Exclusion bounds for neutral gauge bosons Zoltán Péli

based on [2402.14786] with Z. Trócsányi

Theory and Experiment in High Energy Physics Budapest, March 12-14, 2024

Outline

• Theory considerations

• Light Z' bosons

• Heavy Z' bosons

• Conclusions

This research was supported by the Excellence Programme of the Hungarian Ministry of Culture and Innovation under contract TKP2021-NKTA-64 and by the Hungarian Scientific Research Fund PD-146527.

Theory considrations for neutral gauge bosons

Motivation for extra neutral gauge bosons (Z')

- Appears after breaking a U(1) gauge group (or higher)
- Fifth fundamental interaction?

Motivation for extra neutral gauge bosons (Z')

- Appears after breaking a U(1) gauge group (or higher)
- Fifth fundamental interaction?
- Breaking a gauge group of rank r with a scalar VeV \rightarrow the unbroken subgroup has at least $U(1)^r$ (GUT, SUSY, string)
- Connect a secluded sector to the SM
- A discovery would have a lot of consequences (extended scalar and fermion fermion sectors)

[0801.1345]

Minimal extension of the SM

• SM gauge group + $U(1)_z$:

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ B_{\mu}' \end{pmatrix} = \begin{pmatrix} c_{W} & -s_{W} & 0 \\ s_{W} & c_{W} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{Z} & -s_{Z} \\ 0 & s_{Z} & c_{Z} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$$

- Z' needs mass \rightarrow BEH not enough
- ABJ anomalies appear \rightarrow need to cancel
- Z' affects tree level relations (ρ -param.)

Minimal extension of the SM

• SM gauge group + $U(1)_z$:

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ B_{\mu}' \end{pmatrix} = \begin{pmatrix} c_{W} & -s_{W} & 0 \\ s_{W} & c_{W} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{Z} & -s_{Z} \\ 0 & s_{Z} & c_{Z} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$$

- Z' needs mass \rightarrow BEH not enough \rightarrow need new scalar
- ABJ anomalies appear \rightarrow need to cancel \rightarrow need new fermions
- Two free *z* charges

z charge remarks

- Tree level Majorana mass term is allowed if $z_{\chi} + 2z_N = 0$
- Here $z_N = 1/2$, but different normalization is possible
- If $z_N = 0$ then only Dirac mass term is allowed for neutrinos
- If $z_N > 1/2$, then Majorana mass terms are generated by higher dim. operator

z charge remarks

- Tree level Majorana mass term is allowed if $z_{\chi} + 2z_N = 0$
- Z_{ϕ} appears only in the combination: $Z_{\phi} = \frac{\eta}{2}$
- η is a running coupling \propto kinetic mixing for $U(1)_Y$ and $U(1)_Z$

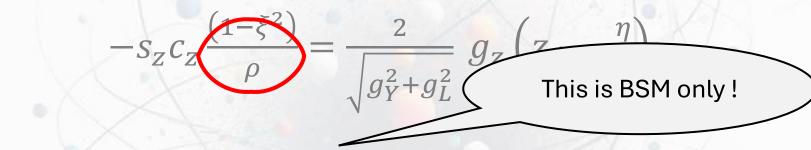
$$D_{\mu}^{U(1)} = -i(yz) \begin{pmatrix} g_y & -g_z \eta \\ 0 & g_z \end{pmatrix} \begin{pmatrix} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} B_\mu \\ B'_\mu \end{pmatrix}$$

• z charges are defined at $\eta(\mu_0) = 0$

z charge remarks

- Tree level Majorana mass term is allowed if $z_{\chi} + 2z_N = 0$
- z_{ϕ} appears only in the combination: $z_{\phi} \frac{\eta}{2}$
- η is a running coupling \propto kinetic mixing for $U(1)_Y$ and $U(1)_Z$
- z charges are defined at $\eta(\mu_0) = 0$
- In the branching ratios of Z' the combination appears:

$$\mathbf{Z} = \frac{z_{\phi} - \eta/2}{z_N}$$


Other free parameters:

