Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

Stop reconstruction with the HEPTopTagger

Michihisa Takeuchi (Uni Heidelberg)

JHEP 1010:078,2010 (arXiv:1006.2833 [hep-ph]) arXiv:1102.0557 [hep-ph]

Princeton University, 24th May 2011

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

- stop pairs
- hadronic channel
- semi-leptonic channel
- Leptonic top tagger
- Summary

modestly boosted tops at LHC

top partner expected from naturalness

- cancellation expected via top partner in Higgs sector (ex. SUSY, Little Higgs)

 $\delta m_h^2 \sim -\frac{3}{4\pi} v_t^2 \Lambda_{
m SM}^2$

– $m_{\tilde{t}} \sim 500 \text{ GeV}$ favored to avoid little hierarchy problem

top p_T distribution at the LHC

- boosted top can avoid combinatorics background
- several top taggers available, looking into substructure
 [Kaplan, Rehermann, Schwartz, Tweedie] [Thaler, Wang]
 [Almeida, Lee, Perez, Sterman, Sung]

designed for $p_T > 500$ GeV, not expected in SM

- $t\bar{t}$ at LHC 7 TeV

 $p_T > 500 \text{ GeV:} 150 \text{ fb}$ $200 < p_T < 500 \text{ GeV:} 8970 \text{ fb}$

- our target: modest p_T range (200 < p_T < 500 GeV),
 - \cdot testable in SM
 - \cdot expected in top-partner decay

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

- stop pairs
- hadronic channel
- semi-leptonic channel
- Leptonic top tagger

Summary

Plan of talk

- 0. Introduction
- 1. HEPTopTagger (Heidelberg- Eugine-Paris)
- 2. Application for stop pairs
 - 2.1 hadronic mode
 - 2.2 semi-leptonic mode
- 3. Leptonic top tagger
- 4. Summary

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

fat jets

- focus on low p_T tops with heavy m_t
 - \rightarrow decay products well separated, need large *R*
- R = 1.5 to have top with $p_T \sim 200$ GeV

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

- stop pairs
- hadronic channel
- semi-leptonic channel
- Leptonic top tagger
- Summary

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 [hep-ph] T. Plehn, M. Spannowsky, D. Zerwas, MT]

- **1.** fat jets $C/A(R = 1.5), p_T^{\text{fatjet}} > 200 \text{ GeV}$
- 2. mass drop criterion
- find hard proto-jets $m_j < 30$ GeV, $m_{j1} < 0.8m_j$ to keep j_1 and j_2

3. choose 3 hard proto-jets with best filtered mass

 $- |m_{jjj}^{\text{filt}} - m_t| < 25 \text{ GeV} \text{ and } p_T^{\text{rec}} > 200 \text{ GeV} \rightarrow \text{top candidate}$

4. check mass ratios

- m_t condition: $m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2 \rightarrow$ spherical surface: 2D mass ratios

- W mass condition, soft-collinear cut \rightarrow tagged top

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

- stop pairs hadronic chan
- semi-leptonic channe
- Leptonic top tagger
- Summary

efficiency

- efficiency $\sim 35\%$ for hadronic tops, $2 \sim 4\%$ mis-tag rate
- validation with ATLAS experimentalists in Heidelberg

momentum reconstruction

- momentum well reconstructed
- better reconstruction for larger p_T solid: $p_T^{\text{rec}} > 200 \text{GeV}$ dotted: $p_T^{\text{rec}} > 300 \text{GeV}$

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 [hep-ph] T. Plehn, M. Spannowsky, D. Zerwas, MT]

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

hadronic $\tilde{t}\tilde{t}^*$ [T. Plehn, M. Spannowsky, MT, D. Zerwas]

$$- m_{\tilde{\chi}_1^0} = 98 \text{ GeV}, \ \tilde{t}_1 \to t \tilde{\chi}_1^0 \ (100\%)$$

