk*): Distance of particle *k* to beam and jet directions
- t_a and θ bivides phase space into $q \circ q$ $q \circ q$ $q \circ q$ N jet regions and 2 beam regions

 \overline{a}

N -Jettiness \mathcal{T}_N *pp* \rightarrow jets, $pp \rightarrow W/Z + \text{jets}, \ldots$ circular boundaries, put the class that are the class them in the class them in the class them in the class th typically preferred experimentally. For an N-jettiness cross section calculation using $m \to iets$, $m \to W/Z + iet$ \sqrt{N} cise in the next section. We will also briefly explore the shape of the jet regions obtained using N-jettiness with timess. T_N

consider an inclusive N-jet sample with jet energies $E_i\,$ & directions \hat{n}_i determined by anti-kT (or any suitable algorithm) $\mathbf{1}$, the only missing ingredient for an evaluation $\mathbf{1}$ consider an Inci \mathbf{v} ve N-iet sample with iet energies E_i & power-suppressed effects, as expected in \mathbf{p} . For \mathbf{p} . Fo mined by and is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n where $\hat{\mathbf{w}}$ is the jet energy, and \mathbf{w} is the jet direction. rections \hat{n}_i determined by anti-kT (or *Ei*

$$
q_i^{\mu} = E_i(1, \hat{n}_i)
$$
\n
$$
q_b^{\mu} = \frac{1}{2} x_a E_{cm}(1, \hat{z}), \qquad x_a x_b = \frac{Q^2}{E_{cm}^2} = \frac{(q_1 + \dots + q_N + q)^2}{E_{cm}^2}
$$
\n
$$
q_b^{\mu} = \frac{1}{2} x_b E_{cm}(1, -\hat{z}) \qquad \ln \frac{x_a}{x_b} = Y = \dots
$$
\n
$$
(\text{set } x_a = x_b = 1 \text{ for cases with MET})
$$

$$
\text{measure} \quad \mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}
$$

- *•* Here *Q^j* determines the measure
- **Small** T_N constrains us to N-jets Large T_N has $>$ N jets (one added scale) $\mathcal{T}^{\mathrm{alg.1}}_{N} = \mathcal{T}^{\mathrm{alg.2}}_{N} + \mathcal{O}[(\mathcal{T}^{\mathrm{alg.2}}_{N})^{2}]$

N -Jettiness \mathcal{T}_N *pp* \rightarrow jets, $pp \rightarrow W/Z + \text{jets}, \ldots$ circular boundaries, put the class that are the class them in the class them in the class them in the class th typically preferred experimentally. For an N-jettiness cross section calculation using $m \to iets$, $m \to W/Z + iet$ \sqrt{N} cise in the next section. We will also briefly explore the shape of the jet regions obtained using N-jettiness with \mathcal{I}_N

consider an inclusive N-jet sample with jet energies $E_i\,$ & directions \hat{n}_i determined by anti-kT (or any suitable algorithm) $\mathbf{1}$, the only missing ingredient for an evaluation $\mathbf{1}$ consider an Inci \mathbf{v} ν e N-jet sample with jet energies E_i & power-suppressed effects, as expected in \mathbf{p} . For \mathbf{p} . Fo mined by and is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n is the unit of \mathbb{R}^n in the unit of \mathbb{R}^n where $\hat{\mathbf{w}}$ is the jet energy, and \mathbf{w} is the jet direction. rections \hat{n}_i determined by anti-kT (or

$$
q_i^{\mu} = E_i(1, \hat{n}_i)
$$
\n
$$
q_b^{\mu} = \frac{1}{2} x_a E_{cm}(1, \hat{z}), \qquad x_a x_b = \frac{Q^2}{E_{cm}^2} = \frac{(q_1 + \dots + q_N + q)^2}{E_{cm}^2}
$$
\n
$$
q_b^{\mu} = \frac{1}{2} x_b E_{cm}(1, -\hat{z}) \qquad \ln \frac{x_a}{x_b} = Y = \dots
$$
\n
$$
(\text{set } x_a = x_b = 1 \text{ for cases with MET})
$$

$$
\text{measure} \quad \mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}
$$

"make it a true event shape"

• Determine q_i by minimization

For
$$
Q_i = |\vec{q}_{iT}|
$$
, $\vec{p}_{\text{jet}}^i = \sum_{k \in i} \vec{p}_k$