- $M_{Z'}$ (or rather $\xi = M_{Z'}/M_Z$ to treat diff. mass scales)
- Either the mixing angle S_z or the new gauge coupling g_z :

$$-s_{z}c_{z}\frac{(1-\xi^{2})}{\rho} = \frac{2}{\sqrt{g_{Y}^{2}+g_{L}^{2}}} g_{z}\left(z_{\phi}-\frac{\eta}{2}\right)$$

Other free parameters:

- $M_{Z'}$ (or rather $\xi = M_{Z'}/M_Z$ to treat diff. mass scales)
- Either the mixing angle s_z or the new gauge coupling g_z :

- From global fits one has: $\rho = 1.00038 \pm 0.00020$
- The tree level model prediction is:

$$\rho = \frac{M_W^2}{M_Z^2 c_W^2} = 1 + (\xi^2 - 1)s_z^2$$

Light Z' bosons

$$|s_z| < 4.5 \cdot 10^{-3}$$
 or $|z_N g_z| < \frac{1.7 \cdot 10^{-3}}{|z|}$ @ 95% C.L.

$$|s_z| < 4.5 \cdot 10^{-3}$$
 or $|z_N g_z| < \frac{1.7 \cdot 10^{-3}}{|z|} @ 95\%$ C.L.

- Direct: searches for $Z' \rightarrow inv.$: BaBar [1702.03327], Na64 [1906.00176]
- Direct: searches for $Z' \rightarrow e^+e^-$: FASER [2308.05587]

$$|s_z| < 4.5 \cdot 10^{-3}$$
 or $|z_N g_z| < \frac{1.7 \cdot 10^{-3}}{|z|} @ 95\%$ C.L.

- Direct: searches for $Z' \rightarrow inv.$: BaBar [1702.03327], Na64 [1906.00176]
- Direct: searches for $Z' \rightarrow e^+e^-$: FASER [2308.05587]
- These experiments search for dark photons (A'):

$$\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 + (e\epsilon) A'_{\mu} \sum_{f} Q_f \bar{f} \gamma^{\mu} f$$

Matching to dark photons

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

Matching to dark photons

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

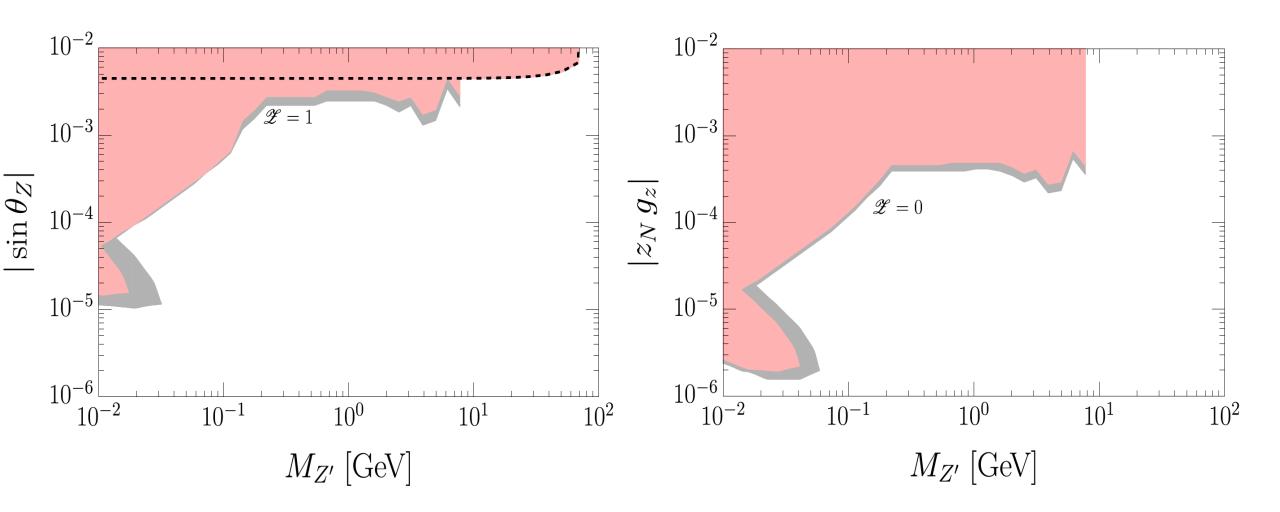
$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

