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N-Jettiness Event Shape
TN = TN (qa, qb, q1, . . . , qN )
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TN → 0 for N -jets

TN = T a
N + T b

N + T 1
N + . . . + T N

N

Factorization Friendly

dσ

dT a
N · · · dT N

N

Want to calculate N-jet exclusive cross-sections.
eg. differential jet masses

Why? • sum logs beyond the parton shower (up to NNLL)
• realistic estimates for theory errors
•
• reweight Monte Carlo (eg. Higgs Search)

test and tune Monte Carlo

IS, Tackmann, Waalewijn
arXiv: 1004.2489

Jouttenus, IS, Tackmann, Waalewijn
arXiv: 1102.4344
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3.2 Background estimation 5
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Figure 1: (a) Jet multiplicity distribution after all W+W− selection criteria, except the top veto

and jet veto requirements. (b) Dilepton mass distribution for the events passing the final selec-

tions, except the Z mass veto.

systematic uncertainty is assigned as a conservative estimate of the difference between data

and simulation.

An estimate of the residual Z boson contributions in the e+e− and µ+µ− final states outside

the Z mass window, N��,exp

out
, is obtained from data in the following way. The ratio R��

out/in
of

the number of events outside the Z mass window to that inside is obtained from simulation.

The observed number of events inside the Z mass window in data, N��
in

, from which the non-

Z contributions (Nnon−Z

in
) is subtracted, is then scaled by R��

out/in
to compute the residual Z

background:

N��,exp

out
= R��

out/in
(N��

in − Nnon−Z

in
), with R��

out/in
= N��,MC

out
/N��,MC

in
.

The number Nnon−Z

in
is estimated as half of the number of e±µ∓ events, taking into account the

relative detection efficiencies of electrons and muons. The result also includes WZ and ZZ con-

tributions, in which both leptons come from the same Z boson. The total Z decay contribution

is estimated as 0.2 ± 0.2 (stat)± 0.3 (syst) events. The systematic uncertainty of this method

arises primarily from the dependence of R��
out/in

on the Emiss

T
cut.

Other backgrounds are estimated from simulation. The Wγ production, where the photon is

misidentified as an electron, is suppressed by the γ conversion rejection requirements. As a

cross-check, this background was studied using the events passing all selection requirements,

except that the two leptons must have the same charge. This sample is dominated by W +

jets and Wγ events. Other minor backgrounds are WZ and ZZ diboson production where the

selected leptons come from different bosons, and Z/γ∗ → τ+τ− production. All background

predictions are summarized in Table 2. The estimated number of remaining background events

is 3.29 ± 0.45 (stat)± 1.09 (syst).

Exclusive Jet Measurements
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• signal may prefer N-jets 
(eg. top is 2, 4, or 6)

• backgrounds vary with # of jets

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Exclusive Jet Measurements
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We are often interested in differential
(exclusive) jet measurements

Backgrounds vary with the number of jets

⇒ Be exclusive in the number of jets
� pp → H(→ WW

∗) + 0, 1, 2 jets
� Also relevant for H → γγ

⇒ The “spectrum” of jets is also important for theory uncertainties

Other ways of being exclusive
Jet mass and shape (e.g. distinguish quark and gluon jets)

Jet substructure, e.g. to search for H → bb̄

Photon and lepton isolation cuts, e.g. H → γγ

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 1 / 20

• study jet substructure, 
study exclusive sub-jets

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Large Logarithms from Jet Veto

Even if hard signal process gg → H contains no jets,
jet veto affects cross section by restricting ISR

⇒ t-channel singularities produce Sudakov double logarithms
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π
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+ · · ·

Large perturbative corrections at small cuts
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than T cut, agree for T cut � mH
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Factorization:

Typical Event with Hard Interaction:

“cross section can be computed as product of independent pieces”

Shower MC programs assume factorization:

initial state
parton 
shower

hard scattering
fixed order 

perturbative
computation

⊗ ⊗
final state

parton 
showers

⊗
hadronization

model,
underlying event,

...
(with parton
distributions)

dσ =

f

H

I

I

J

f

1

2

3

s

soft or Glauber

−

+

J

J
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Events with a Hard Interaction:

time

Search for New 
Heavy Particles 
at short distances

J1

2

3

−

+

J

J

p

p

Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Particle Physics: Physics at Shortest Distances

u
d

u

m 110510101015 10−5 10−10 10−15

LHC

Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 1 / 34

Decay Chain of 
SUSY particles

g̃
q

q̃ Ñ2

q̄

�̃+ Ñ1

�− �+
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Events with a Hard Interaction:

J1
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3

−
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J

p
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. . .

