

PRINCETON CENTER FOR THEORETICAL SCIENCE

Boost 2011

Theory Summary

Michael H. Seymour University of Manchester May 26th 2011

SCIENC

THEORETICAL

CENTER

ETON

PRINC

0 M Boost 2011 Theory Summary

Boost 2011 Theory Summary

- History
- Tools
- Observables
- Calculations
- Applications
- Summary/outlook

MANCHE

- Innovation = inspiration + perspiration !
- Butterworth, Davison, Rubin, Salam, Feb 2008, Jet substructure as new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001
- Butterworth, Ellis, Raklev, Feb 2007, *Reconstructing sparticle mass spectra using hadronic decays*, JHEP 0705 (2007) 033
- Butterworth, Cox, Forshaw, Jan 2002, WW scattering at the CERN LHC, Phys. Rev. D65 (2002) 096014

Boost 2011 Theory Summary

CIENC

ETICA

Boost 2011 Theory Summary

fipidiy Kabidiy

1.2

0.8

0.4

0

-0.4

--0.8

-1.2

-1.6

-0.8

-0.4

Colorimeter cells

Innovation = inspiration + perspiration !

2 1.6 Azimuth

• MHS, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Jun 1993, Z. Phys. C62 (1994) 127-138

Theory Summary 2011 Boost ?

- Innovation = inspiration + perspiration !
- MHS, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Jun 1993, Z. Phys. C62 (1994) 127-138

Theory Summary 2011 Boost

MANCH

- MHS, Predictions for Higgs and Electroweak Boson Production, Oct 1992, University of Cambridge PhD thesis
- "Thus to search events for hadronic W decays we run a jet-finder twice, with a large cone size ΔR₁, and a smaller size ΔR₂."

History

FOR THEORETICAL

PRINC

MANCHESTER 1824

Boost 20

2) Tagging a heavy Higgs boson.
M.H. Seymour, (Cambridge U.). CAVENDISH-HEP-90-25, Jan 1991. 16pp. Talk presented at the ECFA LHC Workshop, Aachen, Germany, Oct 4-9, 1990.
Published in Aachen ECFA Workshop 1990:0557-569 (QCD183:L25:1990:V.2)
References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords | Cited 1 time | More Info CERN Library Record
Scanned Version (KEK Library)
Conference Info
Bookmarkable link to this information

"The W-finder used in this study utilises this cut by running a jet-finder twice, with cone sizes of $\Delta R=0.75$ and $\Delta R=0.25$, and then demands a big jet containing two small jets, with $|m_{jj}-m_W| < 10$ GeV."

SCIENC

EORETICAL

2

Boost 2011 Theory Summary

ightarrow

History

MHS, *Tagging a heavy Higgs boson*, Jan 1991, CAVENDISH-HEP-90-25, talk given at ECFA LHC Workshop, Aachen, Germany, Oct 4-9, 1990.

History

FOR THEORETICAL

Boost

MANCHESTER 1824 2) Tagging a heavy Higgs boson. M.H. Seymour, (Cambridge U.). CAVENDISH-HEP-90-25, Jan 1991. 16pp. Talk presented at the ECFA LHC Workshop, Aachen, Germany, Oct 4-9, 1990. Published in Aachen ECFA Workshop 1990:0557-569 (QCD183:L25:1990:V.2)
 References [LeTeX(US)] LaTeX(EU) | Harvmac | BibTeX | Keywords (Cited 1 time) More Info CERN Library Record Scanned Version (KEK Library) Conference Info Bookmarkable link to this information

"The W-finder used in this study utilises this cut by running a jet-finder twice, with cone sizes of $\Delta R=0.75$ and $\Delta R=0.25$, and then demands a big jet containing two small jets, with $|m_{jj}-m_W| < 10$ GeV."

ш

SCIENC

FOR THEORETICAL

CENTER

PRINCETON

Boo

Theory Summary Boost 2011

- Disclaimer: The next slide is for fun
 - I am really not a citation chaser!

M

10

Theory Summary Boost 2011

SCIENCE

THEORETICAL

CENTER

PRINCETON

m

- Seriously... ightarrow
 - credit should go to those who see the importance of their idea, and do the work to make the case

Boost 2011 Theory Summary

MANCHESTER

Boost 2011

- 44 talks over 4 days
 - 25 theory
 - 19 experiment
- Discussion sessions and report-backs
- and a double-act after-dinner speech!