• For the FASER, the A' is also required to decay in the detector \rightarrow solve the matching equations

$$\Gamma(\pi^0 \to A' + \gamma) \operatorname{Br}(A' \to e^+ e^-) = \Gamma(\pi^0 \to Z' + \gamma) \operatorname{Br}(Z' \to e^+ e^-)$$

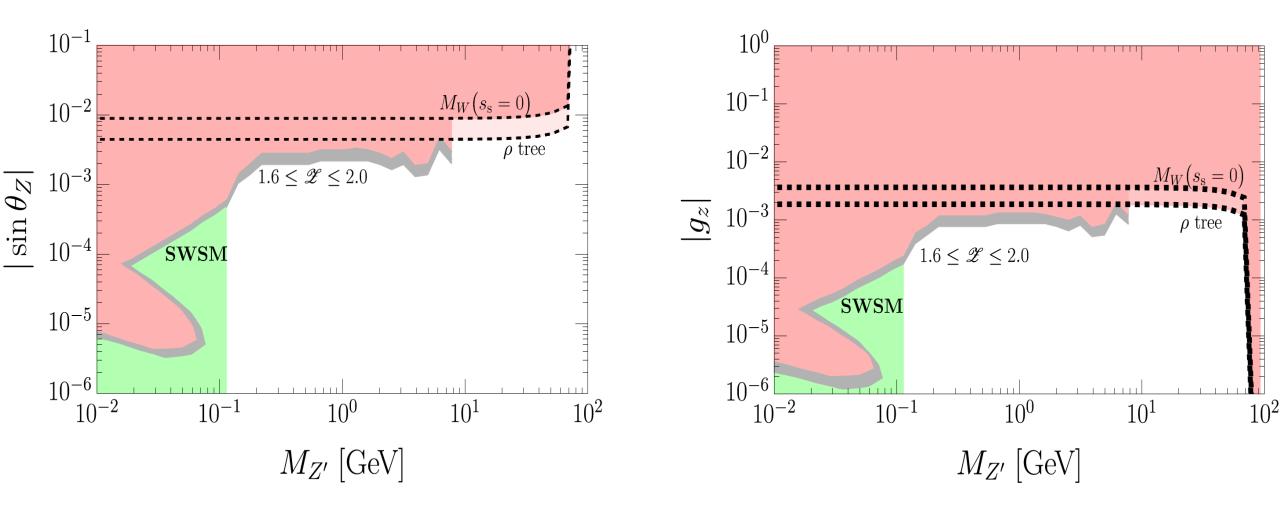
 $m_{A'}\Gamma_{A'} = M_{Z'}\Gamma_{Z'}$

