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Status of particle physics:  
energy frontier
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Colliders: SM describes final states of particle 
collisions precisely                                              [CMS public] 

                                          41 channels                   

https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html


Status of particle physics:  
energy frontier
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Colliders: SM describes final states of particle collisions 
precisely 
No proven sign of new physics beyond SM at colliders*            

 
[CMS preprint] 

*Exciting news keep popping up, all below discovery significance yet                         

pp → X(= new Higgs boson) → e±μ∓
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Status of particle physics:  
cosmic and intensity frontiers
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Universe at large scale described precisely by cosmological SM: 
ΛCDM (Ωm =0.3)  

Neutrino flavours oscillate                   

Existing baryon asymmetry cannot be explained by CP 
asymmetry in SM                        

Inflation of the early, accelerated expansion of the present 
Universe                                                                        [https://pdg.lbl.gov] 

Established observations require physics beyond SM, 
but do not suggest rich BSM physics

https://pdg.lbl.gov


Phenomenological approach to new physics
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Can we explain these observations,                      
but not more,                                                                 

by the same (simple) model? 



HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 20 / 30

Before proceeding: a word on 
the muon anomalous magnetic moment
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We are certain that there is new physics beyond the SM 
“Final word” on  will tell how BSM should affect the muon g-2aμ

new physics

[BMW compilation]



Status of the muon anomalous magnetic 
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Status of the muon anomalous magnetic 
moment

9

We are certain that there is new physics beyond the SM
Current main question:

How large is the new physics contribution to  really?aμ
“large” (5σ — R-ratio result)
”small” (almost insignificant — lattice result) 

The experimental result appears robust, only its uncertainty will 
reduce further
Main task:

Resolve discrepancy between theory predictions
Until then

everything else is speculation



Muon anomalous magnetic moment:        
complying with lattice result
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New physics should have a small (smaller then EW) contribution 
to  
May constrain the available parameter space, but unlikely to 
exclude a model compatible with ElectroWeak Precision 
Observables (EWPOs)

aμ



Extension of SM: three alternatives with  
different strength and weaknesses
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Effective field theory, such as SMEFT: general but highly 
complex (2499 dim 6 operators), focuses on new physics at 
high scales 

Simplified models, such as dark photon, extended scalar 
sector or right-handed neutrinos: ”easily accessible” 
phenomenology, but focus on specific aspect of new physics, 
so cannot explain all BSM phenomena 

UV complete extension with potential of explaining BSM 
phenomena within a single model such as SuperWeak 
extension of the Standard Model: SWSM



Particle content of SM 
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Particle content of SWSM 
(take-home picture) 
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Superweak extension of SM 
(SWSM)

14

 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y

renormalizable gauge theory, including all dim 4 
operators allowed by G

[ZT, 1812.11189]

https://arxiv.org/pdf/1812.11189.pdf


Superweak extension of SM 
(SWSM)

14

 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y 

renormalizable gauge theory, including all dim 4 
operators allowed by G 

z-charges fixed by requirement of 

gauge and gravity anomaly cancellation and 
gauge invariant Yukawa terms for neutrino mass 
generation

[ZT, 1812.11189]



Mixing in the neutral gauge sector 

16

where  is the weak mixing angle &  is the  mixing, implicitly: 
, with  and  effective couplings, 

functions of the Lagrangian couplings

θW θZ Z − Z′ 

tan(2θZ) = − 2κ/(1 − κ2 − τ2) κ τ

relatively simple, they can explain a multiple of BSM phenomena [10–17].

The specific example we have in mind is the superweak extension of the standard model

(SWSM) [18], although di↵erent charge assignments are also possible, and our formulae do

not depend on the choice explicitly. The SWSM contains also three generations of SM sterile

right handed neutrinos that are clearly necessary for the cancellation of gauge and gravity

anomalies and to explain the origin of neutrino masses. We do not include their e↵ect here

to simplify the parameter dependence in the numerical analysis, but it can be seamlessly

integrated into our complete one-loop prediction.

The Lagrangian of the scalar fields contains a potential energy with quadratic and quartic

terms such that non-vanishing vacuum expectation value (VEV) v of the Brout-Englert-

Higgs (BEH) field breaks the usual SU(2)L⌦U(1)Y symmetry, while the VEV w of the �

breaks the U(1)z symmetry via spontaneous symmetry breaking (SSB).

In addition to the appearance of the massive scalar bosons, the SSB generates mass terms

also for the gauge bosons
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where tan � = w/v, gL, gy and gz are the SU(2)L, U(1)Y and U(1)z couplings, while the

mixing coupling gyz parametrizes the kinetic mixing between the Bµ and B
0
µ
fields [19]. The

fields W±
µ

=
�
W

1
µ
± iW 2

µ

�
/
p
2 are the charged, while the neutral gauge eigenstates are Bµ,

B
0
µ
(belonging to the U(1)Y and U(1)z symmetries) and W

3
µ
. The latter fields are related to

the neutral mass eigenstates Aµ, Zµ and Z
0
µ
via two rotations
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where we introduced the abbreviations cX = cos ✓X and sX = sin ✓X for mixing angles. The

Weinberg angle ✓W is defined as

sW =
gy

gZ0
, with the abbreviation g

2
Z0 = g

2
y
+ g

2
L , (3)

so e = gLsW where gL is the SU(2) gauge coupling and e is the elementary charge. The

3

cX = cos θX
sX = sin θX

[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704
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Standard Φ complex SU(2)L doublet and new   
χ complex singlet:

with scalar potential

Scalars in the SWSM
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet
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we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
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µ
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in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =
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provided the conditions
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> 2��µ
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and �µ
2
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> 2��µ
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(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are
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As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)
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values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p

2

s
2��µ2

�
� �µ2

�

4���� � �2
, w =

p

2

s
2��µ2

�
� �µ2

�

4���� � �2
. (2.19)

5



Standard Φ complex SU(2)L doublet and new   
χ complex singlet:

with scalar potential

After SSB, G → SU(3)c×U(1)QED  in Rξ gauge

Scalars in the SWSM

17

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�
+

�
0

◆
=

1
p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
zs � g

0
Y
ys)Z

0
µ

(2.12)

and the potential energy

V (�,�) = µ
2
�
|�|

2 + µ
2
�
|�|

2 +
�
|�|

2
, |�|

2
�✓��

�

2
�

2 ��

◆✓
|�|

2

|�|
2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, � = w =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, (2.15)

provided the conditions

�µ
2
�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.

