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Overview
• Analysis problem


• Given: sample mixture of 2+ components, e.g. 
signal and background


• Variable x allows to discriminate components 
e.g. invariant mass of decay candidates


• Want: component yields 
 

• Template fit

• Template: component density estimated non-

parametrically from independent samples

• Need to propagate uncertainty of template

• Elegant solution by Barlow & Beeston, 1993

• Templates from weighted samples

• Barlow & Beeston solution not applicable

• Bayesian approach by Argüelles, Schneider 

& Yuan, 2019

• ML approach by HD, Abdelmotteleb, 2022

This talk: review and comparison of these methods
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Analysis of sample mixture
• Binned maximum-likelihood approach


• Bin sample over discriminating variable x

• Assumption: Observed count in each bin is 

Poisson distributed



 ... observed count 







 (normalisation factor)

ln ℒ = n ln μ − μ − ln n!
n
μ = μ1 + … + μk

μk =
yk ξk

Mk
 with yield yk

Mk =  sum of ξk over all bins
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Notation

• log-likelihood always 

calculated for single bin

• Total log-likelihood is 

sum of bin-wise log-
likelihood



Templates
• Template: Collection of  from component k


• Parametric template

• Shape computed from parametric model e.g. normal distribution for signal peak 




• Maximise log-likelihood to estimate yields  and nuisance parameters  

• Non-parametric template

•  estimated from independent sample e.g. simulation or pure control sample


• Key insight (B&B): true  unknown, but constrained by count  in independent sample


• Maximise log-likelihood to estimate yields  and nuisance parameters 

ξk

ξk = ∫
xhigh

xlow

f(x; ⃗pk) dx

̂yk
̂⃗pk

ξk

ξk ak

yk ξk
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Likelihood for non-parametric template

•  constrained by  via log-likelihood       

•  constrained by  via log-likelihood    

• Total log-likelihood                          
                                                       data      template 1            template k


μ n ln ℒ = n ln μ − μ − ln n!

ξk ak ln ℒk = ak ln ξk − ξk − ln ak!

ln ℒ + ln ℒ1 + … + ln ℒk

5



Interlude: Baker & Cousins transform
• Baker and Cousins, 1984


• Binned likelihood can be transformed so that minimum is asymptotically chi-square distributed 
 

 

• Minimum value  doubles as goodness-of-fit test statistic


• For Poisson-distributed data identical to Cash statistic  (Cash, 1979) 
 

 

• Further beneficial effects

• Calculation more numerically stable

• Avoids expensive calculation of factorials in Poisson likelihood

Q( ⃗p) = − 2 ln [ ℒ(n; μ( ⃗p))
ℒ(n; n) ]

Qmin

C

C(n; μ) ≡ Q(n; μ) = 2(μ − n − n(ln μ − ln n))
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Apply Baker & Cousins transform
• Before: Maximise 

 
 

data      template 1   ...     template k

ln ℒ + ln ℒ1 + … + ln ℒk

• After: Minimise 
 




•  can be minimised with standard software, e.g. MIGRAD from MINUIT


• However:  nuisance parameters with K number of components, N bins

Q = C(n;
y1ξ1

M1
+ … +

ykξk

Mk
) + C(a1; ξ1) + … + C(ak; ξk)

Q
K × N
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Numerical example
https://scikit-hep.org/iminuit/notebooks/template_fits.html

Naive fit with  

   


 
Correct fit 

  

ξk = ak

ybkg = 761 ± 30
ypeak = 193 ± 19

ybkg = 800 ± 50
ypeak = 190 ± 40
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Solution by Barlow & Beeston
• Number of bins N can be very large, if discriminant variable x is multi-dimensional 

 
Example: 4 dimensions, 10 bins per dimension = 10 000 bins  
                       20 000 nuisance parameters 

• Problems with large number of parameters solvable with modern methods

• L-BFGS: quasi-newton method for large problems

• Stochastic gradient descent methods (e.g. Adam) 

• Both not available in 1993, brute-force still expensive today

→
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• Barlow & Beeston ansatz

• Split problem into nested two-step minimisation 

 