Matching to dark photons

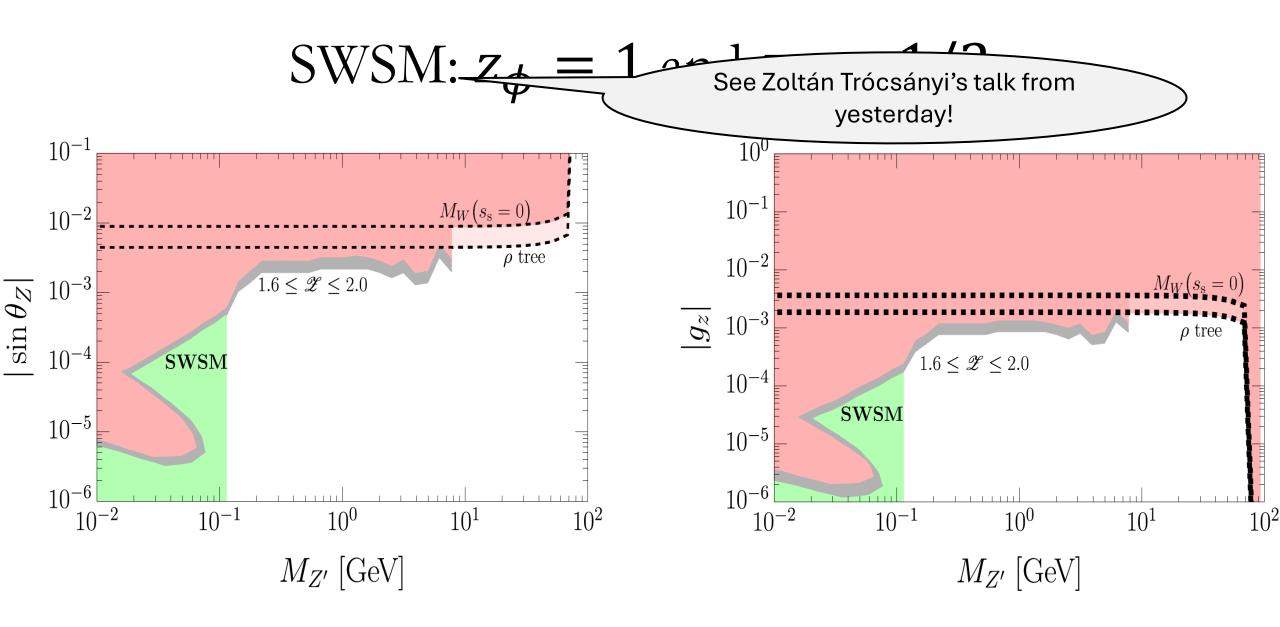

- Relate similar processes (which is searched for) [1801.04847]
- For NA64 and BaBar one has

$$e\epsilon = \frac{|v_{Z',\ell}|}{2s_W c_W} \sqrt{\operatorname{Br}(Z' \to \operatorname{inv.})}$$

• For the FASER, the A' is also required to decay in the detector \rightarrow solve the matching equations \rightarrow for $M_{Z'} \ll m_{\pi}^0$:


$$e\epsilon = \frac{|v_{Z',\ell}|}{2 s_W c_W} \sqrt{\operatorname{Br}(Z' \to e^+ e^-)} \text{ and } M_{Z'} = \operatorname{Br}(Z' \to e^+ e^-) M_{A'}$$

Sample exclusion bounds



Uncertainty due to sterile neutrinos: thickness of gray line

SWSM: $z_{\phi} = 1$ and $z_N = 1/2$

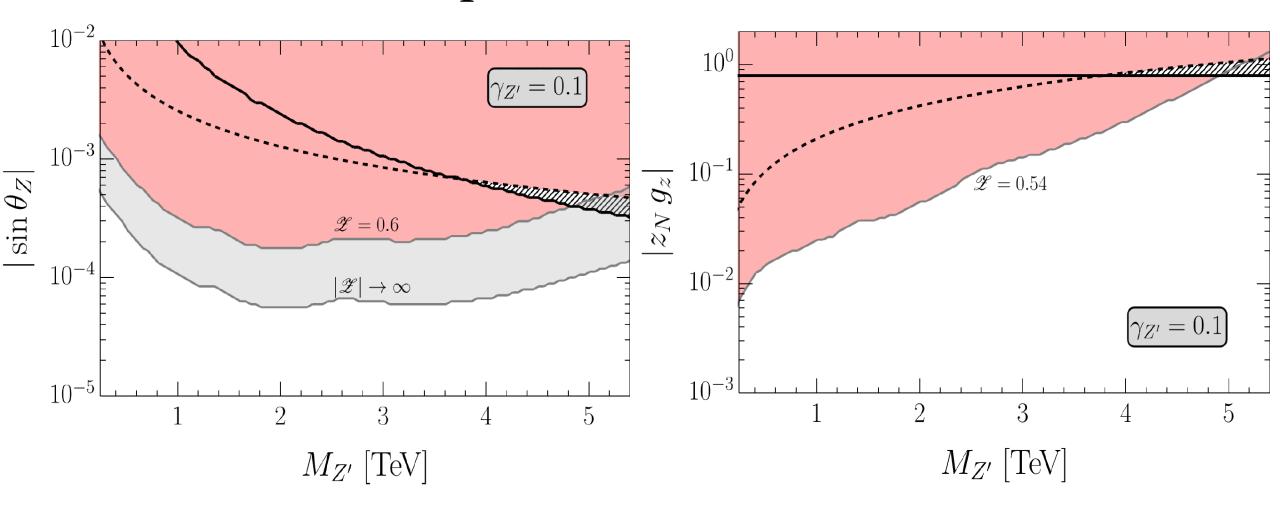
Uncertainty due to sterile neutrinos + running of η : thickness of gray line