Quarks and Gluons
Form Jets
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J1
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J

J

p

p

Key Simplifying Principle is to Exploit the Hierarchy 
   of Energy Scales 

µS

µJ , µB

µH

µp

E

µp � ΛQCD

µJ � mJ

µB � mJ

µS � Esoft

µH �MSUSY

SCET

QCD

SCET =  Soft-Collinear Effective Theory
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Key Simplifying Principle is to Exploit the Hierarchy 
   of Energy Scales 
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Wilson coefficients
+ operators at
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µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

µH

Wilson coefficients
+ operators at

J1

2

3

−

+

J

J

p

p

jet functions, beam functions
& eikonal lines for softs

& PDFs

Introduction Exclusive Jet Cross Sections Jet Shapes Summary

Factorized Cross Section in SCET

dσ = fa,b ⊗ Ia,b ⊗ H ⊗
�

i
Ji ⊗ S

ΛQCD µB µH µJ µS

f

H

I

I

J

f

1

2

3

s

−

+

J

J

a

b

a

b

Hard function H(µH): µH ∼ mJJ , p
jet
T

Contains squared matrix-element for underlying hard partonic process

� Determined from corresponding QCD fixed-order calculation

Jet function J(µJ), Beam function B(µB) ≡ I ⊗ f : µB ∼ µJ ∼ mJ

Universal and process independent for given jet definition/observable

� For simple jet observables can be calculated perturbatively

Soft function S(µS): µS ∼ µ
2
J
/µH

Encodes soft effects on a given jet observable

� µS � ΛQCD: can be calculated perturbatively

� µS ∼ ΛQCD: can be modeled and fitted from data

Frank Tackmann (MIT) New Approaches to Jet Physics at Colliders 2010-08-26 5 / 23

Factorization:
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Factorization Friendly Observables

 

eg. e
+
e
−

→ 2 jets

es
e1 e2

e = e1 + e2 + es

dσ

de
= H(Q)

�
de1de2des J(e1)J(e2)S(es)δ(e− e1 − e2 − e3)

dijet event shape

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ
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0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’
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L3

SLD

for &

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

eg. thrust N3LL + O(α3
s)

global fit with
power corrections

Gehrmann et al. & Weinzierl
Becher & Schwartz

Abbate, Fickinger, Hoang, 
Mateu, I.S.

Q = mZ
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Factorization Friendly Observables

 

eg. e
+
e
−

→ 2 jets

es
e1 e2

e = e1 + e2 + es

Not as friendly for resummation:
soft radiation grouped by jet algorithms

dijet event shape

Procedures that introduce multiple jet or soft scales
see eg.  Ellis, Hornig, Lee, Vermilion, Walsh; 
Banfi, Dasgupta, Khelifa-Kerfa, Marzani; Kelley, Schwartz, Zhu

dσ

de
= H(Q)

�
de1de2des J(e1)J(e2)S(es)δ(e− e1 − e2 − es)
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Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

N-Jettiness Event Shape
[Stewart, FT, Waalewijn, arXiv:1004.2489, arXiv:1102.4344]

TN =
�

k

|�pkT | min
�
da(pk), db(pk), d1(pk), d2(pk), . . . , dN(pk)

�

≡ T a
N + T b

N + T 1
N + · · · + T N

N

da,b(pk), dj(pk): Distance of particle k

to beam and jet directions

Divides phase space into
N jet regions and 2 beam regions

Can measure separate contribution
from each region W/Z

qbqa

q1

q2

T 1
N

T 2
N

T a
N

T b
N

For small T i
N final state contains exactly N jets

⇒ Enforcing small beam-thrust components T a
N + T b

N eliminates
contamination from ISR

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 17 / 20

pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]
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∑
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, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
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pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum

qµ
i = Ei(1, n̂i)

n̂i

Ei

xaxb =
Q2

E2
cm

=
(q1 + . . . + qN + q)2

E2
cm

ln
xa

xb
= Y = . . .