5

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1
p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.12)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ�+ [D(�)
µ

�]⇤D(�)µ�� V (�,�) (2.13)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
zs � g0

Y
ys)Z

0
µ

(2.14)

and the potential energy

V (�,�) = V0 � µ2
�
|�|2 � µ2

�
|�|2 +

�
|�|2, |�|2

�✓��
�

2
�

2 ��

◆✓
|�|2

|�|2

◆
, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�± =
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�� � ��)

1

◆
. (2.17)

As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p

2

s
2��µ2

�
� �µ2

�

4���� � �2
, w =

p

2

s
2��µ2

�
� �µ2

�

4���� � �2
. (2.19)

5



Standard Φ complex SU(2)L doublet and new   
χ complex singlet:

with scalar potential

After SSB, G → SU(3)c×U(1)QED  in Rξ gauge

                                              &

Scalars in the SWSM

17

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet
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�
0
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�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
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Y
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0
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(2.12)

and the potential energy
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2
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, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)
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, (2.15)

provided the conditions

�µ
2
�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are
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As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition
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With these conditions satisfied, we can find the minimum of the potential energy at field
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B. Mixings of scalar and Goldstone bosons

In addition to the usual SU(2)L-doublet Brout-Englert-Higgs (BEH) field

� =

0

@�+

�0

1

A =
1p
2

0

@�1 + i�2

�3 + i�4

1

A , (II.9)

there is another complex scalar � in the model, with charges specified in [28]. The Lagrangian

of the scalar fields contains the potential energy

V (�,�) = V0 � µ2
�|�|2 � µ2
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where |�|2 = |�+|2 + |�0|2. In the R⇠ gauge we parametrize the scalar fields after spontaneous

symmetry breaking as

� =
1p
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✓
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p
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1p
2
(w + s0 + i��) (II.11)

where v and w denotes the vacuum expectation values (VEVs) of the fields, whose values are
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p
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s
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, w =
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. (II.12)

Using the VEVs, we can express the quadratic couplings as

µ2
� = ��v

2
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2
w2 , µ2

� = ��w
2
+

�

2
v2 . (II.13)

The fields h0 and s0 are two real scalars and �� and �� are the corresponding Goldstone

bosons that are weak eigenstates. We shall denote the mass eigenstates with h, s and �Z , �Z0 .

These different eigenstates are related by the rotations

✓
h
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(II.15)

where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the

diagonalization of the mass matrix of the real scalars and that of the neutral Goldstone bosons.
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where  is the scalar mixing angle implicitly: 
, with  and  VEVs

θS

tan(2θS) = λvw/(λχw2 − λϕv2) v w
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where  is the scalar mixing angle implicitly: 
, with  and  VEVs
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tan(2θS) = λvw/(λχw2 − λϕv2) v w

5 new parameters:
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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• In flavour basis the full 6×6 mass matrix reads
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the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between
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(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)

9

https://arxiv.org/abs/2104.14571


After SSB neutrino mass terms appear

19

• In flavour basis the full 6×6 mass matrix reads

• νL and νR have the same q-numbers, can mix, leading to type-I 
see-saw

• Dirac and Majorana mass terms appear already at tree level by 
SSB (not generated radiatively)
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the superscript c denotes charge conjugation, ⌫c
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R,

U =
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R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,
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⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,
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It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =
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UL
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◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in
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R are only semi-unitary.
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,
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= �i�2⌫⇤. After SSB this Lagrangian becomes
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The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes
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Y =

w + s0 + i��

2
p
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⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
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The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
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V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where
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V ⌫⌫U
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• In flavour basis the full 6×6 mass matrix reads

• νL and νR have the same q-numbers, can mix, leading to type-I 
see-saw

• Dirac and Majorana mass terms appear already at tree level by 
SSB (not generated radiatively)

• Quantum corrections to active neutrinos are not dangerous 
[Iwamoto et al, arXiv:2104.14571]
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UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =
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so UT
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L,U
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,
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where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD
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The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,
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It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL
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◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
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⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,
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R,

U =
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= (UT

L,U
†
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spite of what might be implied by the notation, the matrices UL and U⇤
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Useful relations of these matrices are collected in Appendix A.
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,
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R,

U =
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Useful relations of these matrices are collected in Appendix A.
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  
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DM exists, but known evidence is based solely on the 
gravitational effect of the dark matter on the luminous 
astronomical objects and on the Hubble-expansion of 
the Universe
Assume that the DM has particle origin



Dark matter candidate

22

DM exists, but known evidence is based solely on the 
gravitational effect of the dark matter on the luminous 
astronomical objects and on the Hubble-expansion of 
the Universe
Assume that the DM has particle origin
Only chance to observe such a particle if it interacts 
with the SM particles, which needs a portal

  In the superweak model the vector boson portal Z' with 
the lightest sterile neutrino  as dark matter candidate is 
a natural scenario       (Higgs portal exists, but negligible)

ν4



Parameter space for the freeze-out scenario of 
dark matter production in the SWSM

23

It is essential for the SWSM DM candidate that the resonance in 
 can dominate the integral in the rateSM+SM → Z′ → DM+DM



Experimental constraints

24

Anomalous magnetic moment of electron and muon 
Z’ couples to leptons modifying the magnetic moment 
Constraints on  translate to upper bounds on the coupling  

NA64 search for missing energy events 
Strict upper bounds on  for any U(1) extension (dark photons) 

Supernova constraints based on SN1987A 
Constraints are based on comparing observed and calculated neutrino 
fluxes 

Big Bang Nucleosynthesis provides constraints on new particles 
New particles should have negligible effects during BBN 
Meson production can be dangerous close to BBN 

Further constraints are due to CMB, solar cooling, beam dump 
experiments etc.