Uncertainty due to sterile neutrinos + running of η : thickness of gray line

Heavy Z' bosons

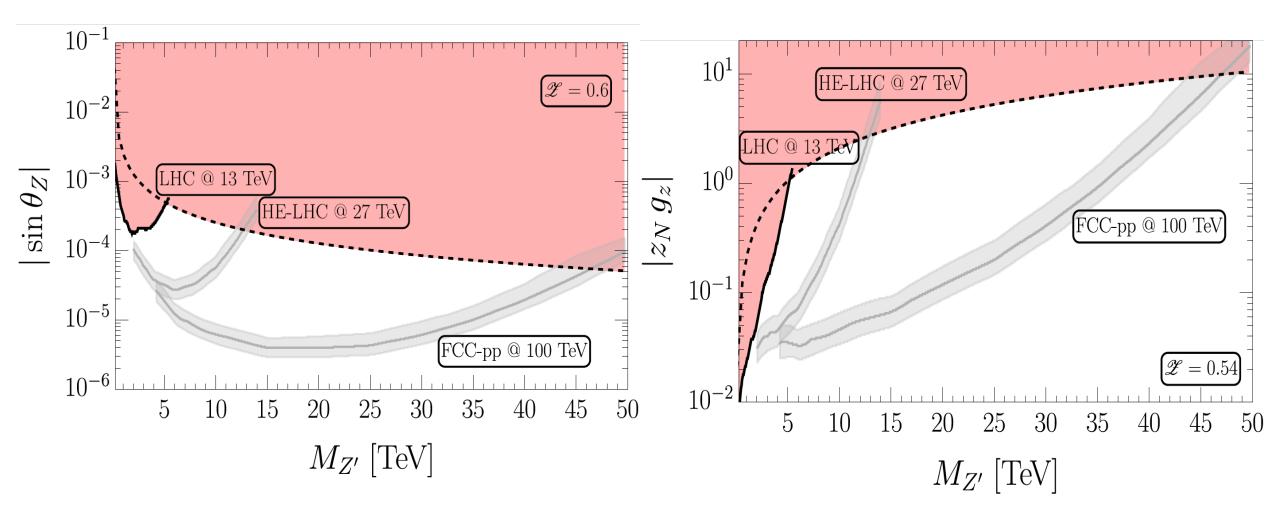
$$|s_{z}| < 2.5 \cdot 10^{-3} \left[\frac{1 \text{ TeV}}{M_{Z'}} \right] \text{ or } |z_{N} g_{z}| < \frac{0.11}{|Z|} \left[\frac{M_{Z'}}{1 \text{ TeV}} \right] @ 95\% \text{ C.L.}$$

• Indirect: EW. Precision Observables $\rightarrow \rho$ -parameter


$$|s_z| < 2.5 \cdot 10^{-3} \left[\frac{1 \text{ TeV}}{M_{Z'}} \right] \text{ or } |z_N g_z| < \frac{0.11}{|\mathbf{Z}|} \left[\frac{M_{Z'}}{1 \text{ TeV}} \right] @ 95\% \text{ C.L.}$$

• Direct: searches in the LHC (ATLAS [1903.06248] and CMS [2103.02708]) for dilepton final states:

$$\sigma = \frac{4\pi^2}{3s} \frac{\Gamma_{Z'}}{M_{Z'}} \operatorname{Br}(Z' \to \ell^+ \ell^-) \sum_{q} \operatorname{Br}(Z' \to \overline{q}q) w_q(s, M_{Z'})$$


• experiments use assumptions for $\Gamma_{Z'}/M_{Z'}$

Sample exclusion bounds

There is a **Z** value (0.6 for s_Z and 0.54 for $|z_N g_Z|$) corresponding to a *loosest* bound!