(set xa = xb = 1 for cases with MET)

W/Z

qbqa

q1

q2

TN

TN =
�

k

min
�2qa · pk

Qa
,
2qb · pk

Qb
,
2q1 · pk

Q1
, . . . ,

2qN · pk

QN

�

• QjHere 

measure

determines the measure 
• Small TN constrains us to N-jets 

Large  TN has >N jets

(one added scale)

T
alg.1

N = T
alg.2

N +O[(T alg.2
N )2]

15Wednesday, May 25, 2011



pp→ jets, pp→W/Z + jets, . . .N-Jettiness
consider an inclusive N-jet sample with jet energies      & 
directions      determined by anti-kT (or any suitable algorithm)

2

H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
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H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i
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torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]
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, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have
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�

k

min
�2qa · pk

Qa
,
2qb · pk

Qb
,
2q1 · pk

Q1
, . . . ,

2qN · pk

QN

�

• Determine 

measure

• Extension to N-subjettiness 
[ Jesse’s talk ]

qi by minimization

For Qi = |�qiT | �p i
jet =

�

k∈i

�pk,

Thaler, Van Tilburg

“make it a true event shape”
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TN =
�

k

min
�2qa · pk

Qa
,
2qb · pk

Qb
,
2q1 · pk

Q1
, . . . ,

2qN · pk

QN

�
N-Jettiness Factorization

TN =
� �

k∈soft

min
m

�2qm · pk

Qm

��
+

�

j=a,b,1,...,N

� �

k∈collj

2qj · pk

Qj

�

collinear particles all 
grouped with their qj

Only soft particles get a 
nontrivial grouping. Jet boundaries
are determined by the qm

(more later)
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TN =
�

k

min
�2qa · pk

Qa
,
2qb · pk

Qb
,
2q1 · pk

Q1
, . . . ,

2qN · pk

QN

�
N-Jettiness & Jet Masses

TN = Ta + Tb + T1 + · · · + TN
T j

N =
�

k∈j

|�pkT | dj(pk)

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

N-Jettiness Event Shape
[Stewart, FT, Waalewijn, arXiv:1004.2489, arXiv:1102.4344]

TN =
�

k

|�pkT | min
�
da(pk), db(pk), d1(pk), d2(pk), . . . , dN(pk)

�

≡ T a
N + T b

N + T 1
N + · · · + T N

N

da,b(pk), dj(pk): Distance of particle k

to beam and jet directions

Divides phase space into
N jet regions and 2 beam regions

Can measure separate contribution
from each region W/Z

qbqa

q1

q2

T 1
N

T 2
N

T a
N

T b
N

For small T i
N final state contains exactly N jets

⇒ Enforcing small beam-thrust components T a
N + T b

N eliminates
contamination from ISR

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 17 / 20

These are Jet Masses:
with jet axes aligned

M2
J = P 2

J = P−J P+
J = QiT i

N

Can measure:

So one can study the 
masses of jets! (or subjets!)

dσ

dTadTbdT1 · · · dTN
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N-jettiness divides particles into jet and beam regions

Jet definition: 

TN =
�

k

|�pkT |min
�
da(pk), db(pk), d1(pk), d2(pk), . . . , dN(pk)

�

0

0

1

1

2

2

3

3 4 5

−1

−1

−2

−2
−3

−3−4−5

η
φ Beam aBeam b

Jet 1

Jet 2

invariant-mass
measure

di(pk) =
2qi · pk

Q|�pkT |

0

0

1

1

2

2

3

3 4 5

−1

−1

−2

−2
−3

−3−4−5
η

φ Beam aBeam b

Jet 1

Jet 2

geometric
measure

da,b(pk) = e∓ηk

dj(pk)= 2 cosh∆ηjk − 2 cos∆φjk

≈ (∆ηjk)
2 + (∆φjk)

2
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N-jettiness divides particles into jet and beam regions

Jet definition: 

TN =
�

k

|�pkT |min
�
da(pk), db(pk), d1(pk), d2(pk), . . . , dN(pk)

�

0

0

1

1

2

2

3

3 4 5

−1

−1

−2

−2
−3

−3−4−5
η

φ Beam aBeam b

Jet 1

Jet 2

geometric
measure

da,b(pk) = e∓ηk

dj(pk)= 2 cosh∆ηjk − 2 cos∆φjk

≈ (∆ηjk)
2 + (∆φjk)