Extension to N-subjettiness

[*lesse's talk*] Thaler, Van Tilburg

 $q_a \longrightarrow q_b$

 $\overline{\boldsymbol{q_2}}$

 q_1

 $\boldsymbol{W}/\boldsymbol{Z}$

N-Jettiness Factorization

$$
\mathcal{T}_N = \sum_k \min \left\{ \frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N} \right\}
$$
\n
$$
\mathcal{T}_N = \Big(\sum_{k \in \text{soft}} \min_m \left\{ \frac{2q_m \cdot p_k}{Q_m} \right\} \Big) + \sum_{j = a, b, 1, \dots, N} \Big(\sum_{k \in \text{coll}_j} \frac{2q_j \cdot p_k}{Q_j} \Big)
$$
\nOnly soft particles get a
nontrivial grouping. Jet boundaries
are determined by the q_m

(more later)

N-Jettiness & Jet Masses

$$
\mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}
$$

$$
\mathcal{T}_N = \mathcal{T}_a + \mathcal{T}_b + \mathcal{T}_1 + \dots + \mathcal{T}_N
$$

$$
\mathcal{T}_N^j = \sum_{k \in j} |\vec{p}_{kT}| d_j(p_k)
$$

^T^N ⁼ ! Can measure:

^N ⁺ *^T ^b* $aL_a aL_b aL_1 \cdots aL_N$ $d\sigma$ $d\mathcal{T}_a d\mathcal{T}_b d\mathcal{T}_1 \cdots d\mathcal{T}_N$

da,b(*pk*), *d^j* (*pk*): Distance of particle *k* to beam and jet directions These are Jet Masses: with jet axes aligned

$$
M_J^2 = P_J^2 = P_J^- P_J^+ = Q_i T_N^i
$$

 $f(x) = \frac{f(x)}{2}$ and $f(x) = \frac{f(x)}{2}$ sses of fers: (of subjecs:) So one can study the masses of jets! (or subjets!)

Jet definition:

N-jettiness divides particles into jet and beam regions

$$
\mathcal{T}_N = \sum_k \lvert \vec{p}_{kT} \rvert \min \bigl\{ \bm{d_{a}}(\bm{p_{k}}), \bm{d_{b}}(\bm{p_{k}}), \bm{d_{1}}(\bm{p_{k}}), \bm{d_{2}}(\bm{p_{k}}), \dots, \bm{d_{N}}(\bm{p_{k}}) \bigr\}
$$

Jet definition:

N-jettiness divides particles into jet and beam regions

$$
\mathcal{T}_N = \sum_k \lvert \vec{p}_{kT} \rvert \min \bigl\{ \bm{d_{a}}(\bm{p_{k}}), \bm{d_{b}}(\bm{p_{k}}), \bm{d_{1}}(\bm{p_{k}}), \bm{d_{2}}(\bm{p_{k}}), \dots, \bm{d_{N}}(\bm{p_{k}}) \bigr\}
$$

Jets treatment of soft radiation depends on the distance measure

$$
\hat{q}_i^{\mu} \equiv \frac{q_i^{\mu}}{Q_i}, \quad \mathcal{T}_N \equiv \sum_k \min_i \{ 2\hat{q}_i \cdot p_k \}
$$

Wednesday, May 25, 2011 21 and 20 and 21 and 21 and 21 and 22 and 22 and 22 and 22 and 22 and 22 and 21 and 22 and 22

N-Jettiness Factorization Formula $\frac{\tau_n}{\tau_n}$

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{where}
$$
\n
$$
\times \text{tr}\bigg[H_N^{\kappa}(\{q_i \cdot q_j\}, x_{a,b}) \hat{S}_N^{\kappa} \bigg(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\}\bigg)\bigg]
$$
\n
$$
\times \bigg[1 + \mathcal{O}(T_N^j)\bigg]
$$

 \mathcal{T}_N^a

 \mathcal{T}_N^1

N-Jettiness Factorization Formula $\frac{\tau_n}{\tau_n}$

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{with } T_N^b
$$
\n
$$
\times \text{tr}\left[H_N^{\kappa}(\{q_i \cdot q_j\}, \mathbf{x}_{a,b}) \hat{S}_N^{\kappa} \left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{q_i \cdot q_j\}\right)\right]
$$
\n
$$
\text{hard virtual}
$$
\n
$$
\text{function}
$$
\n
$$
\text{function}
$$
\n
$$
B_{\kappa} = \mathcal{I}_{\kappa \kappa'} \otimes f_{\kappa'}
$$
\n
$$
\text{function}
$$
\n
$$
B_{\kappa} = \mathcal{I}_{\kappa \kappa'} \otimes f_{\kappa'}
$$
\n
$$
\text{function}
$$
\n
$$
\text{function}
$$
\n
$$
\text{known to}
$$
\n
$$
\mathcal{O}(\alpha_s^2)
$$

