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In this talk: overview

ATLAS-CONF-2011-073

Large-area jets can capture the radiation from boosted object decays such as top,
Higgs, exotic resonances.

A quick look at standard ATLAS jet measurements

Measurements of mass, filtered mass and splitting scale in large-area jets

Detector corrections and systematic uncertainties

The (near) future

The three kinds of jets presented here:

Cambridge-Aachen (C-A) jets with R=1.2

Filtered C-A jets with R=1.2

Anti-kT jets with R=1.0

dij = min(kn
t,i , k

n
t,j)

∆R2
ij

R2

diB = kn
t,i

n=-2→Anti-kt

n=0→C-A
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Data, Monte-Carlo and selection cuts
Full details:
Measurement of Jet Mass and Substructure for Inclusive Jets in s = 7 TeV pp Collisions with the ATLAS Experiment
ATLAS-COM-CONF-2011-084

Basic summary:
2010 ATLAS data, ∼ 35pb−1

All events must have a single primary vertex (reduces dataset to ∼ 8pb−1).
Jets are inclusive: we do not separate leading/ sub-leading.
All jets must have pT > 300GeV and |y | < 2.

Measurements in data are compared with:
Pythia 6.423 (AMBT1 and Perugia2010 tunes)

Herwig 6.510

Herwig++ 2.4

Alpgen 2.13

All MC is passed through full simulation of ATLAS based on GEANT 4
Splitting/filtering procedure implemented using:

Minimum mass drop µ = 0.67

Maximum asymmetry d12 = 0.09

Minimum splitting angle Rbb = 0.3
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Large-area jets in ATLAS (visually)

A jet with R=1.2 subsumes much of the ATLAS detector→We cannot restrict the
analysis to the central region of the detector.
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Measurements of large-area jets

The results presented here are Jet mass, filtered jet mass and splitting scale.

m2
jet =

∑
i

E2 −
∑

i
p2 (sum over jet constituents i)

Jet mass is our touchstone:

Crucial for boosted particle searches, both in terms event selection and the final
measurement.

Generated entirely by by the energy and position measurement of the (massless)
jet constituents.

The study of large and filtered jets in ATLAS data is completely new. With new methods
we use tools that are well understood in terms of standard ATLAS jet measurements. In
some cases we extend these tools.

A brief reminder of the ATLAS potential for jet physics is in the next slides..
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Measuring position

Jet mass is generated entirely by the angular separation and energy of its (massless)
constituents.

∆ϕ = 0.0245

∆η = 0.02537.5mm/8 = 4.69 mm∆η = 0.0031

∆ϕ=0.0245x436.8mmx4=147.3mm

Trigger Tower
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Cells in Layer 3
∆ϕ×∆η = 0.0245×0.05

Position resolution of calorimeter
clusters∼ 0.05rad.

Finest granularity in EM calorimeter is
∼ 0.025× 0.025

‘Trigger towers’ are 0.1× 0.1

We have the capability of measuring position precisely with the calorimeter and have the
added benefit of being able to use track-matching.
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The Jet Energy Scale (JES)-I

Measuring the calorimeter response
E/p as a function of the track momenta:

E(cluster)/p(track) is measured for
tracks < 20GeV

Neutral particles are given 3(4)%
calo uncertainty for EM(HAD)

This uncertainty is propagated to
the jet

The dominant uncertainty on energy scale measurement comes from the calorimeter
response.This work is ongoing.
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The Jet Energy Scale (JES)-II

A good understanding of the jet energy scale is vital.

Anti-k⊥ R=0.6 jet energy
scale known to < 5% in
central region

This is strongly dominated by
the single particle response
of the calorimeter.

Standard jet calibration ‘EtaJES’ : corrections in η and energy. Custom calibration for
large-area jets follows the same principle with an additional mass correction.
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Splitting in anti-kt R=1.0 jets

Anti-kt R=1.0 mass:
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Anti-kt R=1.0 splitting scale:
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Agreement within 30% between detector-level data and Monte Carlo is fair at this point
for both the mass and the splitting scale

√
d12 = min(pTa, pTb)× δRa,b.
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Filtering in C-A R=1.2 jets

Cambridge-Aachen R=1.2 jet mass:
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C-A R=1.2 filtered jet mass:
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Note the lower statistics after splitting and filtering: we throw away jets in which the
minimum splitting angle Rbb < 0.3.
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Unfolding to particle level: correction factors

Bin-by-bin corrections are determined by comparing the jet mass at particle and detector
level.