2

circular
geometric 
measure

�5 �3 �1 1 3 5
�3

�2

�1

0

1

2

3

Η

Φ

da,b(pk) = same
dj(pk) = (same)/ cosh∆ηjk
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Teppo Jouttenus (MIT)

Jets treatment of soft radiation 
depends on the distance measure q̂µ

i ≡
qµ
i

Qi
, TN ≡

�

k

min
i

�
2q̂i · pk

�

η

φ φ

η

21

Invariant mass 
measure

geometric
measure

φ

η

circular
geometric 
measure

circular
geometric 
measure

φ

η
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
s1

Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

×

�
1 +O(T j

N )
�
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
s1

Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

hard virtual 
corrections
2→ N + q

qi · qj = (QiQj)(q̂i · q̂j)

jet function 
known to 
O(α2

s)

beam
function

N-jettiness 
soft function

Bκ = Iκκ�⊗fκ�
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
s1

Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

qi · qj = (QiQj)(q̂i · q̂j)

Assumptions needed to sum logs with this formula:

1)

2)

3)

Ti � Tj( gives non-global logs of Dasgupta & Salam)
[ Chris Lee’s talk ]

jets are well separated [ Jon Walsh’s talk ]
(jets merge, “Ninja” limit)

Ti ∼ Tj

q̂i · q̂j � Ti/Qi

Qi ∼ Qj
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
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Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

qi · qj = (QiQj)(q̂i · q̂j)

Assumptions needed to sum logs with this formula:

1)

2)

3)

Ti � Tj( gives non-global logs of Dasgupta & Salam)
[ Chris Lee’s talk ]

jets are well separated [ Jon Walsh’s talk ]
(jets merge, “Ninja” limit)

Ti ∼ Tj

q̂i · q̂j � Ti/Qi

Qi ∼ Qj
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One Central Jet’s Mass

A couple of interesting projections

A Central Jet “Thrust”

dσ

dT (Qi, R, . . .) =
� QaR/2

0
dTa

� QbR/2

0
dTb

� �
dT1

�

j≥2

� QjR/2

0
dTj

� dσ

dTadTbdT1 · · · dTN
δ
�
T − T1

�

dσ

dT (Qi, R, . . .) =
� QaR/2

0
dTa

� QbR/2

0
dTb

� � �

j

dTj

� dσ

dTadTbdT1 · · · dTN
δ
�
T − 1

N

�

j

Tj

�

where m2
J = QJT
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eg. Higgs Jet Veto

IS, Tackmann, WaalewijnBerger, Marcantonini,
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Higgs + 0 jets

dominant channel in Tevatron search

15

Higgs boson mass, are assumed.
We choose to use the intersections of piecewise linear interpolations of our observed and expected rate limits in

order to quote ranges of Higgs boson masses that are excluded and that are expected to be excluded. The sensitivities
of our searches to Higgs bosons are smooth functions of the Higgs boson mass and depend most strongly on the
predicted cross sections and the decay branching ratios (the decay H → W+W− is the dominant decay for the
region of highest sensitivity). The mass resolution of the channels is poor due to the presence of two highly energetic
neutrinos in signal events. We therefore use the linear interpolations to extend the results from the 5 GeV/c2 mass
grid investigated to points in between. This procedure yields higher expected and observed interpolated limits than
if the full dependence of the cross section and branching ratio were included as well, since the latter produces limit
curves that are concave upwards. The regions of Higgs boson masses excluded at the 95% C.L. thus obtained are
158 < mH < 175 GeV/c2 and 100 < mH < 109 GeV/c2. The expected exclusion region, given the current sensitivity,
is 156 < mH < 173 GeV/c2. The excluded region obtained by finding the intersections of the linear interpolations of

1

10

100 110 120 130 140 150 160 170 180 190 200

1

10

mH(GeV/c2)

95
%

 C
L 

Li
m

it/
SM

Tevatron Run II Preliminary, <L> = 5.9 fb-1

Expected
Observed
±1! Expected
±2! Expected

LEP Exclusion Tevatron
Exclusion

SM=1

Tevatron Exclusion July 19, 2010

FIG. 5: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the SM
cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses. The limits are expressed as a
multiple of the SM prediction for test masses (every 5 GeV/c2) for which both experiments have performed dedicated searches
in different channels. The points are joined by straight lines for better readability. The bands indicate the 68% and 95%
probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained with
the Bayesian calculation.