 \mathcal{T}_N^a

 \mathcal{T}_N^1

 $q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)$

N-Jettiness Factorization Formula

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{where}
$$
\n
$$
\times \text{tr}\left[H_N^{\kappa}(\{q_i \cdot q_j\}, x_{a,b}) \hat{S}_N^{\kappa}\left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\}\right)\right]
$$
\n
$$
q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)
$$

Assumptions needed to sum logs with this formula:

1) $T_i \sim T_j$ ($T_i \ll T_j$ gives non-global logs of Dasgupta & Salam) [Chris Lee's talk] $\mu_i \sim \mu_j$

 $\hat{q}_i \cdot \hat{q}_j \gg \mathcal{T}_i/Q_i$

jets are well separated [Jon Walsh's talk] (jets merge, "Ninja" limit)

 \mathcal{T}_N^a

3) $Q_i \sim Q_j$

 q_1

 \mathcal{T}_N^1

N-Jettiness Factorization Formula

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{where}
$$
\n
$$
\times \text{tr}\left[H_N^{\kappa}(\{q_i \cdot q_j\}, x_{a,b}) \hat{S}_N^{\kappa}\left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\}\right)\right]
$$
\n
$$
q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)
$$

Assumptions needed to sum logs with this formula:

1) $T_i \sim T_j$ ($T_i \ll T_j$ gives non-global logs of Dasgupta & Salam) [Chris Lee's talk] $\mu_i \sim \mu_j$

 $\hat{q}_i \cdot \hat{q}_j \gg \mathcal{T}_i/Q_i$

jets are well separated [Jon Walsh's talk] (jets merge, "Ninja" limit)

 \mathcal{T}_N^a

3) $Q_i \sim Q_j$

 q_1

 \mathcal{T}_N^1

A couple of interesting projections

One Central Jet's Mass

 $\frac{d\sigma}{dT}(Q_i, R, \ldots) = \int_0^{Q_a R/2} dT$ $d\mathcal{T}_a$ $\int Q_b R/2$ 0 $d\mathcal{T}_b$ L $d\mathcal{T}_1$ $\overline{\mathsf{H}}$ *j*≥2 $\int Q_j R/2$ 0 $d\mathcal{T}_j$ $\int d\sigma$ $d\mathcal{T}_a d\mathcal{T}_b d\mathcal{T}_1 \cdots d\mathcal{T}_N$ $\delta($ $I - I_1$ $\overline{ }$

A Central Jet "Thrust"

$$
\frac{d\sigma}{dT}(Q_i, R, \ldots) = \int_0^{Q_a R/2} d\mathcal{T}_a \int_0^{Q_b R/2} d\mathcal{T}_b \left[\int \prod_j d\mathcal{T}_j \right] \frac{d\sigma}{dT_a dT_b dT_1 \cdots dT_N} \delta(T - \frac{1}{N} \sum_j \mathcal{T}_j)
$$

where $m_J^2 = Q_J T$

eg. Higgs Jet Veto

Berger, Marcantonini, IS, Tackmann, Waalewijn

$$
Higgs + 0~jets
$$

$$
gg\to H\to WW\to \ell\bar{\nu}\bar{\ell}\nu
$$

! Strong discovery potential at the LHC for *m^H* ! 130 GeV

 $WW \rightarrow \mu^+ \nu_e e^- \bar{\nu}_e$ • Strong discovery potential at the LHC for $m_H \gtrsim 130 \,\text{GeV}$ $pp \rightarrow H \rightarrow WW \rightarrow \mu^+ \nu_\mu e^- \bar{\nu}_e$

dominant channel in Tevatron search c onannel in Tevatron searches are smooth functions of the Higgs boson most strongly on the Higgs boson most s predicted and the decay branching ratios \mathbf{r} *•*

$$
p\bar{p} \to H \to WW \to \mu^+ \nu_\mu e^- \bar{\nu}_e
$$

⇒ Veto events with central jets and look for *pp* → *H* + 0 jets

⇒ Veto events with central jets and look for *pp* → *H* + 0 jets

 \Rightarrow Veto events with central jets, measure $pp \rightarrow H (\rightarrow WW) + 0$ jets Frank Tackmann (Sensitivity dominated by 0-1et sample ϕ events with central jets, measure $pp \rightarrow H(\rightarrow WW) + 0$ Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 \geq \Rightarrow Veto events with central jets, measure $pp \rightarrow H (\rightarrow WW) + 0$ jets (Sensitivity dominated by 0-jet sample)

Jet veto restricts ISR, gives double logs f_{tri} at f_{F} \sum_{i} f_{error} double f_{error} tricts i.s. gives double logs