Define three bin-by-bin correction factors:

1 Determine CMC =
Apart,MC
Adet,MC

2 Determine CRW = Adata
Apart,MC

3 Re-weight the MC: ARW = CRW × AMC

4 Find CMCRW =
Apart,MCRW
Adet,MCRW

Pythia and Herwig++ are MC.

The largest difference is taken as
systematic uncertainty on unfolding.
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Uncertainties in energy (JES) and mass (JMS)-I

The largest systematic uncertainty on the jet mass measurement is in the JES/JMS. We
use the same procedure as for standard jets to determine the magnitude of this.

Compare track-jets to calorimeter jets in pT (shown),
splitting scale and mass.

 [GeV]
T

Jet p
0 100 200 300 400 500 600

tra
ck

-je
t

Tp r

0

0.5

1

1.5

2

2.5

3

3.5

4
ATLAS Preliminary R=1.0, Data/MC(Perugia 2010)tAnti-K

=1)
PV

Data (N

Perugia 2010

We see agreement between the results for anti-kT R=1.0 (above) and R=0.6 (right) jets
using the (inverse of) the same method.
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Uncertainties in energy (JES) and mass (JMS)-II

Comparing track-jet to cluster-jet in both data and MC: construct a double ratio:

Double ratio cancels effects from hard process (to first
order).
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Agreement∗ between the double-ratio results for anti-kT R=1.0 (above) and R=0.6 (right)
jets using the (inverse of) the same method. *Alpgen discrepancy is under investigation.
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Uncertainties in energy (JES) and mass (JMS)-III
Double ratios also constructed for mass and splitting scale:

Mass:
√

d12 = min(pTa, pTb)× δRa,b:
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We establish JES, JMS for three different algorithms:

JMR/JER: Jet mass/energy resolution.
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Distributions unfolded to particle level

Anti-kT R=1.0 jet mass:
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Anti-kT R=1.0 jet splitting scale:
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Within conservative errors, data is in quite good agreement with MC.
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Distributions unfolded to particle level

C-A R=1.2 jet mass:
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C-A R=1.2 filtered jet mass:
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Again, MC and data agree quite well.
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Pileup: the great challenge for 2011

If we select events with a single primary vertex in 2011 data, we will have 0
events.∗
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Mass offset will be a problem for larger jets. But..

..filtering comes to the rescue here: dependence on NPV reduced to 0.

*2011 data have 15 interactions per bunch crossing.
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Pileup: the great challenge for 2011

Cambridge-Aachen R=1.2:
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Filtered C-A R=1.2:
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The double ratio in mass is similar for NPV=1 (∼ 20%)
and JVF>0.99 (∼ 50%)

Filtering is a powerful weapon against systematic
uncertainty due to pileup.

Expect changes 2010→ 2011 data.
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Conclusions

We have made the first measurements of large-area jet mass, filtered mass and
splitting scale.

Systematic uncertainties are very
conservative here.

Work is ongoing to e.g. reduce the
mass bin sizes to ‘discovery’ width.

We are not yet in a position to exclude
any MC.

Pileup will be a major challenge for
2011 data. We have promising
handles on this.

A good understanding of correlations
between substructure variables will be
vital for future direction.
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Thanks for listening.
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Backup
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The Jet Vertex Fraction

See David Miller!
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Unfolding to particle level: mass resolution and binning
Low mass jets (20-55 GeV):
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High mass jets (160-200 GeV):
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Demand bin purity> 50%→ large (≥ 35 GeV) mass bins.

PT resolution (not shown) is comparable to anti-kT R=0.6 (15-17.5 GeV)

Mass resolution improves resolution from 8.1%→ 6.7% in low mass jets.
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What we can get from the trigger

ATLAS triggers on 0.1× 0.1 ‘trigger towers’ at level 1. These figures show the efficiency
of the first level ATLAS (hardware) Eraw > 95 GeV trigger for CA jets with R=1.2 after
splitting/filtering.
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We can work with this confidently for R=1.0,1.2 jets above a pT threshold of 300 GeV.
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Variables, variables

Many variables have been suggested. All use Ei and θi , with varying
definitions of i (cluster, jet, subjet, pseudojet ).

mass
√

d12

width/ girth

planar flow

eccentricity

angularity

N-subjettiness

subjet multiplicity

dipolarity

so many more.....

Correlations will help us with a
necessary cull.
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