(g − 2) gz(MZ′ )

gz(MZ′ )



Cosmological constraints on the freeze-out 
scenario of dark matter production in the SWSM
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scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation]  

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427


Prerequisite:  
Phase-transitions in the SWSM

27
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

                                           MS = 200 GeV, MN = 150 GeV, w = 5v , |λ | = 0.0394

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048


Prerequisite:  
phase-transition temperatures in the SWSM

28
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

 w/v  w/v

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048


Expected consequences 
(take-home messages)
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427


Expected consequences 
(take-home messages)
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

SWSM has the potential of explaining all known results beyond the SM

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427


Main questions
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Is there a non-empty region of the parameter 
space where all these promises are fulfilled? 
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Is there a non-empty region of the parameter 
space where all these promises are fulfilled? 

Can we predict any new phenomenon 
observable by present or future experiments?                                                                                         



Main questions
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Is there a non-empty region of the parameter 
space where all these promises are fulfilled? 

Can we predict any new phenomenon 
observable by present or future experiments?                                                                                         

Present focus:



Important test

34

the observation of  the Z’ or S in the allowed  
region

Once the allowed region of the parameter space for fulfilling 
the expectations is understood



Experimental constraints in the scalar sector 
from direct searches and MW

35

:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh
: scalar sector decouplesyx = 0

https://doi.org/10.1103/PhysRevD.106.055045


Experimental constraints in the scalar sector 
from direct searches and MW

36

:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh

https://doi.org/10.1103/PhysRevD.106.055045


MW is measured and computed precisely 
(with per myriad precision) 

37 [https://pdg.lbl.gov]

https://pdg.lbl.gov


Prediction of MW in the SWSM

38

Can be determined from the decay width of the muon: 

M2
W = cos2 θZM2

Z+sin2 θZM2
Z′ 

2 1 + 1 −
4πα/( 2GF)

cos2 θZM2
Z+sin2 θZM2

Z′ 

1
1 − ΔrSM−(Δr(1)

BSM + Δr(2)
BSM)

Valid in MS
 is the  mixing angleθZ Z − Z′ 

 collects the SM quantum corrections (known completely at two 
loops and partially at three loops)
ΔrSM

 collects the formally SM quantum corrections but with BSM loopsΔr(1)
BSM

 collects the BSM corrections to  and Δr(2)
BSM MZ′ θZ

[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704


Prediction of MW in the SWSM
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Case (i) full one-loop corrections 
Case (ii) corrections without   Δr(2)

BSM

MW(µ)



Prediction of MW in the SWSM
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Case (i) full one-loop corrections 
Case (ii) corrections without   Δr(2)

BSM

MW(µ)

|Mexp.
W − MW | < 2σ



Experimental constraints in the gauge sector 
from direct searches and EWPOs

41

Gauge sector parameters:  
Not all independent: exclusion bounds depend on either 

 or  
where 

 

and  is the z charge of the right-handed neutrino

gz , gyz( = ϵgy) , tan β , zϕ , zN

(sin θZ , MZ′ 
, x) (gzzN , MZ′ 

, x)

x =
zϕ − 1

2
gyz

gz

zN
zN



General U(1)z anomaly free charge assignment

42

(b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 Z1
1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 �
1
3 2Z1 � Z2 �

5
6 �

1
2

⌫L, `L 1 2 �
1
2 �3Z1 �

1
2 0

⌫R 1 1 0 Z2 � 4Z1
1
2

1
2

`R 1 1 �1 �2Z1 � Z2 �
3
2 �

1
2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G

�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +
i

gL
[@µ U(x)] U †(x)

Bµ G
�! B0µ(x) = Bµ(x) �

1

gY
@µ�(x)

Zµ G
�! Z 0µ(x) = Zµ(x) �

1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �
1

4
Bµ⌫B

µ⌫
�

1

4
Zµ⌫Z

µ⌫
�

1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫

G
�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)

4

field SU(3)c SU(2)L y z
QL 3 2 1

6
1
3(z� � zN)

UR 3 1 2
3

1
3(4z� � zN)

DR 3 1 �1
3 zd = �1

3(2z� + zN)

`L 1 2 �1
2 z` = zN � z�

NR 1 1 0 zN

eR 1 1 �1 ze = zN � 2z�

� 1 2 1
2 z�

� 1 1 0 z� := �1

1

j



Experimental constraints in the gauge sector 
from direct searches and EWPOs

43

Gauge sector parameters:  
Not all independent: exclusion bounds depend on either 

 or  

Most stringent limits emerge in direct searches 
for small masses ( ): from NA64 search for 
dark photon 
for large masses ( ): from LHC search for Z’ 
difficult to distinguish from Z for intermediate masses — 
best limits from LEP (not discussed here) 

gz , gyz( = ϵgy) , tan β , zϕ , zN

(sin θZ , MZ′ 
, x) (gzzN , MZ′ 

, x)

ξ = MZ′ 
/MZ ≪ 1

ξ ≫ 1



Experimental constraints in the gauge sector 
from direct searches and EWPOs: SWSM region

44

     
from 

   

                                                                                        BaBar 

                                         NA64

sin θZ < 4.5 ⋅ 10−3

ρexp = 1.00038 ± 0.00020

 [Zoltán Péli and ZT, 2402.14786]

10-3 10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2

) =
zϕ − 1

2
gyz

gz

zN

∝
| )

| ϵ

≪ MZ

) = 0.01

) = 0.1

) = 1

) = 10

https://arxiv.org/pdf/2402.14786.pdf


Experimental constraints in the gauge sector 
from direct searches and EWPOs

45 [Zoltán Péli and ZT, 2402.14786]

≫ MZ

ΓZ′ 

MZ′ 

=
|sin θZ | < 0.0025 [ 1 TeV

MZ′ ]