• Outer step

• Minimise  using MIGRAD


• Outer step only sees  as floating variables 
 

• Inner step

• Compute solution to  analytically for each proposal 


• Solve score equations with numerical root-finder to find estimates 

• Problem can be reduced to one call to root-finder per bin

Q = C(n;
y1ξ1

M1
+ … +

ykξk

Mk
) + C(a1; ξ1) + … + C(ak; ξk)

C(n; y1, …, yk, ̂ξ1( ⃗y), …, ̂ξk( ⃗y))
⃗y

∂ξk
Q = 0 ⃗y

̂ξk( ⃗y)

https://www.flickr.com/photos/37230837@N04/5146762770



Conway's approximation

11

• Barlow & Beeston approach exactly solves maximum-likelihood problem, 
but computation still relatively expensive 

• Conway, 2011, proposed alternative inexpensive approach

• Also two-step approach, minimise  

 

    


• For fixed , get estimate  for each bin by solving quadratic equation

• No derivation given in original publication


• Our derivation revealed two approximations to get  and better alternative

QC = C(n; β μ0( ⃗y)) +
(β−1)2

Vβ
 with  μ0( ⃗y) = ∑

k

ykak

Mk

⃗y ̂β( ⃗y)

QC
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• Approximation 1: setting  

         yields cost function  


• Approximation 2: Taylor expansion around  

    


• Second term  resembles Gaussian penalty term in 


• Indeed,  if one component is dominant, but  performs better generally 

• Approximations valid if...

• Templates are constructed from large samples

• One component dominates in each bin

β ≈ βk

μ = ∑
k

ykξk

Mk
= ∑

k

ykβkak

Mk
≈ β ∑

k

ykak

Mk

μ0

Q ≈ C(n; βμ0) + ∑
k

C(ak; βak)

β = 1

Q ≈ C(n; βμ0) + a(β−1)2 with a = ∑
k

ak

a(β−1)2 QC

Vβ → 1/a QC



Our insight
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• Approximation 2 not necessary

Starting from   we compute  and get:


 
        

• Limits  and  easy to interpret 

• Remaining caveat: Assumption 1 that one component is dominant

• Will partially repair this later

Q ≈ C(n; βμ0) + ∑
k

C(ak; βak) ∂β Q = 0

̂β =
n + a
μ0 + a

 with a = ∑
k

ak

n → ∞ a → ∞



Templates from weighted samples
• In current analyses, templates often build from weighted samples


• Weights from NLO Monte-Carlo generators

• Frequency weights applied to simulation to better match observed distributions 

• sWeighted control samples


• Barlow & Beeston solution not applicable to these cases

• Exact likelihood for weighted samples intractable ➝ approximations mandatory
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Interlude: SPD approximation
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• In weighted samples, count in a bin replaced by sum of weights 
 




• Bohm & Zech, 2014

• Assumption:  drawn independently and identically (iid) from discrete distribution


• Discreteness assumed without loss of generality 
• iid assumption often slightly violated in practice


•  Then:  is effectively drawn from compound Poisson distribution (CPD) 
 

 
 
where  are Poisson-distributed with unknown expectations 

n = ∑
i

wi

wi

n

n = n1w1 + … + nkwk

nk λk
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• CPD analytically intractable, approximated by appropriately scaled Poisson distribution (SPD) 
 

                                

 
   with    

•  also known as effective count 
• SPD has same first and second moments as CPD

• SPD has similar third and forth moments as CPD


• SPD has correct limit for  
 

• SPD is good approximation unless weight distribution has extreme tails

• SPD can be constructed for any variable  using 


• Practical challenge: accurately computing  and  requires sufficiently populated bins

n = ∑
i

wi Vn = ∑
i

w2
i t =

n
Vn

n = kt k ∼ Poisson with λ = nt

k

wi = w

x tx = E[x]/Vx

n Vn

Bohm & Zech, 2014

Bohm & Zech, 2014

exact CPD

normal approximation

SPD approximation



Bayesian approach
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• Argüelles, Schneider & Yuan, 2019, first used the SPD in context of template fitting