SCIENC

THEORETICAL

CENTER

ETON

PRINC

0 M Boost 2011 Theory Summary

Boost 2011 Theory Summary

- History
- Tools
- Observables
- Calculations
- Applications
- Summary/outlook

M

Theory Summary Boost 2011

Tools

- PLEHN: Status of Higgs and Top taggers
- SALAM: Fastjet
- VERMILION: SpartyJet

SOO 0

MANCHESTER

PRINCETON CENTER FORTHEORETICAL SCIENCE

<u>Boost 2011 Theory Summary</u>

Status of taggers

Tilman Plehn

Hadronic tops

Leptonic tops

W/Z bosons

No trees

To do

Higgs

Status of Higgs and top taggers

Standard Model Higgs

Starting frenzy: $VH, H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam]

- boost mass reconstruction, QCD rejection
- S: large m_{bb}, boost-dependent R_{bb}
 B: large m_{bb} only for large R_{bb}
 S/B: go for large m_{bb} and small R_{bb}, so boost Higgs
- $-~qar{q} o V_\ell H_b$ sizeable in boosted regime [P_T \gtrsim 300 GeV, few % of total rate]
- Z peak as sanity check
 subjet b tag excellent [70%/1%]
- QCD rejection with two $b~{
 m tags} \sim 10^{-5}~{
 m [used by Graham \, et \, al]}$

Improving the Higgs tagger

- combine e.g. with QCD pre-jet observables, jet shapes multivariate analysis [Black, Gallicchio, Huth, Kagan, Schwartz, Tweedie]
 - 1- which new observables have power?
 - 2- do they survive detectors?
 - 3- do they survive pileup?
 - 4- then, combine them again
- no changes in basic idea
- testable in $Z \rightarrow b\bar{b}$?

PRINCETON CENTER FOR THEORETICAL SCIENCE BOOST 2011

MANCHESTE

<u>Boost 2011 Theory Summary</u>

Tilman Plehn

Hadronic tops

Leptonic tops

W/Z bosons No trees

Higgs

To do

Status of Higgs and top taggers

Status of taggers To do: jet algorithms and pileup

Filtering [BDRS, also used in HEPTopTagger]

- designed for C/A algorithm
- reduce effective fat-jet area zoom in on relevant final subjets
- number of jets and size negotiable

Pruning [Ellis, Vermillion, Walsh]

- designed for k_T algorithm
- extract relevant collinear splittings in splitting history
- soft/collinearity condition negotiable

Trimming [Krohn, Thaler, Wang]

- designed for anti- k_T algorithm
- remove soft fat jet regions [inverse to filtering] slightly different interpretation for k_T algo
- filtering + pruning useful [Spannowsky & Soper]
- should we use more/less of the clustering history?
- and can we do this with pileup?

Where would we be without FastJet???

Towards FastJet 3

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Work in progress with Matteo Cacciari and Gregory Soyez alpha releases at http://fastjet.fr/

Boost 2011 PCTS, Princeton, May 2011

FOR THEORETICAL SCIENCE

PRINCETON CENTER

MANCHESTER

SpartyJet

Exploring Jet Tools with SpartyJet

LAB

BERKELEY NATIONAL LABORATORY

SCIENCE

FOR THEORETICAL

PRINCETON CENTER

SOO

m

MANCHESTEI 1824

10

Boost 2011 Theory Summary

SpartyJet

SLIDE OF SHAME

FOR THEORETICAL SCIENCE

PRINCETON CENTER

0

m

MANCHESTER

10

Boost 2011 Theory Summary

An incomplete list of methods that do not, to my knowledge, have public, certified code

(I would be very happy to be corrected!!)

- N(Sub)jettiness (partial credit)
- Template overlap
- Jet dipolarity
- "Substructure without trees
- Shower deconstruction

- Quark vs. gluon suite (but see http://jets.physics.harvard.edu/qvg/index.html
- HEP Top tagger (pseudo-public)
- Surely some I've missed...

