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Reasoning

X: n dimensional input data

Y:  k dimensional output data
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Function fitting

X: n dimensional input data

Y:  k dimensional output data

Function fitting: 
 
● n~2, k~1

● basic function given explicite

● expansion coefficients could be interpretable 
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Universal approximator
Taylor theorem  (J. Gregory, 1671):

Every, continuous, differentiable, function f(x): R → R can be approximated by a polynomial:

Coefficients θi are derivatives of f(x). 
In the case of unknown function (“data”) coefficients can be found by a numerical procedure.
Usually...
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Fourier theorem (1807)  :

Every continuous, differentiable, and periodic function f(x): R → R can be approximated in a basis of 
sines i cosines:

Coefficients θi  can be found analytically. 
In the case of unknown function (“data”) coefficients 
can be found by a numerical procedure.

Universal approximator
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ESA/Planck Collaboration

Spherical harmonics (Laplace, 1782)  :

Every, continuous, differentiable,  function on sphere f(x): R2 → R can be approximated in a basis of 
function solving a Laplace’a equation – spherical harmonics:

Coefficients w  can be found analytically. 
In the case of unknown function (“data”) 
coefficients  can be found by a numerical 
procedure.

Universal approximator

https://www.esa.int/Science_Exploration/Space_Science/Planck/Planck_and_the_cosmic_microwave_background
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Spherical harmonics (Laplace, 1782)  :

Every, continuous, differentiable  function on sphere f(x): R2 → R can be approximated in a basis of 
function solving a Laplace’a equation – spherical harmonics:

Coefficients w  can be found analytically. 
In the case of unknown function (“data”) 
coefficients  can be found by a numerical 
procedure.

R.L. Workman et al. (Particle Data Group), Prog. Theor. 
Exp. Phys. 2022, 083C01 (2022) and 2023 update

Universal approximator

https://pdg.lbl.gov/2023/reviews/contents_sports.html
https://pdg.lbl.gov/2023/reviews/contents_sports.html
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Machine learning

X: n dimensional input space

Y:  k dimensional output space

● n~10l, k~10m,   l,m~6

● basis functions defined implicite  - through data 
flow architecture

● expansion coefficients are uninterpretable 
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A sigmoid function:  any non polynomial function fulfilling  conditions:

Universal approximator theorem (Cybenko, 1989):
Every continuous function f(x) Rn→R can be approximated 
in basis of  sigmoidal functions:

Coefficients θi  w, i  do not have in general an analytic form, 
but can be found using a numerical procedure

Universal approximator
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Architecture: fully connected

Data: Result:

Input 
layer

Activation 
function

Hidden 
layers

Output 
layer
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Activation function

standard for 
hidden layers

standard for output layers 
(when probability is the target) 

many classes 
probabilitytwo classes probability 
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Example: materials physics
The task: superconductivity compound classification:                
                         Is superconductive?    YES/NO

Input data:
● set of compound elements, 
● 22 features per element + stoichiometric coefficients

Data sets:
Training and validation:
●  16 395 superconductive compounds, 
●  50 000 normal compounds

Test:
● 207 compounds including  39 superconductors 

Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

neural network

neural network

Example: materials physics
22 numbers

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

new element 
representation:  
300 numbers

Example: materials physics
neural network

neural network

22 numbers

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

a single number: 
(Bayesian) probability 
of a compound being 
a superconductor

Example: materials physics
neural network

neural network

new compound 
representation:  
300 numbers

22 numbers

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

Training:
60 sessions with random split 
into training and validation 
datasets in 80:20 proportions

Example: materials physics

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

SuperCon – superconductors
COD – normal compounds

Compounds from this 
dataset were used during the 
training

independent set, not 
used during the training

the Hosono set contains 
20% of superconductors

decision – 
average from 60 
models responses 

Example: materials physics

https://www.nature.com/articles/s41524-023-01023-6
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decision – 
„voting” of 60 
models 

Example: materials physics
decision – 
average from 60 
models responses 

vote= 1
60 [∑ p>0.5 ]>0.5avg= 1

60 [∑ p ]>0.5

vote=1
3
(0.1>0.5)+

1
3
(0.51>0.5)+

1
3
(0.51>0.5)=

2
3

avg=1
3
(0.1)+

1
3
(0.51)+

1
3
(0.51)=

1.12
3
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decision – 
„voting” of 60 
models 

Example: materials physics

decision – 
average from 60 
models responses 
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

Single dimensional element 
representation X → some 
interpretation possible

critical 
superconductor 
temperature

Example: materials physics

https://www.nature.com/articles/s41524-023-01023-6
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Pereti, C., Bernot, K., Guizouarn, T. et al. From individual elements to 
macroscopic materials: in search of new superconductors via machine 
learning. npj Comput Mater 9, 71 (2023). 
https://doi.org/10.1038/s41524-023-01023-6

Contribution of an element on critical temperature value:
large X → increased Tc

X

Example: materials physics

https://www.nature.com/articles/s41524-023-01023-6
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Encoding/representation 
Task: seek a function: E(x):  Rn → Rm,  m≠n, such that keeps maximum 
amount of information from the original input data 

Solution: creation of two functions: E(x): x → z, D(z) = E-1(z): z → x

x = D(E(x))

E(x) and D(z) parametrization: given  implicite by the neural network 
connections
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Architecture: autoencoder

E(x)