• Marginal likelihood  for  obtained by integrating over probability density  
 

ℒASY n p(μ)

ℒASY = ∫
∞

0

μne−μ

n!
p(μ) dμ

likelihood for observing  (SPD)μ0

prior for μ
Flat prior  used in main resultq(μ)

μ0 = ∑
k

yk ∑i wk,i

Mk

Vμ = ∑
k

y2
k ∑i w2

i

M2
kp(μ; μ0, Vμ) ∝ ℒ(μ0; μ, Vμ) q(μ)

•  obtained by applying Bayes' theoremp(μ)
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• Integral can be solved analytically, one gets 
 

    with   


• Authors propose to use  in frequentist-style fit

• Estimate  by minimising 


• Compute uncertainties of  with standard MINUIT algorithms

• Point estimates and uncertainties have good frequentist properties 

• Minor caveat:  does not provide chi-square-distributed test statistic

ℒASY =
ssμ0+1 Γ(n + sμ0 + 1)

n! (s + 1)n+sμ0+1 Γ(sμ0 + 1)
s =

μ0

Vμ

ℒASY
⃗y −ln ℒASY

⃗y

ℒASY



Our approach
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• Use SPD to generalise our previous result 
 

 

 
 

 

 

 
with data weights  and template weights 

Q = C(n; βμ0) + ∑
k

C(ak; βak) → QDA = C(tn; βtμ0) + C(sμ0; βsμ0)

n = ∑
i

w′ i Vn = ∑
i

w′ i
2 t =

n
Vn

μ0 = ∑
k

yk ∑i wk,i

Mk
Vμ = ∑

k

y2
k ∑i w2

k,i

M2
k

s =
μ0

Vμ

w′ i wi

̂β =
tn + sμ0

tμ0 + sμ0



Our approach
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• Minimise 

 

 
with respect to ;  implicit in  and  

• Integration of SPD provides two benefits

• Approach supports both weighted data and weighted templates


• Variance of  correct if more than one component is dominant (analog to Conway)


• Approximation 1 analog to SPD approximation

• Compound Poisson distribution replaced by appropriately scaled Poisson distribution

QDA = C(tn; ̂βtμ0) + C(sμ0; ̂βsμ0) with  ̂β =
tn + sμ0

tμ0 + sμ0

⃗y μ0 = μ0( ⃗y) s = s( ⃗y)

μ0
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Barlow & 
Beeston

Conway 
(original)

Argüelles, 
Schneider & 

Yuan

Conway 
(our variant) Our approach

Theoretical 
foundation Frequentist Frequentist Bayesian & 

Frequentist Frequentist Frequentist

Approximations / 
Limitations A1, A2 SPD, flat prior SPD, A1, A2 SPD, A1

Supports 
weighted 
templates

✓ ✓ ✓

Supports 
weighted data ✓ ✓

gof test statistic ✓ ✓



Toy study
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Bias and variance
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z =
̂ysignal − ysignal

̂Vysignal



Coverage
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Performance
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BB: TFractionFitter, C++ 
 
Others: our implementation  
in numpy/numba, Python



Closing remarks
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• Our approach

• Good performance overall

• Unique: handles both weighted data and weight templates

• Provides gof test statistic

• Reference implementation in iminuit package


• Unique: allows one to mix non-parametric templates with parametric components

• No implementation in ROOT yet; interest in collaborating?


• Thoughts on other approaches

• Barlow-Beeston: could integrate SPD and provide gof test statistic

• Argüelles, Schneider & Yuan: can probably be extended to weighted data
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• Further improvements?

• Templates cannot adjust for data / simulation discrepancies in template shape

• Potential solution: simultaneously fit stiff monotonic transform that distorts simulation sample


• Similar idea: RooStats::BernsteinCorrection


• For completeness: complementary approach is using bootstrap

• Perform naive fit of  with fixed templates

• Bootstrap uncertainties of estimates by resampling both data and template samples

• Can handle situations in which weights are not iid

• Computationally expensive

⃗y



Thank you
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