- main BG: *tī*+jets, *W*+jets and QCD (*Alpgen-Pythia*)
- set of cuts
 - no lepton, $\not\!\!E_T > 150 \text{ GeV}$
 - 2 tagged tops with $p_T^{\text{rec}} > 200/200 \text{GeV}$
 - b-tag for 1st tagged top

$$-m_{T2} > 250 \text{GeV}$$

 \rightarrow QCD negligible \rightarrow reduce $t\bar{t}$

events in 1 fb ⁻¹			$\tilde{t}_1 \tilde{t}_1$	*			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B}_{10 \text{fb}} - 1$
$m_{\tilde{l}}$ [GeV]	340	390	440	490	540	640						340
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$	n/a	$3.0 \cdot 10^{-5}$	
$\not\!$	283	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	$1.2 \cdot 10^{-3}$	
first top tag	100	91	75	57	42	15	743	7590	90	114	$1.2 \cdot 10^{-2}$	
second top tag	15	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	$8.3 \cdot 10^{-2}$	
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19	2.6	≤ 0.2	≤ 0.05	0.40	5.9
$m_{T2} > 250 \text{ GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\gtrsim 0.1$	$\lesssim 0.03$	0.88	6.1

-
$$S/B \sim 1, S/\sqrt{B} > 5$$
 for 10fb⁻¹

- stop mass from $m_{T2}(m_{\tilde{\chi}_1^0})$ endpoint [C. G. Lester, D. J. Summers] [like sleptons or sbottoms]

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

stop pairs

semileptonic $\tilde{t}_1\tilde{t}_1^* \to (b\ell\nu\tilde{\chi}_1^0)(\bar{b}jj\tilde{\chi}_1^0)$ [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

- 1. exactly one lepton ($p_T > 20$ GeV, $|\eta| < 2.5$)
- 2. $\not\!\!\!E_T > 150 \, {\rm GeV}$
- 3. one tagged hadronic top (HEPTOPTAGGER, $p_T > 200 \text{ GeV}$)
- 4. one b tag among the leading 3 jets outside the tagged top ($p_T > 25$ GeV, $|\eta| < 2.5$)

5. $m_{b\ell} < \sqrt{m_t^2 - m_W^2} = 154.6 \text{ GeV}.$ [cf. CDF m_{jj} by tops (arXiv:1104.4087 T. Plehn, MT)]

		$\tilde{t}_1 \tilde{t}$	* 1		tī	W+jets	S/B	$S/\sqrt{B}_{20\text{fb}}-1$
$m_{\tilde{t}}$ [GeV]	340	440	540	640			440	440
0. cross section	5090	1280	402	146	$9.2 \cdot 10^{5}$	$2.1 \cdot 10^{5}$	0.001	3.8
1. one lepton	1471	373	118	42.5	$2.6 \cdot 10^{5}$	$1.3 \cdot 10^{5}$	0.001	2.7
2. $E_T > 150 \text{GeV}$	569	239	90.2	35.5	9825	4512	0.017	8.9
hadronic top tag	74.5	38.0	16.8	7.72	1657	141	0.021	4.0
 tagged b jet 	31.2	15.9	7.33	3.38	668	4.35	0.024	2.7
5. $m_{b\ell} < m_{b\ell}^{\text{max}}$	27.5	13.7	6.34	2.90	642	2.61	0.021	2.4

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

stop pairs

semileptonic $\tilde{t}_1\tilde{t}_1^* \to (b\ell\nu\tilde{\chi}_1^0)(\bar{b}jj\tilde{\chi}_1^0)$ [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

- 1. exactly one lepton ($p_T > 20$ GeV, $|\eta| < 2.5$)
- 2. $\not\!\!\!E_T > 150 \, {\rm GeV}$
- 3. one tagged hadronic top (HEPTOPTAGGER, $p_T > 200 \text{ GeV}$)
- 4. one *b* tag among the leading 3 jets outside the tagged top ($p_T > 25$ GeV, $|\eta| < 2.5$)