Projections for future colliders

...using detector simulations for the HE-LHC and FCC-hh

Interesting process

• For very large $M_{Z'}$ the decay

$$Z' \to Z + W^+ + W^-$$

might dominate over the leptonic decay of the Z'!

• The ratio of the branching fractions (also the cross sections' in the NWA):

$$\frac{\text{Br}(Z' \to Z + W^+ + W^-)}{\text{Br}(Z' \to \ell^+ + \ell^-)} = 0.4 \left(\frac{Z^2}{2 - 6Z + 5Z^2}\right) \left[\frac{M_{Z'}}{10 \text{ TeV}}\right]^2$$

• Potentially relevant for FCC-pp

Conclusions

- Useful parametrization: different U(1) extensions can be investigated on the same footing
- ρ can be used to quickly assess the constraints from EWPO
- $(M_{Z'}, s_z)$ bounds from ρ are model independent!
- Direct searches provide more stringent constraints
- In the $p + p \rightarrow Z' + X \rightarrow \ell^+ \ell^- + X$ searches there is a least severe bound: model independent constraints

Conclusions

- Useful parametrization: different U(1) extensions can be investigated on the same footing
- ρ can be used to quickly assess the constraints from EWPO
- $(M_{Z'}, s_z)$ bounds from ρ are model independent!
- Direct searches provide more stringent constraints
- In the p + p → Z' + X → ℓ⁺ℓ⁻ + X searches there is a least severe bound: model independent constraints

Backup

z charge assignment

field	$SU(3)_{\rm c}$	$SU(2)_{\rm L}$	y	z
Q_{L}	3	2	$\frac{1}{6}$	$z_q = \frac{1}{3}(z_\phi - z_N)$
$U_{\rm R}$	3	1	$\frac{2}{3}$	$z_u = \frac{1}{3}(4z_\phi - z_N)$
D_{R}	3	1	$-\frac{1}{3}$	$z_d = -\frac{1}{3}(2z_\phi + z_N)$
$\ell_{ m L}$	1	2	$-\frac{1}{2}$	$z_\ell = z_N - z_\phi$
$N_{\rm R}$	1	1	0	z_N
e_{R}	1	1	-1	$z_e = z_N - 2z_\phi$
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}
χ	1	1	0	$z_{\chi} = -1$

- Cancel anomalies
- Yukawa mass terms
- Fix all but two *z* charges

z charge assignment

field	$SU(3)_{c}$	$SU(2)_{\rm L}$	y	z	
$Q_{\rm L}$	3	2	$\frac{1}{6}$	$z_q = \frac{1}{3}(z_\phi - z_N)$	
$U_{\mathbf{R}}$	3	1	$\frac{2}{3}$	$z_u = \frac{1}{3}(4z_\phi - z_N)$	
D_{R}	3	1	$-\frac{1}{3}$	$z_d = -\frac{1}{3}(2z_\phi + z_N)$	• χ : new singlet scalar
$\ell_{\rm L}$	1	2	$-\frac{1}{2}$	$z_{\ell} = z_N - z_{\phi}$	• N: right handed (sterile)
$N_{\rm R}$	1	1	0	z_N	neutrinos
e_{R}	1	1	-1	$z_e = z_N - 2z_\phi$	
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}	
χ	1	1	0	$z_{\chi} = -1$	

z charge assignment

field	$SU(3)_{\rm c}$	$SU(2)_{\rm L}$	y	z	Cancel anomalies
Q_{L}	3	2	$\frac{1}{6}$	$z_q = \frac{1}{3}(z_\phi - z_N)$	• Yukawa mass terms
$U_{\rm R}$	3	1	$\frac{2}{3}$	$z_u = \frac{1}{3}(4z_\phi - z_N)$	• Fix all but two z charges
D_{R}	3	1	$-\frac{1}{3}$	$z_d = -\frac{1}{3}(2z_\phi + z_N)$	-17-2
$\ell_{ m L}$	1	2	$-\frac{1}{2}$	$z_\ell = z_N - z_\phi$	• χ : new singlet scalar
N _R	1	1	0	z_N	• N: right handed (sterile) neutrinos
e_{R}	1	1	-1	$z_e = z_N - 2z_\phi$	
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}	• Choose z_N and z_{ϕ} to be free
χ	1	1	0	$z_{\chi} = -1$	