) =
zϕ − 1

2
gyz

gz

zN

from ρexp

Conclusion: θZ ≲ 10−4

) = 0.6

|) | → ∞ |) | → ∞
) = 0.6

https://arxiv.org/pdf/2402.14786.pdf


Conclusions

46

Established observations require physics beyond SM, but do not suggest rich 
BSM physics
U(1)z superweak extension has the potential of explaining all known results 
beyond the SM
Neutrino masses are generated by SSB at tree level
One-loop corrections to the tree-level neutrino mass matrix computed and 
found to be small (below 1%o) in the parameter space relevant in the SWSM
Lightest sterile neutrino is a candidate DM particle in the 

[10,50] MeV mass range for freeze-out mechanism with resonant 
enhancement → predicts an approximate mass relation between vector boson 
and lightest sterile neutrino
In the scalar sector we find non-empty parameter space for  Ms > Mh
Contributions to EWPOs (e.g. , lepton g-2) are negligible in the superweak 
region and a systematic exploration of the parameter space is ongoing

MW



the end
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Status of the muon anomalous magnetic 
moment: experiment

49

The muon g-2 has been a smoking gun for new 
physics for many years, more recently:

[https://muon-g-2.fnal.gov/result2023.pdf]

6

Run !a/2⇡ [Hz] !̃
0
p/2⇡ [Hz] R0

µ ⇥ 1000
Run-1 3.7073004(17)
Run-2 229077.408(79) 61790875.0(3.3) 3.7073016(13)
Run-3a 229077.591(68) 61790957.5(3.3) 3.7072996(11)
Run-3b 229077.81(11) 61790962.3(3.3) 3.7073029(18)
Run-2/3 3.70730088(79)
Run-1/2/3 3.70730082(75)

TABLE II. Measurements of !a, !̃
0
p, and their ratios R0

µ mul-
tiplied by 1000. The Run-1 value has been updated from [1]
as described in the text.

FIG. 3. Experimental values of aµ from BNL E821 [8], our
Run-1 result [1], this measurement, the combined Fermilab re-
sult, and the new experimental average. The inner tick marks
indicate the statistical contribution to the total uncertainties.
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Status of the muon anomalous magnetic 
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The muon g-2 has been a smoking gun for new 
physics for many years 
The most precise experimental value is from FNAL 
(2023) :  

…equivalent to a bathroom scale sensitive to a single 
eyelash: 

                       

aμ = g − 2
2 = 116 592 055(24) ⋅ 10−11 (0.20 ppm)

Experiment

Experimental result
Newly announced result at Fermilab

aµ(FNAL) = 11 659 204.0(5.4) · 10�10 (0.46 ppm)

Equivalent to: bathroom scale sensitive to weight of a single eyelash.

Fully agrees with the BNL E821 measurement

aµ(BNL) = 11 659 209.1(6.3) · 10�10 (0.54 ppm)

aµ(combined) = 11 659 206.1(4.1) · 10�10 (0.35 ppm)

Target uncertainty: (1.6)

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 5 / 30
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Outline

1.
 17.5  18  18.5  19  19.5  20  20.5  21  21.5

aµ × 109 – 1165900

Experimental
Average

2.
 17.5  18  18.5  19  19.5  20  20.5  21  21.5

aµ × 109 – 1165900

White Paper
Standard Model

3.
 17.5  18  18.5  19  19.5  20  20.5  21  21.5

aµ × 10
9
 – 1165900

BMW
lattice QCD

Standard Model

4. Summary
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1.5 σ

4.2 σ
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Experimental
Average

White Paper
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Outline
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2021

2023

R-ratio 
method

[BMW compilation]

0

1.7σ

5.0σ



 cross section  
in this energy range gives 
more than 50%  to total HVP 
contribution to   

σ(e+e− → π+π−)

aμ

HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 20 / 30

Status of the muon anomalous magnetic 
moment: theory with R-ratio
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HVP from R-ratio

Tensions in the R-ratio method

CMD3 [2302.08834] e+e� ! ⇡+⇡� for
p

s: 0.60–0.88 GeV

More than 50% of the total HVP contribution to aµ

tension: already
in earlier data
) error inflation

KLOE & BaBar: ⇡3�
(bit different

p
s range)

CMD3 vs. old average:
4.4� tension

central value: 15 unit
shift (remember)

White Paper must further inflate errors: less chance for new physics?

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 12 / 30

The muon g-2 has been a smoking gun for new 
physics for many years, but tension already in earlier 
data used for  
theory prediction:                       

[BMW compilation]



HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on
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Status of the muon anomalous magnetic 
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HVP from R-ratio

Tensions in the R-ratio method

CMD3 [2302.08834] e+e� ! ⇡+⇡� for
p

s: 0.60–0.88 GeV

More than 50% of the total HVP contribution to aµ

tension: already
in earlier data
) error inflation

KLOE & BaBar: ⇡3�
(bit different

p
s range)

CMD3 vs. old average:
4.4� tension

central value: 15 unit
shift (remember)

White Paper must further inflate errors: less chance for new physics?

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 12 / 30

New CMD3 data show a ~15 unit increase in central 
value and 4.4σ tension with old average:                                           

 cross section  
in this energy range gives 
more than 50%  to total HVP 
contribution to   

σ(e+e− → π+π−)

aμ

[BMW compilation]



Status of the muon anomalous magnetic 
moment: window observable
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restrict correlation window to [0.4,1.0] fm: 
two orders of magnitude easier (less CPU, less manpower  
needed)        lattice vs. R-ratio: 4.9σ tension:           

HVP from lattice

Window observable
Restrict correlator to window between t1 = 0.4 fm and t2 = 1.0 fm

[RBC/UKQCD’18]

Less challenging than full aµ

signal/noise

finite size effects

lattice artefacts (short & long)

about two orders of magnitude
easier (CPU and manpower)

histogram of 250,000 fits
with and without improvements

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 21 / 30

HVP from lattice

Tension in the window observables

R-ratio’20  [BMW/lat]

R-ratio’22  [Colangelo/lat]

BMW’20  [2002.12347]

Mainz’22 [2206.06582]

ETMC’22 [2206.15084]

RBC/UKQCD’23 [2301.08696]