Strong discovery potential at the LHC for 

Higgs and Jet Vetos Beam Thrust as Jet Veto Cross Section at NNLL+NNLO 0-Jet Higgs Production

Higgs at LHC and Tevatron
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Particle Physics and the Higgs Factorization and SCET Higgs Production Without Jets Future Applications

H → WW vs. tt̄ → WWbb̄
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�
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p p
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Jet Jet
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Jet Jet
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Jet

⇒ Veto events with central jets and look for pp → H + 0 jets

Frank Tackmann (MIT) Finding the Higgs: New Tools for Accurate Predictions 2010-12-07 15 / 25
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gg → H → WW → �ν̄�̄ν
� Strong discovery potential at the LHC for mH � 130GeV

Dominant channel in Tevatron exclusion
� Large ∼ 20 − 40 : 1 background from tt̄ → WWbb̄

1 / 17

mH � 130 GeV•

•
pp̄→ H →WW → µ

+
νµe

−
ν̄e

pp→ H →WW → µ
+
νµe

−
ν̄e
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Factorization and SCET Higgs Jet Veto Calculation Results
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⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26
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Factorization and SCET Higgs Jet Veto Calculation Results
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Large Background from Top Decays
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Factorization and SCET Higgs Jet Veto Calculation Results

H → WW vs. tt̄ → WWbb̄

1

W

H

W

�
ν

ν̄

�

→

�

�

p p

Soft

Jet Jet

:

40

b

b̄

W

W
�
ν

ν̄

�
→

�

�

p p

Soft

Jet Jet

Jet

Jet

⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26

Factorization and SCET Higgs Jet Veto Calculation Results

H → WW vs. tt̄ → WWbb̄

1

W

H

W

�
ν

ν̄

�

→

�

�

p p

Soft

Jet Jet

:

40

b

b̄

W

W
�
ν

ν̄

�
→

�

�

p p

Soft

Jet Jet

Jet

Jet

⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26

pjet
T

Jet Vetoes

•
Conventional:  Jet Algorithm 

Search for jets and require pjet
T < pcut

T

Factorization and SCET Higgs Jet Veto Calculation Results

How to Veto Central Jets

Conventional: Jet algorithm

Search for jets and require pT < pcut
T

Tevatron: pcut
T � 20 GeV

LHC: pcut
T � 25 GeV

⇒ Complicated phase-space restrictions
�

�

p p

Soft

Jet Jet

Jet

Jet
pT

Alternative: Event shape

Measure “beam thrust” of each event

Tcm =
�

k

|�pkT |e−|ηk| =
�

k

�
Ek − |pz

k|
�

and require Tcm < T cut
cm

⇒ Better suited to analytic calculations

�

�

p p

Soft

Jet Jet

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 11 / 26
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•

•

• Nice for higher order calculations
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Jet veto restricts ISR, gives double logs

Factorization and SCET Higgs Jet Veto Calculation Results

Large Logarithms from ISR

Even if hard signal process gg → H contains no jets,
jet veto affects cross section by restricting hadronic ISR

⇒ t-channel singularities produce double logarithms

L
2 = 2 ln2 p

cut
T

mH

or L
2 = ln2 T cut

cm

mH

σ0−jet = 1 + αsL
2 + αsL + αs NLO

+ α2
s
L

4 + α2
s
L

3 + α2
s
L

2 + α2
s
L + α2

s
NNLO

+ α3
s
L

6 + α3
s
L

5 + α3
s
L

4 + α3
s
L

3 + α3
s
L

2 + · · ·

+
... +

... +
... +

... +
...

. . .

LL NLL NNLL

Current methods: LL+NLO using Monte Carlo (or fixed NNLO)

Using SCET we include NNLL+NNLO

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 12 / 26

Fixed Order to 
NNLO

Factorization and SCET Higgs Jet Veto Calculation Results

Jet Veto in Current Theory Predictions

Fixed-order studies at NNLO
[Catani, de Florian, Grazzini; Anastasiou et al.]