If you build it, I will put it in SpartyJet!

dnesday May 25 2011

SCIENC

HEORETICAI

PRINC

Theory Summary Boost 2011

FastJet vs SpartyJet

- Both are in danger of mission creep
- Serious danger of
 - duplication of effort?
 - confusion of roles and responsibilities?

MANCHE

2011 Theory Summary Boost

Observables

- S LEE: Template method and color flow for top
- LARKOSKI: Jet substructure without trees
- KROHN: ISR tagging
- SPANNOWSKY: Shower deconstruction
- THALER: N-subjetiness
- GALLICCHIO: Gluon tagging at the LHC
- JANKOWIAK: Dipolarity
- TWEEDIE: Top polarization
- SCHWARTZ: Multi-variate overview

Boost 2011 Theory Summary

Template method

Template overlap combined with jet shape

Top-jet is 3 body vs. massive QCD jet <=> 2-body (our result)

MANCHESTER 1824

Boost 2011 Theory Summary

10.0

20.0

Template method

SCIENC

ORETICAL

Theory Summary **Boost 2011**

Jet substructure without trees

Angular Correlations

• For any IRC safe set of particles {i}:

$$\mathcal{G}(R) \equiv \frac{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2 \Theta(R - \Delta R_{ij})}{\sum_{i \neq j} p_{Ti} p_{Tj} \Delta R_{ij}^2} \approx \frac{\sum_{i \neq j} p_i \cdot p_j \Theta(R - \Delta R_{ij})}{\sum_{i \neq j} p_i \cdot p_j}$$

- *R* is **not** measured wrt jet center
 - Distinct from angular profile
- Quantifies jet scaling in an IRC safe way

Boost 2011 Theory Summary

THEORETICAL SCIENCE

PRINCETON CENTER

Jet substructure without trees

Angular Correlations

• Ledges in $\mathcal{G}(R)$ = separation of hard subjets

DRETICAL

Boost 2011 Theory Summary

Jet substructure without trees

Angular Structure

- How to find ledges cliffs
 - Find peaks in the derivative!
 - Problem: really want ratio of masses
 - Take derivative of $\log \mathcal{G}(R)$
- QCD is ~scale invariant
 - Take derivative wrt log R
 - Reduces noise at small R

SCIENCE

HEORETICAL

PRINCETON

Boost 2011 Theory Summary

Jet substructure without trees

Current/Future Directions

• Constructed a top tagging algorithm competitive with others in the literature

ISR tagging

Effects of ISR

HEORETICAL SCIENCE

PRINCETON

MANCHE

Boost 2011 Theory Summary

- * We see ISR emissions as additional states in the detector.
- * Basically, they can do two things
 - 1. Some emissions will spatially overlap with `signal' jets (motivation for jet topiary).
 - 2. Others will be assigned their own jets.

ISR tagging

* Just to emphasize what happened

Boost 2011 Theory Summary

DRETICAL

MANCHE

- On the previous page, for a 1 TeV gluino with a 900 GeV LSP we were able to infer the presence of 2.5 TeV physics from four dinky (p_T ~50 GeV) FSR jets and ISR. Not bad!
- Is ISR extraction event by event really well defined?
- But concept of event reconstruction from accompanying radiation very interesting.
- Can validate on SM processes?

Shower deconstruction

Theory Summary **Boost 2011**

FOR THEORETICAL SCIENCE

CENTER

PRINCETON

MANCHE

Build all possible shower histories

signal vs background hypothesis based on:

- Emission probabilities
- Color connection
- Kinematic requirements
- b-tag information

Shower deconstruction

Theory Summary **Boost 2011**

FOR THEORETICAL SCIENCE

CENTER

PRINCETON

MANCHE

Build all possible shower histories

signal vs background hypothesis based on:

- Emission probabilities
- Color connection
- Kinematic requirements
- b-tag information

Shower deconstruction

perfect b-tagging 2 b-tagged microjets

▶ Profits more from information than BDRS, e.g. b-tagging

PRINCETON CENTER FOR THEORETICAL SCIENCE

800

MANCHESTER

10

Boost 2011 Theory Summary

N-subjetiness

N-subjettiness

A New Substructure Measure

Top Tagging with T_3/T_2 (W/Z/H Tagging with T_2/T_1)