FHM’23 [2301.08274]

 200  203  206  209  212

 1010 × [alight
µ,win]iso

lattice
R-ratio / lattice

5 fully independent results
most of them: blinded(*)
all agree with each other

average: small �2/dof
(very conservative errors)
no error inflation
as for the R-ratio

lattice vs. R-ratio:
4.9� tension

QCD compared with QCD

either new physics
or underestimated errors
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where  is the scale of new physics, can be as low as few MeV,  
which can be probed in  
Coherent Elastic Neutrino-Nucleus Scattering (CEνNS)

.6a = C6a

Λ2 (LγμPLL)( fγμPX f )
Λ

Standard parametrization of NSI: 
 

where     ,         “light NSI”          

,      “heavy NSI”,   

ℒNSI = − 2 2GF ∑
f,X=±,ℓ,ℓ′ 

ε f,X
ℓ,ℓ′ 

(ν̄ℓγμPLνℓ′ 
)( f̄γμPX f )

ε f,X
ℓ,ℓ′ 

∝ + 1
q2  if q

2 ≫ M2

ε f,X
ℓ,ℓ′ 

∝ − 1
M2  if q

2 ≪ M2

for a mediator 
of mass M

https://doi.org/10.1103/PhysRevD.107.115020
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Lattice:  
~15 units above the R-ratio white paper value (a 2.1σ tension)                    

aHVP@LO
μ = 707.5(2.3)stat(5.0)sys[5.5]tot
HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 20 / 30
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assume MeV, which is 
• light in CHARM or NuTEV  
• heavy in neutrino oscillation experiments  
• but  in CEνNS 
We can still apply the NSI formalism using the  full propagator  
with  being the characteristic momentum transfer squared 

M = 50
q2 = O((20 GeV)2)

q2 ≈ 0
q2 ≈ M2

q2
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• light in CHARM or NuTEV  
• heavy in neutrino oscillation experiments  
• but  in CEνNS 
We can still apply the NSI formalism using the  full propagator  
with  being the characteristic momentum transfer squared 

M = 50
q2 = O((20 GeV)2)

q2 ≈ 0
q2 ≈ M2

q2

Can be used to                           [Timo J. Kärkäinen and ZT, arXiv: 2301.06621]

Constrain the parameter space of SWSM
Predict relations between NSI couplings assuming SWSM

https://doi.org/10.1103/PhysRevD.107.115020
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Constraints to NSI

First stage: high-energy theory enforces texture for NSI matrix.
Q

ccca

Ám
ee Ám

eµ Ám
e·

Ámú
eµ Ám

µµ Ám
µ·

Ámú
eµ Ám

µµ Ám
µ·

R

dddb

Q

ccca

Áe 0 0
0 Áµ 0
0 0 Á·

R

dddb

Q

ccca

Á 0 0
0 Á 0
0 0 Á

R

dddb

µ ≠ · symmetry Flavour-conserving Flavour-universal
CLFV decays X No No
‹ oscillation X X No

CE‹NS X X X
‹ scattering maybe maybe maybe

Second stage: existing limits on NSI constrain the parameters of the high-energy
theory.
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High-energy theory enforces texture for NSI matrix:                            
                                                                          SWSM 

Existing limits on NSI constrain the parameters of the 
high-energy theory 

Nonstandard interactions in SWSM

Z,Z 0

⌫` ⌫`

e, u, d e, u, d We integrate out the Z Õ boson to obtain effective
nonrenormalizable dimension-6 operator.

LNSI = ≠2
Ô

2GF Áff
¸¸Õ(‹¸“

µPL‹¸)(f “µPLf )

Ám,X
¸¸ = v2

2(q2 ≠ M2
Z Õ)

eCL
Z Õ‹‹eCX

Z Õff

Ám
¸¸ = Áe

¸¸ + 2Áu
¸¸ + Ád

¸¸¸ ˚˙ ˝
=0

+Nn
Ne

(Áu
¸¸ + 2Ád

¸¸)

e≠ and p contributions vanish due to (y , z) charge
assignments.

Sum over the fermions f = e, u, d and chiralities X = L, R .

Ám
¸¸ = ≠

v2

8(q2 ≠ M2
Z Õ)

Nn
Ne

3
g Õ

y cos ◊Z ≠
gL sin ◊Z
cos ◊W

4 3
(g Õ

y ≠ g Õ
z) cos ◊Z ≠

gL sin ◊Z
cos ◊W

4
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Light mediator NSI escapes high-energy constraints
High-energy neutrino scattering experiments such as CHARM and NuTeV are
insensitive to light NSI mediators! (Èq2

Í ≥ 20 GeV2 kills the NSI)
Neutrino oscillations can only probe nondiagonal NSI and differences of diagonal
NSI parameters due to phase freedom.

HNSI =
Ô

2GF Ne

Q

ca
Ám

ee Ám
eµ Ám

e·

Ámú
eµ Ám

µµ Ám
µ·

Ámú
e· Ámú

µ· Ám
··

R

db
ph. rot.
‘≠æ

Ô

2GF Ne

Q

ca
Ám

ee ≠ Ám
µµ Ám

eµ Ám
e·

Ámú
eµ 0 Ám

µ·

Ámú
e· Ámú

µ· Ám
·· ≠ Ám

µµ

R

db

Only way to measure diagonal NSI elements themselves is via Coherent elastic
neutrino-nucleon scattering (CE‹NS). FN and FZ are nuclear form factors.
d‡(‹–N æ ‹–N)

dT (E , T )
----
SM, tree

= G2
F M
fi

3
1 ≠

MNT
2E2

4 Ë
gpZFZ (|q|

2)+gnNFN(|q|
2)

È2

gn π gp , making the neutron term dominant. Above the sub-leading contribution
from neutrino charge radius is suppressed. [Cadeddu et al., PRD 102 (2020) 1]
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New fields: 3 right-handed neutrinos , a new scalar , and new U(1)z 
gauge boson 

ν f
R χ

B′ 

fermion fields (Weyl spinors):

Particle model 

62

propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation

 
f

q,1 =

✓
U

f

D
f

◆

L

 
f

q,2 = U
f

R ,  
f

q,3 = D
f

R

 
f

l,1 =

✓
⌫
f

`
f

◆

L

 
f

l,2 = ⌫
f

R ,  
f

l,3 = `
f

R

(2.1)

for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,

 L/R ⌘  ⌥ =
1

2
(1⌥ �5) ⌘ PL/R , (2.2)

except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation
properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡
The negative results of the experiments searching for neutrinoless double �-decay make the Majorana

nature of neutrinos increasingly unlikely.
§
For an incomplete set of popular examples and their studies see [?,?,?]