FEHiP, HNNLO: Numerical fully
differential NNLO cross section for
gg → H

[Anastasiou, Melnikov, Petriello; Grazzini]

[Anastasiou et al.]
Currently need to rely on parton shower MCs
to sum leading double logarithms

ISR modeled by initial-state shower
(based on PDF evolution and less tested than final-state shower)

Reweight Pythia to inclusive NNLO cross section

MC@NLO, POWHEG: combine fixed NLO with parton-shower LL
summation

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 13 / 26

σ0-jet = 1 + αsL
2 + α2

sL
4 + α3

sL
6 + . . .

+ αsL + α2
sL

3 + α3
sL

5 + . . .

+ αsn1(pcut
T ) + α2

sL
2 + α3

sL
4 + . . .

+ α2
sL + α3

sL
3 + . . .

+ α2
sn2(pcut

T ) + α3
sL

2 + . . .

+ α3
sL + . . .

+ α3
s + . . .

LO NLO NNLO
L = log

Higgs and Jet Vetos Beam Thrust as Jet Veto 0-Jet Higgs Production

gg → H → WW with 0 Jets

Jet Vetos and ISR Beam Thrust and Beam Functions NNLL Results for Drell-Yan 0-Jet Higgs Production

gg → H → WW with 0 Jets

ηcut=2.5

ηcut=2.5

MC@NLO

[Anastasiou, Dissertori, Stöckli, Webber]

Higgs production with 0 jets very different from inclusive Higgs production
Jet veto imposes strong restriction on phase space

� Causes large double logarithms αn

s
lnm≤2n(pcut

T
/mH)

� Must be resummed
Signal cross section sensitive to details of jet algorithm

Frank Tackmann (MIT) A New Approach to Veto Jets at the LHC 2010-05-18 5 / 22

[Anastasiou, Dissertori, Stöckli (arXiv:0707.2373)]

W−

Soft

Soft

W+

Jet b Jet a

p p

Jet veto restricts

initial-state radiation

Jet veto leads to large double logarithms (if pcut
T

� mH )

σ(pcut
T

) ∝ 1 −
2αsCA

π
ln2 p

cut
T

mH

+ . . .

[Extracted from Catani, de Florian, Grazzini (hep-ph/0111164)]

� Need to be summed for reliable predictions and uncertainties

31Wednesday, May 25, 2011



Jet veto restricts ISR, gives double logs Fixed Order to 
NNLO

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Counting Jets at Fixed Order

Fully differential NNLO known numerically
[Anastasiou, Melnikov, Petriello; Grazzini]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 6 / 20

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Perturbative Structure of Jet Cross Sections

σtotal =
� pcut

T

0
dpT

dσ

dpT� �� �
+

� ∞

pcut
T

dpT
dσ

dpT� �� �
σ0(pcut

T ) + σ≥1(pcut
T )

σtotal = 1 + αs + α2
s + · · ·

σ≥1(pcut
T ) = αs(L2 + L) + α2

s(L
4 + L3 + L2 + L) + · · ·

σ0(pcut
T ) = σtotal − σ≥1(pcut

T )

=
�
1 + αs + α2

s + · · ·
�

−
�
αs(L2 + L) + α2

s(L
4 + · · · ) + · · ·

�

Perturbative series in σtotal and σ≥1(pcut
T ) have different structures and

are unrelated
Apparent small uncertainties in σ0(pcut

T ) arise from cancellation between
two series with large corrections

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 7 / 20

Problem:

perturbative series have different structures and are not related•

• small uncertainties are result of cancellation of two large corrections
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Jet veto restricts ISR, gives double logs Fixed Order to 
NNLO

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Counting Jets at Fixed Order

Fully differential NNLO known numerically
[Anastasiou, Melnikov, Petriello; Grazzini]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 6 / 20

Proposed Fixed Order Solution [ Tackmann, ... ]