5. $m_{b\ell} < \sqrt{m_t^2 - m_W^2} = 154.6 \text{ GeV}.$ [cf. CDF m_{jj} by tops (arXiv:1104.4087 T. Plehn, MT)]

		$\tilde{t}_1 \tilde{t}$	* 1		tī	W+jets	S/B	$S/\sqrt{B}_{20\text{fb}}-1$
$m_{\tilde{t}}$ [GeV]	340	440	540	640			440	440
0. cross section	5090	1280	402	146	$9.2 \cdot 10^{5}$	$2.1 \cdot 10^{5}$	0.001	3.8
1. one lepton	1471	373	118	42.5	$2.6 \cdot 10^{5}$	$1.3 \cdot 10^{5}$	0.001	2.7
2. $\not\!\!\!E_T > 150 {\rm GeV}$	569	239	90.2	35.5	9825	4512	0.017	8.9
hadronic top tag	74.5	38.0	16.8	7.72	1657	141	0.021	4.0
4. tagged b jet	31.2	15.9	7.33	3.38	668	4.35	0.024	2.7
5. $m_{b\ell} < m_{b\ell}^{\text{max}}$	27.5	13.7	6.34	2.90	642	2.61	0.021	2.4

- cut basis method:

 \cdot use $\not\!\!\!E_T = p_{\nu,T}$

· check solution for $p_{\nu,z}$

- not promissing $S/B \sim 0.1, S/\sqrt{B}_{10 \text{ fb}^{-1}} \sim 2.2$
- not reasonable with additional $\not\!\!E_T$ sources.

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

stop pairs

semileptonic $\tilde{t}_1\tilde{t}_1^* \to \left(b\ell\nu\tilde{\chi}_1^0\right)\left(\bar{b}jj\tilde{\chi}_1^0\right)$ [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

- 1. exactly one lepton ($p_T > 20$ GeV, $|\eta| < 2.5$)
- 2. $\not\!\!\!E_T > 150 \, {\rm GeV}$
- 3. one tagged hadronic top (HEPTOPTAGGER, $p_T > 200 \text{ GeV}$)

4. one *b* tag among the leading 3 jets outside the tagged top ($p_T > 25$ GeV, $|\eta| < 2.5$)

5. $m_{b\ell} < \sqrt{m_t^2 - m_W^2} = 154.6 \text{ GeV}.$ [cf. CDF m_{jj} by tops (arXiv:1104.4087 T. Plehn, MT)]

		$\tilde{t}_1 \tilde{t}$	* 1		tī	W+jets	S/B	$S/\sqrt{B}_{20\text{fb}}-1$
$m_{\tilde{t}}$ [GeV]	340	440	540	640			440	440
0. cross section	5090	1280	402	146	$9.2 \cdot 10^{5}$	$2.1 \cdot 10^{5}$	0.001	3.8
1. one lepton	1471	373	118	42.5	$2.6 \cdot 10^{5}$	$1.3 \cdot 10^{5}$	0.001	2.7
2. $\not\!\!\!E_T > 150 {\rm GeV}$	569	239	90.2	35.5	9825	4512	0.017	8.9
hadronic top tag	74.5	38.0	16.8	7.72	1657	141	0.021	4.0
 tagged b jet 	31.2	15.9	7.33	3.38	668	4.35	0.024	2.7
5. $m_{b\ell} < m_{b\ell}^{\max}$	27.5	13.7	6.34	2.90	642	2.61	0.021	2.4

- cut basis method:

 \cdot use $\not\!\!\!E_T = p_{\nu,T}$

· check solution for $p_{\nu,z}$

- not promissing $S/B \sim 0.1, S/\sqrt{B}_{10 \text{ fb}^{-1}} \sim 2.2$
- not reasonable with additional $\not\!\!E_T$ sources.