¶
We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.

2
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¶
We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.

2

II. PARTICLE MODEL, MIXINGS AND INTERACTIONS

We consider an extension of the standard model by a U(1)z gauge group with particle content

and charge assignment defined in Ref. [28]. The super-weak model is an economical extension of

the standard model that provides a framework to explain the origin of (i) neutrino masses and

oscillations [29], (ii) dark matter [30], (iii) cosmic inflation and stabilization of the electroweak

vacuum [31], (iv) matter-antimatter asymmetry of the universe. The complete model including

Feynman rules in the unitary gauge was presented fully in Ref. [28]. As we are to compute

one-loop corrections to neutrino masses, we recall the details relevant to such computations,

with Feynman rules in the R⇠ gauge. We generated those Feynman rules with SARAH[32–35]

but here we present simpler forms for the rules needed in our computations to make those more

comprehensive. We also recall some of the conventions that are different in SARAH and the

original definition of the model. We stick to the SARAH conventions throughout this work.[36]

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by 3 right-handed neutrinos ⌫R, a

new scalar �, and the U(1)z gauge boson B0. As the field strength tensors of the U(1) gauge

groups are gauge invariant, kinetic mixing is allowed between the gauge fields belonging to the

hypercharge U(1)y and the new U(1)z gauge symmetries, whose strength is measured by ✏ in

L � �1

4
F µ⌫Fµ⌫ �

1

4
F 0µ⌫F 0

µ⌫ �
✏

2
F µ⌫F 0

µ⌫ ,

DU(1)
µ = �i(ygyBµ + zgzB

0
µ)

(II.1)

where Bµ is the U(1)y gauge field. However, equivalently, we can choose the basis—the con-

vention in SARAH—in which the gauge-field strengths do not mix, while the couplings are given

by a 2⇥ 2 coupling matrix in the covariant derivative

DU(1)
µ = �i

⇣
y z

⌘
0

@ĝyy ĝyz

ĝzy ĝzz

1

A

0

@B̂µ

B̂0
µ

1

A (II.2)

where y and z are the U(1)y and U(1)z charges. We can parametrize the coupling matrix as

ĝ =

0

@ĝyy ĝyz

ĝzy ĝzz

1

A =

0

@gy �⌘g0z

0 g0z

1

A

0

@ cos ✏0 sin ✏0

� sin ✏0 cos ✏0

1

A . (II.3)
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ĝzy ĝzz

1

A

0

@B̂µ

B̂0
µ

1

A (II.2)

where y and z are the U(1)y and U(1)z charges. We can parametrize the coupling matrix as
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@ĝyy ĝyz
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ĝzy ĝzz

1

A

0

@B̂µ

B̂0
µ

1

A (II.2)

where y and z are the U(1)y and U(1)z charges. We can parametrize the coupling matrix as
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ĝzy ĝzz
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II. PARTICLE MODEL, MIXINGS AND INTERACTIONS
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ĝ =

0
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
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2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
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2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos
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i
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i
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2
�0
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(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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Neutral currents

64

covariant derivative: 2neut.
μ ⊃ − i(4AAμ + 4ZZμ+4Z′ 

Z′ μ)
effective couplings:

4A = (T3 + y) |e | ≡ 4SM
A

4Z = (T3 cos2 θW − y sin2 θW)gZ0

4SM
Z

cos θZ − (z − ηy)gz sin θZ

4Z′ 
= (T3 cos2 θW − y sin2 θW)gZ0 sin θZ + (z − ηy)gz cos θZ

 mixing is small, the weak neutral current is only 
modified at order 
Z − Z′ 

O(g2
z /g2

Z0)
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Rough estimates of gauge parameters

65

Gauge coupling, : gz

in order to avoid SM precision constraints O(gz /gZ0) ≪ 1
Vacuum expectation value of  singlet, :  χ w

in the gauge sector rather use the mass of  & assume that Z′ MZ′ ≪ MZ

 mixing angle, :Z − Z′ θZ

tan(2θZ) =
4ζϕgz

gZ0
+ . ( g3

z

g3
Z0 ) ≪ 1

 gauge mixing parameter, :U(1)y ⊗ U(1)z η
its value can be determined from RGE: 0 ≤ η ≲ 0.66

Masses of sterile neutrinos:
assume  to be light (keV-MeV scale), while N1 M2,3 = O(MZ0)
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Production of DM in freeze-out scenario

66

We consider  decoupling happens at M1 = O(10) MeV ⇒
Tdec = O(1) MeV
At this temperature electrons and SM neutrinos are abundant, 
negligible amounts of heavier fermions 
Relevant cross section for the production process

N1N1 → fSM fSM : σt ∝ g4
z 1 − 4M2

1
s

s
(s − M2

Z′ 
)2 + M2

Z′ 
Γ2

Z′ 

fSM N1

N1

Z'

fSM
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Resonant production of DM

67

Need to increase  without increasing  (excluded 
experimentally): exploit resonant production ( )

⟨σvMol⟩ gz
2M1 ≲ MZ′ 

the integral:

the Bessel function  vanishes exponentially at large 
arguments

K1

,  hence  can be small at the 
resonance  depending on the ratio 
Tdec ≈ 0.1M1 K1(10MZ′ 

/M1)
s = M2

Z′ 
MZ′ 

/M1

⟨σvMol⟩ = ( . . . )∫
∞

4M2
1

ds
( . . . )