Minimization & Boost2010

(Thoughts on Jet Algorithms)

 $\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min_A \left\{ \Delta R_{A,k} \right\}$

[Thaler, Van Tilburg: 1011.2268; See also J.-H. Kim: 1011.1493]

THEORETICAL SCIENCE

PRINCETON CENTER

m

MANCHESTER

Boost 2011 Theory Summary

Combining Variables: Girth vs Charged Count

A Jason Gallicchio (Harvard) Gluon Tagging and Quark & Gluon

FOR THEORETICAL SCIENCE

PRINCETON CENTER

0

m

MANCHESTEI 1824

THEORETICAL SCIENCE Boost 2011 Theory Summary C m PRINCETON MANCHEST 1824

Gluon tagging at the LHC

Best Variables in Each Category for 200 GeV Jets

Dipolarity

Dipolarity

consider the entire radiation pattern of the W at once

THEORETICAL SCIENCE

CENTER

PRINCETON

MANCHE

<u>Boost 2011 Theory Summary</u>

$$D \equiv \frac{1}{R_{12}^2} \sum_{i \in J} \frac{p_{Ti}}{p_{TJ}} R_i^2$$

- R_{12} is the separation between the two W subjets
- p_{Ti} is the transverse momentum of cell i
- p_{T_J} is the transverse momentum of the W
 - is the distance between cell i and the line segment that spans the W subjets

MANCHESTER 1824

Theory Summary Boost 2011

Application of boost beyond discovery

Boosted top azimuthal correlations

Spin-1 Azimuthal Modulations

solid: pure vector, dashed: axial vector, dotted: LH chiral

CIENC

õ

ORETICAL

MANCHE

Boosted top azimuthal correlations

Maybe Less Familiar: Z-> TT at LEP

ALEPH, CERN OPEN-99-355

- Directly measured vector/axial admixture of Z coupling to taus
- Double one-prong events
 - no attempt to reconstruct neutrinos
 - know the CM frame, get to sit on resonance
- Azimuthal angle of one visible particle about the other follows $\cos(2\phi)$ distribution

10

Boost 2011 Theory Summary

Multi-variate overview

MANCHESTER 1824

HEORETICAI

2011 Theory Summary Boost

Calculations

- SKANDS: Vincia
- ALTHEIMER: Jet merging
- DASGUPTA: Jet masses at the LHC
- STEWART: N-jettiness & jet masses at NNLL
- C LEE: Non-global logs etc in SCET
- WALSH: Controlling jets with SCET

MANCHESTER 1824

M

10

PRINCETON CENTER FORTHEORETICAL SCIENCE

20

Boost

Vincia

Vincia

→ Better Approximations

Distribution of Log10(PSLo/MELo) (inverse ~ matching coefficient)

ш

SCIENC

THEORETICAL

CENTER

ETON

PRINC

MANCHES

0

m

<u>Theory</u> Summary

2011

Boost .

FOR THEORETICAL CENTER C m PRINCETON MANCHE

SCIENCE

101

Boost 2011 Theory Summary

Vincia

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Theory Summary **Boost 2011**

SCIENCE

HEORETICAL

PRINCETON

Jet merging

- 'W-jet' mergers contain both W boson decay products
 - Separation between parton and jet axis < R</p>
 - May also contain the bottom quark
 - Strongly constrained by decay kinematics
 - Good experimental calibration signal

SCIENC

HEORETICAL

Boost 2011 Theory Summary

Jet merging

Really should be under perturbative control ?

- Require both W boson decay products to be contained within the same jet
- |y|<4.5, p_T>70 GeV
- Cambridge/Aachen R=1.0

Boost 2011 Theory Summary

SCIENCE

THEORETICAL

CENTER

PRINCETON

m

MANCHEST 1824

Jet merging

- Shoulder is created by 'merged b-jets'
- Most obvious in Anti-k_T R=0.8, but present in Cambridge/Aachen as well
- |y|<4.5, pT>70 GeV

16

MANCHE

<u>Boost 2011 Theory Summary</u>

Jet masses at the LHC

Soft wide-angle emissions beyond one-loop

resummation

Mrinal Dasgupta

The fun starts at two-loop level. Looking in the interior of jet corresponds to non-globalness. Can do explicit calculation with 2 soft energy ordered gluons $\omega_1 \gg \omega_2$. Configuration would *cancel* to our accuracy in global observables.