Input 
layer

Encoding 
layers

Output 
layerDecoding 

layers

Data: Result:
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Architecture: „autoencoder”
z – hidden space 

Input 
layer

Encoding 
layers

Output 
layerDecoding 

layers

Data: Result:
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Architektura: „autoencoder”

D(z)

Input 
layer

Encoding 
layers

Output 
layerDecoding 

layers

Data: Result:
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Example: astronomy
The task: 
identification of active galaxy nuclei (AGN) with high redshift z~3    

Input data:
● light spectra in form of intensity in 914 wave length bins 

Datasets:
Training and validation:
●  2458 spectra: 23% AGN, 22% stars, 

 55% normal galaxies with  (High-z) or low (Low-z) z  
●  Division: 4:1

Untagged set:
● 716 objects with z~3 (Photo-z)

 Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

https://arxiv.org/abs/2302.11092
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914 
numbers

436 neuronons

30 
numbers

914 
numbers

Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

Example: astronomy

https://arxiv.org/abs/2302.11092
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Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

Example: astronomy

https://arxiv.org/abs/2302.11092
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914 
numbers

30 
numbers

914 
numbers

Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

Example: astronomy

https://arxiv.org/abs/2302.11092
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914 
numbers

30 
numbers

914 
numbers

Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

2 
numbers 

tSNE

Example: astronomy

https://arxiv.org/abs/2302.11092
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914 
numbers

30 
numbers

914 
numbers

Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

2 
numbers 

Example: astronomy

Gaussian mixture – 
one Gaussian for 
each category

tSNE

https://arxiv.org/abs/2302.11092
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Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

Example: astronomy

https://arxiv.org/abs/2302.11092
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Identifying Active Galactic Nuclei at z~3 from 
the HETDEX Survey Using Machine Learning
arXiv:2302.11092 [astro-ph.GA]

Example: astronomy

https://arxiv.org/abs/2302.11092


Machine learning in physics 01.03.202434/43

Example: HEP
The task: 
muon transverse momentum calculation (pT)    

Input data:
● “hit pattern” - muon position at four points, momentum direction 
in two points  

Datasets:
Training:
●  5.5 M muons with various pT

Testing:
● 0.5M muons with various pT

 

Warsaw 
CMS group 
work
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Human invented algorithm
Naive Bayes:    
● calculate hit configuration likelihood assuming
 hit positions are independent between layers:  

 

  

 
 

● select pT giving the largest likelihood value
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Example: HEP
Machine Learning:    

● very standard fully connected network:

4 layers of neurons
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Example: HEP

NN value centered at 
true value:

● good for 
measurement

 

● bad for event             
  selection
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Example: HEP

NN value centered at 
true value → 
“bug/feature” cab ne 
easily fixed with 
manual scaling:
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Example: HEP
Figure of merit:
accepted event rate
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Example: HEP

The rate is dominated 
by highly overestimated 
low pT muons
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Example: HEP
Solution:
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Example: HEP
Figure of merit:
accepted event rate
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Summary
● Machine learning is not a magic ward – this 
is yet another technology 
but keep in mind what Arthur C. Clare said: “Any sufficiently advanced technology is indistinguishable from magic.”

● „ordinary” ML users should concentrate on 
creative problem formulation instead of 
attempting to invent a new, complicated, 
architecture

● for some time ML algorithms will require a 
human assist in result post processing 
but I do not think this will be longer than LHC Run 5 time scale
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Backup slides
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https://blog.roboflow.com/whats-new-in-yolov8/

Architecture: You Only Look 
Once (YOLO) 

https://blog.roboflow.com/whats-new-in-yolov8/
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https://blog.roboflow.com/whats-new-in-yolov8/

You Only Look Once (YOLO) 

https://blog.roboflow.com/whats-new-in-yolov8/
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https://blog.roboflow.com/whats-new-in-yolov8/

Classification

You Only Look Once (YOLO) 

Analysis of 1M 
events takes 64 
CPU h

https://blog.roboflow.com/whats-new-in-yolov8/
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https://blog.roboflow.com/whats-new-in-yolov8/

Detection

You Only Look Once (YOLO) 

https://blog.roboflow.com/whats-new-in-yolov8/
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You Only Look Once (YOLO) 

https://blog.roboflow.com/whats-new-in-yolov8/

https://blog.roboflow.com/whats-new-in-yolov8/
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Example: medical physics
Task: cell colony counting 

Input data:
● 57 Petri dish high resolution (4390x5059)
 photos 

Datasets:
Training and validation: 243 + 73 slices 
                                            of 640x640
Testing: 32 slices

Zastosowanie uczenia maszynowego do automatycznej analizy 
testu klonogennego przeprowadzonego na komórkach ssaków

https://apd.uw.edu.pl/diplomas/219610/
https://apd.uw.edu.pl/diplomas/219610/
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YOLO : procedure

● labeling

● training (single GPU, Google Colaboratory)
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YOLO : procedure

● prediction with a 
 640x640 window
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YOLO : procedure

● merged image
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● the ROC is close to ideal

YOLO provides a convenient 
user interface easing the 
training and prediction steps

Center4ML is a IDUB funded service that provide a 
ready to use ML models for any UW based group.

The service is free of charge.

Efficiency
Pu

ri
ty

YOLO : procedure
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Center4ML is a IDUB funded service that provides a 
ready to use ML models for any UW based group.

The service is free of charge.

Adv. break: Center4ML
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