(s − M2
Z′ )2 + M2

Z′ Γ2
Z′ 

strongly peaked around s=M2
Z′ 

× K1 ( s
T )
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68

calculated within the SWSM for  & M1 = 10 MeV MZ′ 
= 30 MeV

Reson
anc

e do
minat

ed

Resonance
negligible



Masses of the neutral gauge bosons again

69

can also be expressed with chiral couplings:

which are crucial for checking gauge independence

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag,A coincide with the squares of the

masses of the neutral gauge bosons [28],

M2
Z =

✓
MW

cos ✓W

◆2 h
(cos ✓Z �  sin ✓Z)

2
+ (⌧ sin ✓Z)

2
i

(II.23)

and

M2
Z0 =

✓
MW

cos ✓W

◆2 h
(sin ✓Z +  cos ✓Z)

2
+ (⌧ cos ✓Z)

2
i
, (II.24)

which can also be expressed conveniently with the chiral couplings and Goldstone mixing angle.

First we note that using Eq. (II.23), we find the simple relation

sin ✓G = ⌧
sin ✓Z
cos ✓W

MW

MZ
(II.25)

between the Goldstone and neutral boson mixing angles, and also

cos ✓G = ⌧
cos ✓Z
cos ✓W

MW

MZ0
. (II.26)

Next, we can substitute the relations found in Eq. (II.20) into Eqs. (II.23) and (II.24) together

with the definition of the right handed couplings defined in Eq. (II.7), resulting in

M2
Z = v2e2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

+ w2g0 2z sin
2 ✓Z (II.27)

and also using Eq. (II.8),

M2
Z0 = v2e2

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

+ w2g0 2z cos
2 ✓Z . (II.28)

From Eq. (II.25) and (II.26) we can express

wg0z sin ✓Z = MZ sin ✓G and wg0z cos ✓Z = MZ0 cos ✓G , (II.29)

which after substitution and simple rearrangement leads to

M2
Z =

v2e2

cos2 ✓G

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

, M2
Z0 =

v2e2

sin
2 ✓G

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

. (II.30)

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic Yukawa terms in the Lagrangian

[28],

� L`
Y =

1

2
⌫c
R YN ⌫R�+ LL �c Y⌫ ⌫R + h.c. (II.31)
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian
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1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)

5

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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recall:
which reads on the basis of propagating mass 
eigenstates as

where

and also: 
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)

5

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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and

�R
V ⌫⌫ = �CL

V ⌫⌫U
T
LU⇤

L + CR
V ⌫⌫U

†
RUR = �

⇣
�L

V ⌫⌫

⌘⇤
(II.39)

for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-

ferences. For the propagating scalar states Sk or �k (k = 1 denoting h or the Goldstone

boson belonging to Z and k = 2 referring to s or the Goldstone boson belonging to Z 0) such

interactions can be decomposed into left and right chiral terms

�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫

= �i

⇣
MU†

LUL + UT
LU⇤

LM
⌘
(ZS)k1

v
+ U†

RMNU⇤
R

(ZS)k2

w

�
, (II.41)

and

�L
�k⌫⌫

= �
⇣

MU†
LUL + UT

LU⇤
LM

⌘
(ZG)k1

v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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recall:
which reads on the basis of propagating mass 
eigenstates as

where

and also: 

Neutral current couplings on mass basis

70

The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)

5

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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and

�R
V ⌫⌫ = �CL

V ⌫⌫U
T
LU⇤

L + CR
V ⌫⌫U

†
RUR = �

⇣
�L

V ⌫⌫

⌘⇤
(II.39)

for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-

ferences. For the propagating scalar states Sk or �k (k = 1 denoting h or the Goldstone

boson belonging to Z and k = 2 referring to s or the Goldstone boson belonging to Z 0) such

interactions can be decomposed into left and right chiral terms

�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫

= �i

⇣
MU†

LUL + UT
LU⇤

LM
⌘
(ZS)k1

v
+ U†

RMNU⇤
R

(ZS)k2

w

�
, (II.41)
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= �
⇣

MU†
LUL + UT

LU⇤
LM

⌘
(ZG)k1

v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The
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recall:
which reads on the basis of propagating mass 
eigenstates as

where

and also: 

Neutral current couplings on mass basis

70

The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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and

�R
V ⌫⌫ = �CL

V ⌫⌫U
T
LU⇤

L + CR
V ⌫⌫U

†
RUR = �

⇣
�L

V ⌫⌫

⌘⇤
(II.39)

for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-

ferences. For the propagating scalar states Sk or �k (k = 1 denoting h or the Goldstone

boson belonging to Z and k = 2 referring to s or the Goldstone boson belonging to Z 0) such

interactions can be decomposed into left and right chiral terms

�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫

= �i

⇣
MU†

LUL + UT
LU⇤

LM
⌘
(ZS)k1

v
+ U†

RMNU⇤
R

(ZS)k2

w

�
, (II.41)

and

�L
�k⌫⌫

= �
⇣

MU†
LUL + UT

LU⇤
LM

⌘
(ZG)k1

v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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and the right chiral ones are related by complex conjugation, �R
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Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The
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�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫
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v
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R
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w

�
, (II.41)

and

�L
�k⌫⌫

= �
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v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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Hence, the correction is obtained by

�M0
=

0

@�ML �MT
D

�MD �MN

1

A = U⇤�MU† . (III.2)

Using Eq. (II.36), we can compute the 3⇥ 3 blocks as

�ML = U⇤
L�MU†

L, �MD = UR�MU†
L, �MN = UR�MUT

R . (III.3)

In the following subsections we prove that the one-loop correction to the mass matrix of the

active neutrinos have the form

�ML =
1

16⇡2

X

k=1,2


3(ZG)

2
k1

M2
Vk

v2
F(M2

Vk
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2
k1

M2
Sk

v2
F(M2

Sk
)

�
(III.4)

where we introduced the finite matrix valued function

Fij(M
2
) =

6X

a=1

(U⇤
L)ia(U

†
L)aj

m3
a

M2

ln
m2

a
M2

m2
a

M2 � 1
(III.5)

of dimension mass and with summation running over all neutrinos.