MD and Salam, 2001, 2002

Boost 2011 Theory Summary

Jet masses at the LHC

Resummation

resummation

Mrinal Dasgupta

Only in leading N_c limit. Can use the hemisphere result computed numerically via dipole evolution.

$$S(t)=\exp\left(-C_F C_A rac{\pi^2}{3}\left(rac{1+(at)^2}{1+(bt)^c}
ight)t^2
ight)\,,$$

where $a = 0.85C_A$, $b = 0.86C_A$, c = 1.33 and $t \sim \alpha_s L$.

うくぐ

SCIENC

DRETICAL

N-jettiness & jet masses at NNLL

N-Jettiness Event Shape

 $\mathcal{T}_N = \mathcal{T}_N(q_a, q_b, q_1, \dots, q_N)$

 $\mathcal{T}_N \to 0$ for N-jets

Factorization Friendly

 $\mathcal{T}_N = \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \ldots + \mathcal{T}_N^N$

IS, Tackmann, Waalewijn arXiv: 1004.2489

Want to calculate N-jet exclusive cross-sections. eg. differential jet masses

Jouttenus, IS, Tackmann, Waalewijn arXiv: 1102.4344

How sensitive is N-jettiness to underlying event?

Fheory Summary

Boost 2011

N-jettiness & jet masses at NNLL

Jet veto restricts ISR, gives double logs

Fixed Order to NNLO

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

• Common scale variation for jet bins, e.g. for the Tevatron

$$\frac{\Delta\sigma}{\sigma} = \underbrace{66.5\% \times \binom{+5\%}{-9\%}}_{0 \text{ jets}} + \underbrace{28.6\% \times \binom{+24\%}{-22\%}}_{1 \text{ jet}} + \underbrace{4.9\% \times \binom{+78\%}{-41\%}}_{\geq 2 \text{ jets}} = \binom{+14\%}{-14\%}$$

Proposed Fixed Order Solution [Tackmann, ...]

• The *inclusive* jet cross sections are considered uncorrelated $\sigma_{total}, \sigma_{>1}, \sigma_{>2}$ for scale variation

• The covariance matrix for the *exclusive* jet cross sections follows from

$$\sigma_0 = \sigma_{ ext{total}} - \sigma_{\geq 1}\,, \qquad \sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}\,, \qquad \sigma_{\geq 2}$$

Theory Summary

2011

Boost

N-jettiness & jet masses at NNLL

Jet veto restricts ISR, gives double logs

Fixed Order to NNLO

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]

• Common scale variation for jet bins, e.g. for the Tevatron

 $\frac{\Delta\sigma}{\sigma} = \underbrace{66.5\% \times \begin{pmatrix} +5\% \\ -9\% \end{pmatrix}}_{0 \text{ jets}} + \underbrace{28.6\% \times \begin{pmatrix} +24\% \\ -22\% \end{pmatrix}}_{1 \text{ jet}} + \underbrace{4.9\% \times \begin{pmatrix} +78\% \\ -41\% \end{pmatrix}}_{2 \text{ jets}} = \begin{pmatrix} +14\% \\ -14\% \end{pmatrix}$ Proposed Fixed Order Solution [Tackmann, ...]

Good proposal: worth looking at consequenc es for other cross sections/ observables