 \rightarrow our approach:

· reconstruct top momentum

 \cdot compare with $\not\!\!E_T$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channe

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

only 3 observable in lab. frame

 $E_{\ell}, \quad E_b, \quad m_{b\ell} \text{ (equivalent to } \theta_{bl} \text{)}$

 ν momentum in lab. frame

 \rightarrow

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\mathrm{H}}\hat{p}^{\mathrm{H}} + x_{\mathrm{H}}\hat{p}^{\mathrm{\perp}}.$$

$$\hat{p}^{\mathrm{D}} = \frac{p_{b\ell}}{|\vec{p}_{b\ell}|}$$
$$\hat{p}^{\parallel} = \frac{\vec{p}_{\ell} - (\vec{p}_{\ell} \cdot \hat{p}^{\mathrm{D}}) \hat{p}^{\mathrm{D}}}{|\vec{p}_{\ell} - (\vec{p}_{\ell} \cdot \hat{p}^{\mathrm{D}}) \hat{p}^{\mathrm{D}}|}$$
$$\hat{p}^{\perp} = \hat{p}^{\mathrm{D}} \times \hat{p}^{\parallel}$$

leading $\vec{p}_{b\ell}$ direction in $b - \ell$ decay plane

subleading direction in $b - \ell$ decay plane subleading direction to $b - \ell$ decay plane.

2 constraints

$$(p_{\ell} + p_b + p_{\nu})^2 = m_t^2, \qquad (p_{\ell} + p_{\nu})^2 = m_W^2.$$

one additional assumption is needed to solve neutrino momentum.

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic chan

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

additional assumptions

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\parallel}\hat{p}^{\parallel} + x_{\perp}\hat{p}^{\perp}.$$

decay plane approximation

$$\cdot x_{\perp} = 0$$

orthogonal approximation

$$\cdot x_{\parallel} = 0$$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic chan

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

additional assumptions

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\parallel}\hat{p}^{\parallel} + x_{\perp}\hat{p}^{\perp}.$$

decay plane approximation

 $\cdot x_{\perp} = 0$

- suggested by constrained probability distribution $P(p_{top}, E_b, E_l, m_{bl})|_{E_b, E_l, m_{bl}}$

orthogonal approximation

$$\cdot x_{\parallel} = 0$$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic chani

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

additional assumptions

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\parallel}\hat{p}^{\parallel} + x_{\perp}\hat{p}^{\perp}.$$

decay plane approximation

 $\cdot x_{\perp} = 0$

- suggested by constrained probability distribution $P(p_{top}, E_b, E_l, m_{bl})|_{E_b, E_l, m_{bl}}$
- to take smallest allowed $|p_{top}|$, implying smallest $|p_{\nu}|$

orthogonal approximation

 $\cdot x_{\parallel} = 0$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic chani

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

additional assumptions

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\parallel}\hat{p}^{\parallel} + x_{\perp}\hat{p}^{\perp}.$$

decay plane approximation

 $\cdot x_{\perp} = 0$

- suggested by constrained probability distribution $P(p_{top}, E_b, E_l, m_{bl})|_{E_b, E_l, m_{bl}}$
- to take smallest allowed $|p_{top}|$, implying smallest $|p_{\nu}|$
- small error for $|p_{top}|$, but large $d\mathbf{x}/dp_{top}$

orthogonal approximation

 $\cdot x_{\parallel} = 0$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs hadronic channe

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

additional assumptions

$$\vec{p}_{\nu} = x_{\mathrm{D}}\hat{p}^{\mathrm{D}} + x_{\parallel}\hat{p}^{\parallel} + x_{\perp}\hat{p}^{\perp}$$

decay plane approximation

- $\cdot x_{\perp} = 0$
- suggested by constrained probability distribution $P(p_{top}, E_b, E_l, m_{bl})|_{E_b, E_l, m_{bl}}$
- to take smallest allowed $|p_{top}|$, implying smallest $|p_{\nu}|$
- small error for $|p_{top}|$, but large $d\mathbf{x}/dp_{top}$

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

momentum reconstruction ($\not\!\!E_T > 200 \text{GeV}$)

- red: orthogonal approx. black: decay plane approx.