2000 $L = \log$ *PRODUCE* $\rm LO~~NLO~~NNO$ $\frac{2}{a}$ + a α_s^4 + α_s^3 ¹ $a_s^2 L^4$ + $\alpha_s^3 L^6$ +... $\sigma_{0\text{-jet}} = 1 + \alpha_s L^2$ *T* γ ^U $\frac{1}{2}$ $+ \alpha_s L + \alpha_s^2$ $\frac{2}{s}L^3$ + $\alpha_s^3L^5$ + ... $\alpha_s L$ $\alpha_s L$ $\alpha_s L$ $\alpha_s L$ $+ \alpha_s n_1 (p_T^\mathrm{cut}) + \alpha_s^2 L^2$ $\alpha_s^3 L^2 + \alpha_s^3 L^4 + \dots$ α ^c) + $\alpha_s^2 L^2$ + $\alpha_s^3 L^4$ + ... a_s^2L $\alpha_s^3 L^3 + \alpha_s^3 L^3 + \dots$ $+\alpha_s^2L$ $+\alpha_s^2L^2$ $+\ldots$ Fixed Order to $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)$ $\frac{6}{\alpha^2 n_0 (n)}$ $\frac{\text{cut}}{\text{dt}}$ + $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Higgs and Jet Vetos Beam Thrust as Jet Veto 0-Jet Higgs Production . $\alpha_s^2 n_2(p_T^{\text{cut}}) + \alpha_s^2 n_2^{\text{cut}}) + \alpha_s^3 L^2$ $\alpha_s^{\rm cut})$ + $\alpha_s^3 L^2$ +... NNLO $MNLO$

൚൵൵൵൵

 σ [fb]

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529] Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Common scale variation for jet bins, e.g. for the Tevatron

$$
\frac{\Delta \sigma}{\sigma} = 66.5\% \times \left(\frac{+5\%}{-9\%}\right) + 28.6\% \times \left(\frac{+24\%}{-22\%}\right) + 4.9\% \times \left(\frac{+78\%}{-41\%}\right) = \left(\frac{+14\%}{-14\%}\right)
$$

0 jets
1 jet
2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section Problem:

$$
\sigma_{\text{total}} = 1 + \alpha_s + \alpha_s^2 + \cdots
$$

\n
$$
\sigma_{\geq 1}(p_T^{\text{cut}}) = \alpha_s(L^2 + L) + \alpha_s^2(L^4 + L^3 + L^2 + L) + \cdots
$$

\n
$$
\sigma_0(p_T^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p_T^{\text{cut}})
$$

\n
$$
= [1 + \alpha_s + \alpha_s^2 + \cdots] - [\alpha_s(L^2 + L) + \alpha_s^2(L^4 + \cdots) + \cdots]
$$

- *Pative series have different structures and are not related. •* perturbative series have different structures and are not related
- small uncertainties are result of cancellation of two large corrections

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

• Common scale variation for jet bins, e.g. for the Tevatron

 $\overline{1}$ $\overline{$ Proposed Fixed Order Solution [Tackmann, ...] Proposed Fixed Order Solution [Tackmann, ...] The *inclusive* jet cross sections are considered uncorrelated

The *inclusive* jet cross sections are considered uncorrelated σtotal*,* σ≥¹*,* σ≥² ⇒ *C* = $\overline{}$ ∆² total 0 0 oluereu unicurreia
∴ ∴ ∴

 $\sigma_{\text{total}}, \sigma_{\geq 1}, \sigma_{\geq 2}$ for scale variation for scale variation

ance matrix for the *exclusive* iet cross sections follows from ONS IOIIOWS ITONI ≥2 The covariance matrix for the *exclusive* jet cross sections follows from

 $\sigma_0 = \sigma_{\rm total} - \sigma_{\geq 1}\,, \qquad \sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}\,, \qquad \sigma_{\geq 2}$

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

• Common scale variation for jet bins, e.g. for the Tevatron

Proposed Fixed Order Solution [Tackmann, ...]