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =




∆2

total 0 0
0 ∆2

≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =




∆2

total + ∆2
≥1 −∆2

≥1 0
−∆2

≥1 ∆2
≥1 + ∆2

≥2 −∆2
≥2

0 −∆2
≥2 ∆2

≥2





Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 3 / 12

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated

σtotal, σ≥1, σ≥2 ⇒ C =




∆2

total 0 0
0 ∆2

≥1 0
0 0 ∆2

≥2





The covariance matrix for the exclusive jet cross sections follows from

σ0 = σtotal − σ≥1 , σ1 = σ≥1 − σ≥2 , σ≥2

⇒ C =




∆2

total + ∆2
≥1 −∆2

≥1 0
−∆2

≥1 ∆2
≥1 + ∆2

≥2 −∆2
≥2

0 −∆2
≥2 ∆2

≥2





Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 3 / 12

Perturbative Uncertainties in Jet Bins

There is general agreement among theorists that one should hence treat the
fixed-order perturbative series for σtotal, σ≥1, σ≥2 as independent with
uncorrelated perturbative uncertainties, i.e.

The inclusive jet cross sections are considered uncorrelated
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for scale variation
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Jet veto restricts ISR, gives double logs Fixed Order to 
NNLO

Introduction Counting Jets at Fixed Order Resummation at NNLL+NNLO More Jets Summary

Counting Jets at Fixed Order

Fully differential NNLO known numerically
[Anastasiou, Melnikov, Petriello; Grazzini]

FO expansion gets unstable at small pcut
T

and eventually breaks down
Naively, jet veto appears to improve
convergence

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

Common scale variation for jet bins, e.g. for the Tevatron
∆σ

σ
= 66.5% ×

�
+5%
−9%

�

� �� �
+ 28.6% ×

�
+24%
−22%

�

� �� �
+ 4.9% ×

�
+78%
−41%

�

� �� �
=

�
+14%
−14%

�

0 jets 1 jet ≥ 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section

Frank Tackmann (MIT) Theory Unc. in Higgs Searches Using Jet Bins 2011-05-07 6 / 20

Proposed Fixed Order Solution [ Tackmann, ... ]Fixed-Order Scale Uncertainties

Using naive scale variation for σ0

0
0
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NLO

Ecm=7 TeV

p
cut

T
[GeV]

σ
(
p

c
u
t

T
)

[p
b
]

mH =165 GeV

NNLO

⇒

Using above procedure for σ0

0
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NLO

Ecm=7 TeV

p
cut

T
[GeV]

σ
(
p

c
u
t

T
)

[p
b
]

mH =165 GeV

NNLO

New procedure

Uncertainties reproduce naive scale variation at large cut values

Larger uncertainties at small cut values

→ Now explicitly take into account large logarithmic corrections

Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 11 / 12
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Jet veto restricts ISR, gives double logs

Factorization and SCET Higgs Jet Veto Calculation Results

Large Logarithms from ISR

Even if hard signal process gg → H contains no jets,
jet veto affects cross section by restricting hadronic ISR

⇒ t-channel singularities produce double logarithms

L
2 = 2 ln2 p

cut
T

mH

or L
2 = ln2 T cut

cm

mH

σ0−jet = 1 + αsL
2 + αsL + αs NLO

+ α2
s
L

4 + α2
s
L

3 + α2
s
L

2 + α2
s
L + α2

s
NNLO

+ α3
s
L

6 + α3
s
L

5 + α3
s
L

4 + α3
s
L

3 + α3
s
L

2 + · · ·

+
... +

... +
... +

... +
...

. . .

LL NLL NNLL

Current methods: LL+NLO using Monte Carlo (or fixed NNLO)

Using SCET we include NNLL+NNLO

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 12 / 26Our calculation:

LO NLO

NNLL + NNLO

σ0-jet = 1 + αsL
2 + α2

sL
4 + α3

sL
6 + . . .

+ αsL + α2
sL

3 + α3
sL

5 + . . .

+ αsn1(pcut
T ) + α2

sL
2 + α3

sL
4 + . . .

+ α2
sL + α3

sL
3 + . . .

+ α2
sn2(pcut

T ) + α3
sL

2 + . . .

+ α3
sL + . . .

+ α3
s + . . .