- $-\Delta|p|(t) = |p_{\text{top}}^{\text{rec}}| |p_{\text{top}}^{\text{parton}}|, \ \Delta|p|(\nu) = |p_{\nu}^{\text{rec}}| |p_{\nu}^{\text{parton}}|$
- better top momentum reconstruction (compared with ν)
- in particular, good ϕ reconstruction.

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

momentum reconstruction ($\not\!\!E_T > 200 \text{GeV}$)

- red: orthogonal approx. black: decay plane approx.

 $-\Delta|p|(t) = |p_{\text{top}}^{\text{rec}}| - |p_{\text{top}}^{\text{parton}}|, \ \Delta|p|(\nu) = |p_{\nu}^{\text{rec}}| - |p_{\nu}^{\text{parton}}|$

- better top momentum reconstruction (compared with ν)
- in particular, good ϕ reconstruction.
- without $\not\!\!E_T$ cut, better reconstruction for decay plane approx.

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic char

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

for events with large $\not\!\!\!E_T$, top direction and neutrino direction is aligned.

 $\Delta \phi_{top}$ provides better separation

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic chan

Leptonic top tagger

Summary

Leptonic Top Tagger [arXiv:1102.0557 [hep-ph] T. Plehn, M. Spannowsky, MT]

for events with large $\not\!\!\!E_T$, top direction and neutrino direction is aligned.

			ortho	gonal app	proximatio	on	decay plane approximation							
	$\tilde{t}_1 \tilde{t}_1^*$			tī	W+jets	S/B		$\tilde{i}_{1}\tilde{i}_{1}^{*}$			tī W+jets		S/B	
$m_{\tilde{t}}$ [GeV]	340	440	540	640			440	340	440	540	640			440
15. base cuts	27.38	13.71	6.33	2.89	642.72	2.63	0.021							
approximation	14.81	7.69	3.61	1.66	285.16	1.41	0.027	27.33	13.67	6.31	2.89	642.37	2.63	0.021
7. $p_T^{\text{est}} > 200 \text{GeV}$	8.61	4.53	2.41	1.24	215.62	0.60	0.021	9.13	5.16	2.87	1.61	242.21	0.54	0.021
8. $\not \! E_T$ vs. $\Delta \phi$ cut	0.97	1.52	1.23	0.76	0.72	0.02	2.06	1.22	1.82	1.53	1.02	1.31	0.06	1.33

$$- | S/B \sim 2, S/\sqrt{B}_{10\text{fb}^{-1}} \sim 5$$

(cut basis: $S/B \sim 0.1, S/\sqrt{B_{10\text{fb}^{-1}}} \sim 2.2$)

Michihisa Takeuchi (Uni Heidelberg)

introduction

- HEPTopTagger
- stop pairs
- hadronic channel
- semi-leptonic channel
- Leptonic top tagger

Summary

Summary

- top: closest to new physics
- HEPTopTagger
 - focus on modest boosted p_T tops ($p_T > 200$ GeV), testable in SM
 - fat jets kill combinatorics
 - efficiency: top \sim 35%, mis-tag rateW+jets: 4%, QCD: 2%
 - hadronic top momentum well reconstructed
 - leptonic top: orthogonal approx. \rightarrow good direction reconstruction
- stop pairs
 - hadronic channel: $S/B \sim 1, S/\sqrt{B} > 5$ for 10fb^{-1}
 - semi-leptonic channel: $S/B \sim 2, S/\sqrt{B} > 5$ for 10 fb⁻¹