 f_{tri} at f_{F} \sum_{i} f_{error} double f_{error} ൚൵൵൵൵ Jet veto restricts ISR, gives double logs tricts i.s. gives double logs **DOO0 OCCOOX** ϵ t -thrust["] or "o-iettiness" using "beam thrust" or "0-jettiness" *^L*² = 2 ln² *^p*cut MT_A LO NLO NNLO \sim $\frac{1}{\alpha}$ $\frac{1}{\alpha^2}$ $\frac{2}{\alpha^2}$ + $\frac{3}{\alpha^3}$ $\frac{6}{\alpha}$ + $\frac{1}{\alpha^4}$ s^2L^4 + $\alpha_s^3L^6$ +... LL $\sigma_{0\text{-jet}} = \ 1 \ \ \ + \ \alpha_s L^2 \qquad \ \ + \ \alpha_s^2$ $\frac{1}{2}$ **s**^{L4} + α² $\frac{3}{2}$ $s = 2$ $+ \alpha_s L + \alpha_s^2$ s^2L^3 + $\alpha_s^3L^5$ +... NLL $+ \alpha_s L$ $\alpha_s L + \alpha_s L + \cdots$ NL $+ \alpha_s n_1(p_T^\mathrm{cut}) + \alpha_s^2 L^2$ $, n_1 (p)$ $\rho_T^\mathrm{cut}) \quad +$ $+ c$ $\alpha_s^3 L^4$ + $\alpha_s^3 L^4 + \ldots$. . NNLL $\alpha_s^2 L$ $\alpha_s^3 L^3 + \alpha_s^3 L^3 + \dots$ $+ \alpha_s^2 n_2(p_T^{\rm cut}) + \alpha_s^3 L^2 + \ldots$ $\alpha_s^3 L + \alpha_s^3 L + \ldots$ Our calculation: $+\alpha_s^3$ +... $NNLL + NNLO$ $\boldsymbol{\ell}$ $\boldsymbol{\ell}$ two orders of summ *W* \int Jet \setminus / \setminus Jet ν *H* '''
^ ∣ *p* $p \neq p$ beyond LL shower programs $\boldsymbol{\ell}$ *W* ൚൵൵ $\bar{\nu}$ $\boldsymbol{\ell}$ Soft

Wednesday, May 25, 2011 $\sqrt{35}$

 $\ell \setminus \mathcal{L}$

 I et //////

Berger, Marcantonini,

NNI O'using inclusive jet cross sect NNLO: using inclusive jet cross sections & correlation matrix

- NNLO uncertainties now consistent with those from NNLL+NNLO resummation
	- increased theory errors will impact Higgs bound

اتتكت

Jet Mass

Jouttenus, IS, Tackmann, Waalewijn

N-Jettiness Factorization Formula

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{where}
$$
\n
$$
\times \text{tr}\left[H_N^{\kappa}(\{q_i \cdot q_j\}, x_{a,b}) \hat{S}_N^{\kappa}\left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\}\right)\right]
$$
\n
$$
q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)
$$

Pieces needed for NNLL are now all in hand:

- *•* Three Loop Cusp Anom. Dim, Two Loop Non Cusp. (Note: Beam function has same Logs as Jet Function)
- *•* One Loop Hard functions: when available in QCD literature (only part that restricts N)
- *•* Jet & Beam Functions at one loop
- *•* N-jet Soft function

Jouttenus, IS, Tackmann,

 q_1

 \mathcal{T}_N^1

 \mathcal{T}_N^a

N-Jettiness Factorization Formula

$$
\frac{d\sigma}{dT_N^a dT_N^b \cdots dT_N^N} = \int dx_a dx_b \int d(\text{phase space})
$$
\n
$$
\times \sum_{\kappa} \int dt_a B_{\kappa_a}(t_a, x_a) \int dt_b B_{\kappa_b}(t_b, x_b) \prod_{J=1}^N \int ds_J J_{\kappa_J}(s_J) \qquad \text{where}
$$
\n
$$
\times \text{tr}\left[H_N^{\kappa}(\{q_i \cdot q_j\}, x_{a,b}) \widehat{S}_N^{\kappa}\left(T_N^a - \frac{t_a}{Q_a}, T_N^b - \frac{t_b}{Q_b}, T_N^1 - \frac{s_1}{Q_1}, \dots, T_N^N - \frac{s_N}{Q_N}, \{\hat{q}_i \cdot \hat{q}_j\}\right)\right]
$$
\n
$$
q_i \cdot q_j = (Q_i Q_j)(\hat{q}_i \cdot \hat{q}_j)
$$

With assumptions: $\tau_i \sim \tau_j$, $\hat{q}_i \cdot \hat{q}_j$ $f_j \gg T_i/Q_i$, $Q_i \sim Q_j$

Can explore angular dependence, R dependence, Qi dependence

Have Color / Kinematic info. Can look at jet mass in samples with various amounts of quarks vs. gluons.

 q_1

 \mathcal{T}_N^1

 \mathcal{T}_N^a

Unfortunately we did not quite get final results in time for the workshop ...

Jouttenus, IS, Tackmann, Waalewijn

The End