dnesday May 25 2011

Boost

Logs, Non-Global Logs, and Non-**Global Non-Logs in Dijet Observables**

Hornig, CL, Stewart, Momentum Space Result Walsh, Zuberi [1105.4628] agrees exactly numerically with Kelley, Schabinger, Schwartz, Zhu [1105.3676] For the double cumulant $\mathcal{S}_c(\ell_1^c, \ell_2^c; \mu) = \int^{\ell_1^c} d\ell_1 \int^{\ell_2^c} d\ell_2 S(\ell_1, \ell_2; \mu)$ $\frac{1}{2}t_2^c(\ell_1^c,\ell_2^c,\mu) = \theta(\ell_1^c)\theta(\ell_2^c) - \frac{\pi^2}{3}C_F C_A \ln^2\left(\frac{\ell_1^c}{\ell_2^c}\right) \text{Double NGL}$ Single NGL $\left(+ \ln \left(\frac{\ell_1^c / \ell_2^c + \ell_2^c / \ell_1^c}{2} \right) C_F C_A \frac{11\pi^2 - 3 - 18\zeta_3}{\alpha} + C_F T_R n_f \frac{6 - 4\pi^2}{\alpha} \right)$ $+C_F C_A \left[f_N \left(\frac{\ell_1^c}{\ell_c^c} \right) + f_N \left(\frac{\ell_2^c}{\ell_c^c} \right) - 2f_N(1) \right] + C_F T_R n_f \left[f_Q \left(\frac{\ell_1^c}{\ell_c^c} \right) + f_Q \left(\frac{\ell_2^c}{\ell_c^c} \right) - 2f_Q(1) \right]$ $+C_F^2 \frac{\pi^4}{8} + \frac{1}{2} C_F C_A s_{2\rho}^{[C_F C_A]} + \frac{1}{2} C_F T_R n_f s_{2\rho}^{[n_f]} \bigg\}$ **Non-Global Non-Logs:** $f_Q(a) \equiv \left(\frac{2\pi^2}{9} - \frac{2}{3(a+1)}\right) \ln a - \frac{4}{3} \ln a \operatorname{Li}_2(-a) + 4\operatorname{Li}_3(-a) - \frac{1}{9}(3 - 2\pi^2) \ln \left(a + \frac{1}{a}\right),$ $f_N(a) \equiv -4\text{Li}_4\left(\frac{1}{a+1}\right) - 11\text{Li}_3(-a) + 2\text{Li}_3\left(\frac{1}{a+1}\right)\ln\left[\frac{a}{(a+1)^2}\right]$ $a \equiv \ell_1^c / \ell_2^c$ $+\operatorname{Li}_{2}\left(\frac{1}{a+1}\right)\left\{\pi^{2}-\ln^{2}(a+1)-\frac{1}{2}\ln a\ln\left[\frac{a}{(a+1)^{2}}\right]+\frac{11}{3}\ln a\right\}$ $+\frac{1}{24}\left\{22\ln\left[\frac{a}{(a+1)^2}\right]-6\ln\left(1+\frac{1}{a}\right)\ln(1+a)+\pi^2\right\}\ln^2 a-\frac{(a-1)\ln a}{6(a+1)}$ $+\frac{5\pi^2}{12}\ln\left(1+\frac{1}{a}\right)\ln(1+a)-\frac{11\pi^4}{180}$

Logs, Non-Global Logs, and Non-Global Non-Logs in Dijet Observables

SCIENCE

HEORETICAL

PRINCETON

MANCHE

Theory Summary

2011

Boost

New Opportunities

- Understanding origin of fixed order NGLs in effective field theory opens door to RGE-based method to resum them
 - cf. nonlinear evolution equation, solution currently only known numerically in large-N_C limit.
- When NGLs are not large, our new results allow analytic resummation of global logs in dijet observables to NNNLL accuracy.
- Dijet soft function directly applicable to beam thrust or 0-jettiness in hadron collisions
- NGLs will appear in multijet/subjet observables, jet cross sections with jet energy vetoes, etc.
 ^{cf. Banfi, Dasgupta, Khelifa-Kerfa, Marzani (2010)} Rubin (2010): NGLs in Filtered let Algorithms
- Calculation and resummation of global and non-global logs bring us into the realm of precision jet physics.

Boost 2011 Theory Summary

Jet masses at the LHC

Resummation

resummation

Mrinal Dasgupta

Only in leading N_c limit. Can use the hemisphere result computed numerically via dipole evolution.

$$S(t)=\exp\left(-C_F C_A rac{\pi^2}{3}\left(rac{1+(at)^2}{1+(bt)^c}
ight)t^2
ight)\,,$$

where $a = 0.85C_A$, $b = 0.86C_A$, c = 1.33 and $t \sim \alpha_s L$.