A. Self-energy decomposition

The neutrino self energy is a 6⇥ 6 matrix that can be decomposed as

i⌃(p) = AL(p
2
)/pPL + AR(p

2
)/pPR + BL(p

2
)PL + BR(p

2
)PR . (III.6)

Using this decomposition, �ML is given by [24]

�ML = U⇤
LBL(0)U†

L . (III.7)

The matrix BL(0) receives contributions involving a neutrino and either a neutral vector

boson Z, Z’, or a scalar boson �Z , �Z0 (Goldstone boson), h, s (Higgs-like scalar) in the loop.

The relevant Feynman graphs that give contributions to the neutrino self energies at one-loop

order are shown in Fig. 1. There are also tadpole contributions to BL(0). Those are proportional

to the scalar-neutrino coupling �L
Sk⌫i⌫j

given in Eq. (II.40), which vanishes when sandwiched

between U⇤
L and U†

L, see Eq. (A.5). The charged vector boson together with a charged lepton

in the loop (bottom right diagram in Fig. 1) contributes only to AL/R. Thus we compute the

first three graphs explicitly. For a given boson x in the loop, the matrix BL(0) depends on the

mass Mx and also the tree-level masses of the neutrinos {ma}, BL(0) = Bx
L(Mx, {ma}).
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charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.

B. Contributions with neutral gauge bosons in the loop

The contribution of the neutral gauge boson V is

⇣
BV

L (MV , {ma}; ⇠V )
⌘

ij
PL = i

Z
d
d`

(2⇡)d

6X

a=1

�
µ
V ⌫i⌫a

/p� /̀+ma

(p� `)2 �m2
a

�
⌫
V ⌫a⌫jPµ⌫(`,M

2
V ; ⇠V ) (III.8)

where ⇠V is the gauge parameter and

Pµ⌫(`,M
2
V ; ⇠V ) =

gµ⌫
`2 �M2

V

� (1� ⇠V )
`µ`⌫

(`2 �M2
V )(`

2 � ⇠VM2
V )

. (III.9)

Introducing the 6⇥ 6 matrix

m(n)
` = diag

✓
mn

1

`2 �m2
1

, . . . ,
mn

6

`2 �m2
6

◆
, (III.10)

and using the result of Appendix B, we obtain the following expression for a neutral vector

boson in the loop:

�MV
L = ie2

⇣
CL

V ⌫⌫ � CR
V ⌫⌫

⌘2
Z

d
d`

(2⇡)d
U⇤

L


d m(1)

`

`2 �M2
V

+
m(3)

`

M2
V

✓
1

`2 � ⇠VM2
V

� 1

`2 �M2
V

◆�
U†

L.
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charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.
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and using the result of Appendix B, we obtain the following expression for a neutral vector
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E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and
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The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):

�MSk
L = i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZS)k1

v

◆2
1

`2 �M2
Sk

= i

✓
(ZS)k1

v

◆2 Z
d
d`

(2⇡)d
U⇤

Lm
(3)
` U†

L

1

`2 �M2
Sk

.

(III.16)

E. The complete one-loop mass correction
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`2 � ⇠VM2
V

. (III.12)

Using the matrix notation, we can write

U⇤
LB

�V
L (0)U†

LPL = �i

Z
d
d`

(2⇡)d
U⇤

L��V ⌫⌫m
(1)
` ��V ⌫⌫U†

L

1

`2 � ⇠VM2
V

. (III.13)

Substituting the vertex functions of Eq. (II.40) and employing the matrix relations in Eqs. (A.2)

and (A.5), we obtain the correction to the mass matrix as

�M�V
L = �i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZG)V 1

v

◆2
1

`2 � ⇠VM2
V

. (III.14)

We now substitute Mm(1)
` M = m(3)

` and using Eq. (II.30), we obtain

�M�V
L = �ie2

⇣
CL

V ⌫⌫ � CR
V ⌫⌫

⌘2
Z

d
d`

(2⇡)d
U⇤

L

m(3)
`

M2
V

U†
L

1

`2 � ⇠VM2
V

. (III.15)

D. Contributions with scalar bosons in the loop

The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):

�MSk
L = i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZS)k1

v

◆2
1

`2 �M2
Sk

= i

✓
(ZS)k1

v

◆2 Z
d
d`

(2⇡)d
U⇤

Lm
(3)
` U†

L

1

`2 �M2
Sk

.

(III.16)

E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and

13



Numerical estimates
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FIG. 4. Eigenvalues of the matrix F as a function of the mass of the boson in the loop mloop, assuming

mtree
1 = 0.01 eV, mtree

4 = 30 keV, mtree
5 ⇡ mtree

6 = 2.5 GeV, and normal neutrino mass hierarchy.

V. CONCLUSIONS

In this paper, we have computed the one-loop corrections to the mass matrix of the active

neutrinos in a gauged U(1) extension of the standard model of particle interactions. The field

content of the model consists of a new complex scalar field and three right-handed neutrinos—

sterile under the standard model interactions—in addition to the fields in the standard model.

The neutrino masses are generated by Dirac and Majorana type Yukawa terms, which after

spontaneous symmetry breaking of both scalar fields give rise to neutrino masses in the way

of the type I see-saw mass generation. We used R⇠ gauge and have shown that the one-loop

corrections are (i) independent of the gauge fixing parameters, (ii) finite and (iii) independent

of the regularization scale. We also demonstrated how the formula for the one-loop mass

corrections can be generalized to the case of arbitrary number of new U(1) groups, complex

scalars and right-handed neutrinos.

We have provided a numerical estimate of the size of the mass corrections in the context of the

19

Eigenvalues of the matrix F as a function of the mass 
of the boson in the loop mloop, assuming m1tree = 
0.01 eV, m4tree = 30 keV, m5tree ≈ m6tree = 2.5 GeV, 
and normal neutrino mass hierarchy 

eigenvalues can be large, but coupling suppression tames the relative 
correction to the tree-level mass below percent level
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