 $- A^t_{FB} \quad [\rightarrow \text{Jessie's talk}]$

- HEPTopTagger: (Heidelberg-Eugine-Paris)

available on http://www.thphys.uni-heidelberg.de/~plehn/heptoptagger/index.html

Stop reconstruction with the HEPTopTagger Michihisa Takeuchi

(Uni Heidelberg)

Back up

ntroduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

stop pairs

Michihisa Takeuchi (Uni Heidelberg)

introductior

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

M_{1 sp}=0 GeV

Mston=540 GeV

M_{T2}[GeV]

400 500 600

events in 1 fb ⁻¹			<i>t</i> ₁ <i>t</i>	î			tī		QCD	W+jets	Z+jets		S/B	S/\sqrt{B}_{10}	fb —
$m_{\tilde{t}}$ [GeV]	340	390	440	490	540	640								340	
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	728	447	292	187	124	46	87850	2.4 ·	107	$1.6 \cdot 10^{5}$	n/a	3.0	· 10-5		
$\not\!$	283	234	184	133	93	35	2245	$2.4 \cdot$	105	1710	2240	1.2	.10 - 3		
first top tag	100	91	75	57	42	15	743		7590	90	114	1.2	$\cdot 10^{-2}$		
second top tag	15	12.4	11	8.4	6.3	2.3	32		129	5.7	1.4	8.3	$\cdot 10^{-2}$		
b tag	8.7	7.4	6.3	5.0	3.8	1.4	19		2.6	$\lesssim 0.2$	≤ 0.05		0.40		5.
$m_{T2} > 250 \text{GeV}$	4.3	5.0	4.9	4.2	3.2	1.2	4.2	≲	0.6	$\lesssim 0.1$	$\lesssim 0.03$		0.88		6.

-
$$S/B \sim 1, S/\sqrt{B} > 5$$
 for 10fb⁻¹

- stop mass from $m_{T2}(m_{\tilde{\chi}_1^0})$ endpoint [C. G. Lester, D. J. Summers] [like sleptons or sbottoms]

Michihisa Takeuchi

(Uni Heidelberg)

ntroduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channel

Leptonic top tagger

Summary

2d		
	$t\overline{t}$	W+jets
CS	918000	211400
$n_{\ell} = 1$ (loose)	272608	140884
$n_\ell = 1$	192127	118570
l+jets	121835	58479
m_{bl}	120825	56930
LEPtagger	40665	17346
$\Delta \phi < \pi/4$	17131	6040
$E_T > 150$	1234	556
& $\Delta \phi < \pi/4$	1010	394

 $-x:p_\ell,y:p_b$

100 150 200 250 300 350

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagger

stop pairs

hadronic channel

semi-leptonic channe

Leptonic top tagger

Summary

W+jets anomaly at CDF [arXiv:1104.4087 [hep-ph] T. Plehn, MT]

di-boson production cross section

 $-\sigma(WW + WZ) = 18.1 \pm 3.3(\text{stat}) \pm 2.5(\text{syst}) \text{ pb (combined channels)}$ $\sigma(WW + WZ) = 23.5 \pm 4.9\text{pb (muon channel)}$ $\sigma(WW + WZ) = 13.5 \pm 4.4\text{pb (electron channel)}$

- large systematic uncertainty?

hard cuts

- second peak at $\sim 150 \text{GeV}$
 - one isolated lepton
 - exactly 2 jets with $E_T > 30 \text{GeV}$
 - second lepton veto

- $\Delta N_{[120,170]} > 100$ events including syst. uncertainty.

Intrinsic peak from hadronic top

- $t \rightarrow bjj$ (combinatorics)
- $-~m_{bj}~{\rm peak}\sim 140~{\rm GeV}$
- $-\Delta N_{[120,170]} \sim 230 \frac{\Delta \sigma_{\rm top}}{\sigma_{\rm top}}$

(including cut acceptance)

$$\rightarrow \frac{\Delta \sigma_{\rm top}}{\sigma_{\rm top}} \sim 40\%$$
 needed