うくぐ

Controlling jets with SCET

Modes with Nearby Jets: Collinear and Soft Modes

$$\mathcal{T}_j(p) = n_j \cdot p$$

collinear:
$$p_c \sim E_J(1, \lambda^2, \lambda)$$
 $\lambda = \frac{m_J^2}{Q^2}$
csoft: $p_{cs} \sim E_J \frac{\lambda^2}{\lambda_t^2}(1, \lambda_t^2, \lambda_t)$ $\lambda_t = \frac{t}{Q^2}$
soft: $p_s \sim E_J(\lambda^2, \lambda^2, \lambda^2)$

$$\mathcal{T}_{j}(p_{c}) = n_{j} \cdot p_{c} \sim E_{J}\lambda^{2} \quad \& \quad p_{c}^{2} \sim E_{J}^{2}\lambda^{2} \Rightarrow \quad p_{c} \sim E_{J}(1,\lambda^{2},\lambda)$$
$$\mathcal{T}_{j}(p_{cs}) = n_{j} \cdot p_{cs} \sim E_{J}\lambda^{2} \quad \& \quad \frac{p_{cs}^{+}}{p_{cs}^{-}} \sim \lambda_{t}^{2} \Rightarrow \quad p_{cs} \sim E_{J}\frac{\lambda^{2}}{\lambda_{t}^{2}}(1,\lambda_{t}^{2},\lambda_{t})$$
$$\mathcal{T}_{i}(n_{c}) = n_{i} \cdot n_{c} \sim E_{J}\lambda^{2} \quad \& \quad p^{2} \sim E_{J}^{2}\lambda^{4} \Rightarrow \quad p_{cs} \sim E_{J}(\lambda^{2},\lambda^{2},\lambda^{2})$$

HEORETICA

2011 Theory Summary Boost

Applications

- TAKEUCHI: stop with HEPTopTagger
- SHELTON: top FB asymmetry with HEPTT
- FAN: SUSY with unconventional signals
- YAVIN: Lepton jets
- KRIBS: Boosted Higgs from new physics

ETON

PRINC

stop with HEPTopTagger

Stop reconstruction with the HEPTopTagger

Michihisa Takeuchi (Uni Heidelberg)

introduction

HEPTopTagg

stop pairs

emi-leptonic chann

Leptonic top tagger Summary modestly boosted tops at LHC

top partner expected from naturalness

- cancellation expected via top partner in Higgs sector (ex. SUSY, Little Higgs)

 $\delta m_h^2 \sim -\frac{3}{4\pi} y_t^2 \Lambda_{
m SM}^2$

– $m_{\tilde{t}} \sim 500 \text{ GeV}$ favored to avoid little hierarchy problem

top p_T distribution at the LHC

- boosted top can avoid combinatorics background
- several top taggers available, looking into substructure
 [Kaplan, Rehermann, Schwartz, Tweedie] [Thaler, Wang]
 [Almeida, Lee, Perez, Sterman, Sung]

designed for $p_T > 500$ GeV, not expected in SM

- $t\bar{t}$ at LHC 7 TeV

 $p_T > 500 \text{ GeV:} 150 \text{ fb}$

 $200 < p_T < 500 \text{ GeV: } 8970 \text{ fb}$

- our target: modest p_T range (200 < p_T < 500 GeV),

 \cdot testable in SM

 \cdot expected in top-partner decay

stop $m_{\tilde{t}} = 540 \text{GeV}$

Theory Summary 0 Boost 2011

THEORETICAL SCIENCE

PRINCETON

MANCHES

Theory Summary

Boost 2011

top FB asymmetry with HEPTopTagger

A few words about leptons

- Charged lepton rapidities are also measuring polarization:
 - lepton rapidity depends on parent top β_t, cos θ_t, and lepton angle cos θ_ℓ
 - can be important for understanding acceptance

Relation between top asymmetry and lepton asymmetry \mathcal{A}_{FB}^{ℓ} depends on model and is a powerful tool for discriminating between models

bias new physics reach by using too many features of top decay to tag it?

M

10

Boost 2011 Theory Summary

SUSY with unconventional signals

Lepton jets

THEORETICAL SCIENCE

CENTER

PRINCETON

MANCHES

O

Boost 2011 Theory Summary

Photon Jets

Dobrescu, Landsberg, and Matchev, hep-ph/0005308 proposed Higgs to photons as an interesting signature. More generically light axion-like particle will yield many photons.