NNLO

NLL

LL

NNLL

two orders of summation 
beyond LL shower programs

using “beam thrust” or “0-jettiness”

Factorization and SCET Higgs Jet Veto Calculation Results

H → WW vs. tt̄ → WWbb̄

1

W

H

W

�
ν

ν̄

�

→

�

�

p p

Soft

Jet Jet

:

40

b

b̄

W

W
�
ν

ν̄

�
→

�

�

p p

Soft

Jet Jet

Jet

Jet

⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26
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• logs are large

• two orders of summation 
beyond LL shower programs

• NNLO underestimates size of 
errors by factor of two

• theory error bands from 
varying  µi

IS, Tackmann, Waalewijn
Berger, Marcantonini,

scale uncertainty at 
NNLL+NNLO is 10-20%

0
0 10 20 30 40 50

0.005

0.01

0.015

0.02

0.025

Tcm [GeV]

d
σ

/
d
T

cm
[p

b
/
G

eV
]

Ecm=1.96 TeV
mH =165 GeV

NLL
NLL′+NLO
NNLL+NNLO

0
0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

Ecm=7 TeV

Tcm [GeV]

d
σ

/
d
T

cm
[p

b
/
G

eV
] mH =165 GeV

NLL
NLL′+NLO
NNLL+NNLO

Figure 9. The beam thrust spectrum for Higgs production for mH = 165GeV at the Tevatron
(left) and the LHC for Ecm = 7TeV (right). The bands show the perturbative scale uncertainties as
explained in section 2.6.
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Figure 10. Higgs production cross section as a function of T cut
cm for mH = 165GeV at the Tevatron

(left) and the LHC with Ecm = 7TeV (right). The bands show the perturbative scale uncertainties as
explained in section 2.6.
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Figure 11. Higgs production cross section with a cut on beam thrust as function of mH at the
Tevatron for T cut

cm = 10GeV (left) and the LHC with Ecm = 7TeV and T cut
cm = 20GeV (right). The

bands show the perturbative scale uncertainties as explained in section 2.6.
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Comparison to Resummation
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cm
[GeV]

δ
σ

[%
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NNLO

NNLL+NNLO

cut order δσtotal δσ≥1 δσ0

T cut
cm = 20 GeV NNLO 8.5% 28% 16%

T cut
cm = 20 GeV NNLL+NNLO 5.2% 21% 13%

NNLO uncertainties now consistent with those from NNLL+NNLO

resummation

Frank Tackmann (MIT) Perturbative Uncertainties in Jet Bins 2011-05-10 12 / 12• increased theory errors will impact Higgs bound

NNLO: using inclusive jet cross sections & correlation matrix
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Jet Mass

Jouttenus, IS, Tackmann, Waalewijn
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
s1

Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

qi · qj = (QiQj)(q̂i · q̂j)

Pieces needed for NNLL are now all in hand:

•

•

•

•

Three Loop Cusp Anom. Dim,  Two Loop Non Cusp. 
(Note:  Beam function has same Logs as Jet Function)

One Loop Hard functions:  when available in QCD literature

Jet & Beam Functions at one loop

N-jet Soft function

(only part that restricts N)

Jouttenus, IS, Tackmann, 
Waalewijn also: Bauer, Hornig, Dunn 
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N-Jettiness Factorization Formula
dσ

dT a
N dT b

N · · ·dT N
N

=
�

dxadxb

�
d(phase space)

×
�

κ

�
dta Bκa(ta, xa)

�
dtb Bκb(tb, xb)

N�

J=1

�
dsJ JκJ (sJ)

× tr
�
H

κ
N

�
{qi · qj}, xa,b

� �Sκ
N

�
T a

N −
ta

Qa
, T b

N −
tb

Qb
, T 1

N −
s1

Q1
, . . . , T N

N − sN

QN
, {q̂i · q̂j}

��

W/Z

qbqa

q1

q2

T a
N

T b
N

T 1
N

T 2
N

qi · qj = (QiQj)(q̂i · q̂j)

With assumptions: Ti ∼ Tj q̂i · q̂j � Ti/Qi Qi ∼ Qj, ,

Can explore angular dependence, 
                   R dependence, 
                   Qi dependence

Have Color / Kinematic info. Can look at jet mass in 
samples with various amounts of quarks vs. gluons.
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Unfortunately we did not quite get final results  
in time for the workshop ...

Jouttenus, IS, Tackmann, Waalewijn
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10 

Raw Mass Spectra 

•  Description of mass shape is reasonable in MC samples 

Stat. Unc. Only 

Stat. Unc. Only 
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looking only at the shape:

m2
J = QJT

[Adam Davison’s talk here]
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The End
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