Machine learning in physics

Artur Kalinowski

University of Warsaw

- $\boldsymbol{X} {:} n$ dimensional input data
- Y: k dimensional output data

Function fitting

- $\boldsymbol{X:}$ n dimensional input data
- $\mathbf{Y}:\ \mathbf{k}\ dimensional\ output\ data$

Function fitting:

- n~2, k~1
- basic function given *explicite*
- expansion coefficients *could* be interpretable

Machine learning in physics

Taylor theorem (J. Gregory, 1671):

Every, continuous, differentiable, function f(x): $R \rightarrow R$ can be approximated by a polynomial:

$$f(x, heta) = \sum_{n=0}^\infty heta_n x^n \simeq heta_0 + heta_1 x + heta_2 x^2 + \ldots + heta_n x^n$$

Coefficients θ_i are derivatives of f(x).

In the case of unknown function ("data") coefficients can be found by a numerical procedure. Usually...

Fourier theorem (1807) :

Every continuous, differentiable, and periodic function f(x): $R \rightarrow R$ can be approximated in a basis of sines i cosines:

$$f(x, heta)=rac{ heta_{0,0}}{2}+\sum_{n=1}^\infty heta_{0,n}\cos(n\omega x)+ heta_{1,n}\sin(n\omega x), \ \omega=rac{2\pi}{T}$$

Coefficients θ_i can be found analytically. In the case of unknown function ("data") coefficients can be found by a numerical procedure.

Spherical harmonics (Laplace, 1782) :

Every, continuous, differentiable, function on sphere $f(x): R^2 \rightarrow R$ can be approximated in a basis of function solving a Laplace'a equation – spherical harmonics:

$$f(heta,arphi,w) = \sum_{n=1}^\infty w_{l,m} Y_m^l(heta,arphi) \, ,$$

Coefficients w can be found analytically. In the case of unknown function ("data") coefficients can be found by a numerical procedure.

Spherical harmonics (Laplace, 1782) :

Every, continuous, differentiable function on sphere $f(x): R^2 \rightarrow R$ can be approximated in a basis of function solving a Laplace'a equation – spherical harmonics:

 $f(heta,arphi,w) = \sum w_{l,m} Y^l_m(heta,arphi)$ 5 3 6000 Planck × WMAP □ ACT SPT $l(l+1)C_{l}^{TT}/2\pi \ (\mu {
m K}^{2})$ 4000 2000 0 2 10 30 500 1000 2000 3000 Multipole *l* R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

Coefficients w can be found analytically. In the case of unknown function ("data") coefficients can be found by a numerical procedure.

Machine learning in physics

Machine learning

- **X:** n dimensional input space
- \mathbf{Y} : k dimensional output space

• n~10¹, k~10^m, l,m~6

• basis functions defined *implicite* - through data flow architecture

expansion coefficients are uninterpretable

A sigmoid function: any non polynomial function fulfilling conditions:

$$A(heta,x) = A(\sum_{i=1}^n heta_i x_i + b) \quad \lim_{x_i o -\infty} A(x) o 0 \lim_{x_i o +\infty} A(x) o 1$$

Universal approximator theorem (Cybenko, 1989):

Every continuous function $f(x) \ R^n \rightarrow R$ can be approximated in basis of sigmoidal functions:

$$f(x, heta)\simeq\sum_n w_n A(heta_n,x)$$

Coefficients θ_i , w_i do not have in general an analytic form, but can be found using a numerical procedure

Architecture: fully connected

Activation function

standard for output layers (when probability is the target)

The task: superconductivity compound classification: Is superconductive? **YES/NO**

Input data:

- set of compound elements,
- 22 features per element + stoichiometric coefficients

Data sets:

Training and validation:

- 16 395 superconductive compounds,
- 50 000 normal compounds

Test:

• 207 compounds including 39 superconductors

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

FACULTY OF

- PHYSICS

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

FACULTY OF

- PHYSICS

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

FACULTY OF

- PHYSICS

Training:

60 sessions with random split into training and validation datasets in 80:20 proportions

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

FACULTY OF

- PHYSICS

FACULTY OF

- PHYSICS

OF WARSAW

FACULTY OF

- PHYSICS

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

FACULTY OF

- PHYSICS

Contribution of an element on critical temperature value: large $X \rightarrow increased \ T_c$

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to macroscopic materials: in search of new superconductors via machine learning. npj Comput Mater 9, 71 (2023). https://doi.org/10.1038/s41524-023-01023-6

Machine learning in physics

FACULTY OF

- PHYSICS

Encoding/representation

- **Task:** seek a function: $E(x): \mathbb{R}^n \to \mathbb{R}^m$, $m \neq n$, such that keeps maximum amount of information from the original input data
- **Solution:** creation of two functions: $E(x): x \to z$, $D(z) = E^{-1}(z): z \to x$

$\mathbf{x} = \mathbf{D}(\mathbf{E}(\mathbf{x}))$

E(x) and D(z) parametrization: given *implicite* by the neural network connections