Theory Summary Boost 2011

Boosted Higgs from new physics

Top partner production & decay:

10 fb⁻¹ @ 14 TeV

📕 tť + jets

Z(II) + jets

tī+bb

tt+Z

80 100 120 140 160

resonance jet mass [GeV]

60 40

m_τ = 600 GeV

Gev

KMR 1012.2866

ш

SCIENC

FOR THEORETICAL

CENTER

PRINCETON

Theory Summary **Boost 2011**

Miscellaneous

- SOPER: Introductory theory talk
- VOS: Overview of Boost 2010

ETICAL

MANCHE

Introductory theory talk

Where does the radiation go?

- The first radiation is from a color dipole of
 - The final state *b*-quark;
 - The "initial state" t-quark;
- Direction of g is likely collinear with the b.
- Direction of g is likely within angle $M/|\vec{P_t}|$ of the top.
- If the top is highly boosted, this is a narrow cone.

Overview of Boost2010

Tools & Techniques: Benchmark Samples

- ✓Many groups, many great ideas, many promising results, but ... not easy to compare performance in a meaningful way
- ✓ **Benchmark:** created events for QCD inclusive jets and SM tt production
- ✓ Pythia and Herwig, several tunes for UE, several options for parton shower*. Their use here does not imply we claim that these samples are any more "true" than others. Recent LHC work has rendered them obsolete, as expected.
- ✓ Samples provided on two "mirror" sites:
 - + http://www.lpthe.jussieu.fr/esalam/projects/boost2010-events/
 - http://tev4.phys.washington.edu/TeraScale/boost2010/

SCIENC

THEORETICAL

PRINCETON

MANCH

Summary

heory

Boost

Proposal: extend the benchmark set:

- incorporate more up-to-date tunes (comparing ATLAS and CMS' favorites tunes for several generators?)
- include ME-PS matched samples (ALPGEN?)
- provide minimum-bias events, enabling pile-up studies
- provide benchmark detector (cf Peter Loch's tutorial)

(*) HERWIG is used in conjunction with JIMMY that takes care of the underlying event generation. For this study we rely on a tune from ATLAS [ATLPHYS-PUB-2010-002] PYTHIA 6.4, with a number of tunes for the UE description: DW, DWT and Perugia0. The parton shower model of the DW and DWT samples is Q2-ordered. Both yield identical results for the underlying event at the Tevatron. However, the two tunes extrapolate differently to the LHC, where DWT leads to a more active underlying event. The Perugia tune [Peter Zeiler Skands. Tuning Monte Carlo Generators: The Perugia Tunes. 2010.] uses a pT -ordered parton shower. To disentangle the impact of the parton shower and that of the underlying event, we generated an additional set of samples with the UE generation switched off.

Overview of Boost2010

Comparison of hadronic top-tagging performance: $\epsilon_{_{0CD}}$ vs $\epsilon_{_{top}}$

→ Factor 6 @ 70%

SCIENCE

THEORETICAL

PRINCETON

MANCH

Theory Summary

2011

Boost

CSIC

FIC

(

→ Factor 50 @ 50 %

For $200 < p_{\tau} < 800 \text{ GeV}$

- → Factor 300 @ 30 %
- ✓ Groomed taggers (Hopkins/CMS/Pruning) provide best performance for ϵ < 50 %
- ✓ Ungroomed taggers (Thaler & Wang/ATLAS) provide better performance for ϵ ~ 70 %
- \checkmark Choice depends on analysis, in particular lepton + jets final state vs. fully hadronic event

Theory Summary 2011 Boost

Summary/outlook

- The study of boosted objects is moving incredibly fast: some ideas 1990-2007 but truly revolutionised in 2008 and already a maturing field with its own conference series
- Much progress and understanding still needed
- But one important new feature this year...

Data!

Boosted top candidate

✓ Handful of such events in ttbar resonance selection (~ x-sec selection) on 2010 data: see ATL-COM-PHYS-2011-259

25

World's first boosted hadronic object

Boost 2011 Theory Summary

C H

FOR THEORETICAL SCIENCE

PRINCETON CENTER

0