Architecture: autoencoder

z – hidden space

FACULTY OF

PHYSICS

Architektura: "autoencoder"

FACULTY OF

- PHYSICS

The task:

identification of active galaxy nuclei (AGN) with high redshift $z\sim3$

Input data:

• light spectra in form of intensity in 914 wave length bins

Datasets:

Training and validation:

- 2458 spectra: 23% AGN, 22% stars, 55% normal galaxies with (High-z) or low (Low-z) z
- Division: 4:1

Untagged set:

• 716 objects with $z \sim 3$ (Photo-z)

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

27/43

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

FACULTY OF

PHYSICS

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

FACULTY OF

PHYSICS

FACULTY OF

- PHYSICS

Identifying Active Galactic Nuclei at z~3 from the HETDEX Survey Using Machine Learning arXiv:2302.11092 [astro-ph.GA]

FACULTY OF

PHYSICS

Warsaw

work

CMS group

The task:

muon transverse momentum calculation (p_T)

Input data:

• "hit pattern" - muon position at four points, momentum direction in two points

Datasets:

Training:

- 5.5 M muons with various $p_{\mbox{\tiny T}}$

Testing:

• 0.5M muons with various $p_{\mbox{\scriptsize T}}$

Naive Bayes:

FACULTY OF

PHYSICS

 calculate hit configuration likelihood assuming hit positions are independent between layers:

 $L(ext{hit configuration}|p_T) = \prod_{ ext{layers}} p(ext{hit position in layer i}|p_T)$

- select $p_{\mbox{\tiny T}}$ giving the largest likelihood value

NN value centered at true value → "bug/feature" cab ne easily fixed with manual scaling:

$$p_T = 1.15 \cdot p_T^{NN}$$

Figure of merit: accepted event rate

$$\mathrm{R}[\mathrm{ev/s}] = \mathrm{N}[\mathrm{ev/s}]: p_T^{measured} > p_T^{cut}$$

Solution:

 $p_T^{measured} = min(Naive Bayes, NN)$

Figure of merit: accepted event rate

$$\mathrm{R}[\mathrm{ev/s}] = \mathrm{N}[\mathrm{ev/s}]: p_T^{measured} > p_T^{cut}$$

• Machine learning is not a magic ward – this is yet another technology

but keep in mind what Arthur C. Clare said: "Any sufficiently advanced technology is indistinguishable from magic."

- "ordinary" ML users should concentrate on creative problem formulation instead of attempting to invent a new, complicated, architecture
- for some time ML algorithms will require a human assist in result post processing

but I do not think this will be longer than LHC Run 5 time scale

Backup slides

FACULTY OF Architecture: You Only Look UNIVERSITY Once (YOLO)

Machine learning in physics

01.03.2024

FACULTY OF PHYSICS You Only Look Once (YOLO)

01.03.2024

OF WARSAW

FACULTY OF PHYSICS You Only Look Once (YOLO)

Classification

Model	size (pixels)	acc top1	acc top5	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B) at 640
YOLOv8n-cls	224	66.6	87.0	12.9	0.31	2.7	4.3
YOLOv8s-cls	224	72.3	91.1	23.4	0.35	6.4	13.5
YOLOv8m-cls	224	76.4	93.2	85.4	0.62	17.0	42.7
YOLOv8l-cls	224	78.0	94.1	163.0	0.87	37.5	99.7
YOLOv8x-cls	224	78.4	94.3	232.0	1.01	57.4	154.8

Analysis of 1M events takes 64 CPU h

https://blog.roboflow.com/whats-new-in-yolov8/

FACULTY OF PHYSICS You Only Look Once (YOLO)

Detection

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n	640	37.3	80.4	0.99	3.2	8.7
YOLOv8s	640	44.9	128.4	1.20	11.2	28.6
YOLOv8m	640	50.2	234.7	1.83	25.9	78.9
YOLOv8l	640	52.9	375.2	2.39	43.7	165.2
YOLOv8x	640	53.9	479.1	3.53	68.2	257.8

https://blog.roboflow.com/whats-new-in-yolov8/

FACULTY OF You Only Look Once (YOLO) OF WARSAW

https://blog.roboflow.com/whats-new-in-yolov8/

UNIVERSITY

Example: medical physics

Task: cell colony counting

Input data:

• 57 Petri dish high resolution (4390x5059) photos

Datasets: Training and validation: 243 + 73 slices of 640x640

Testing: 32 slices

Zastosowanie uczenia maszynowego do automatycznej analizy testu klonogennego przeprowadzonego na komórkach ssaków

labeling

• training (single GPU, Google Colaboratory)

Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

 prediction with a 640x640 window

Zastosowanie uczenia maszynowego do automatycznej analizy testu klonogennego przeprowadzonego na komórkach ssaków

21WERS

Center4Ml

Center4

Center4ML is a IDUB funded service that provide a ready to use ML models for any UW based group.

The service is free of charge.

1.0

Adv. break: Center4ML

Center4ML is a IDUB funded service that provides a ready to use ML models for any UW based group.

The service is **free of charge**.