Branching ratios

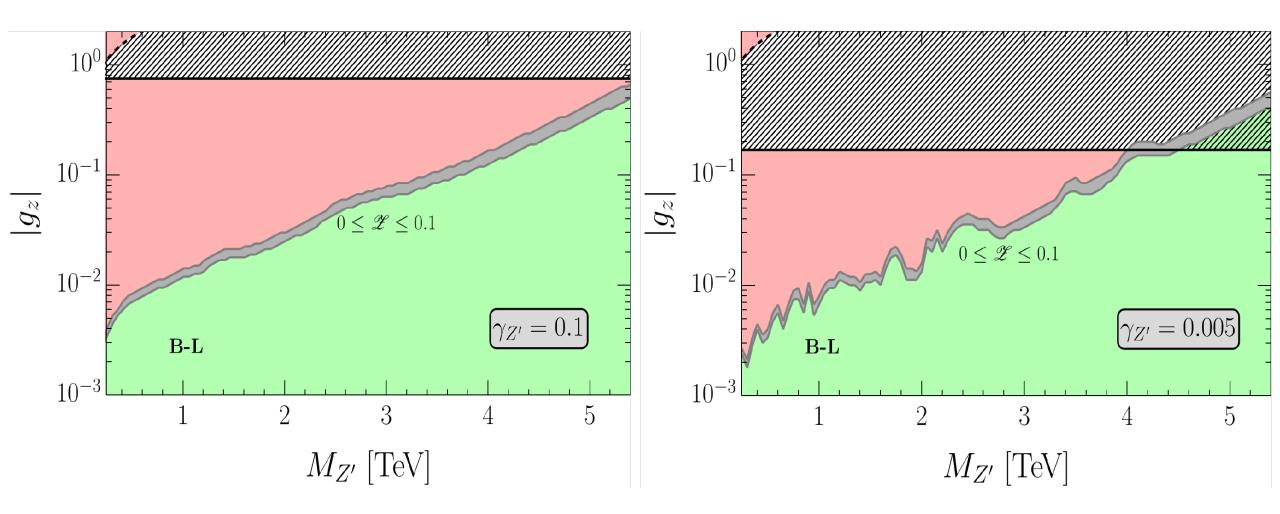
• Light Z' with $M_{Z'} < m_{\mu}$:

Br(Z'
$$\rightarrow$$
 inv.) = $\frac{(3 + n_N)}{(3 + n_N) + 2(1 - 2c_W^2 \mathbf{Z})^2}$

• Heavy *Z*':

Br(Z' $\rightarrow \ell^+ \ell^-$) = $\frac{2 - 6 \mathbf{Z} + 5 \mathbf{Z}^2}{16 - 32 \mathbf{Z} + \mathbf{Z}^2 (41 + C_{w,s} \xi^2)}$

The param $C_{w,s} \simeq 1.4 \cdot 10^{-4}$ is from three-body decays


V-A couplings

• Most of the Z' phenomenology depends on:

$$\mathcal{L}_{NC}^{(Z')} = -\frac{e}{2s_w c_w} Z'_{\mu} \sum_{f} \bar{f} \gamma^{\mu} (v_{Z',f} - a_{Z',f} \gamma^5) f$$

- $v_{Z',f}$ and $a_{Z',f}$ are pretty simple for $\xi \gg 1$ and $\xi \ll 1$
- For instance: $a_{Z',f}$ is negligible for $\xi \ll 1$
- but $a_{Z',f} = \pm \frac{1}{2} s_z \xi^2$ for $\xi \gg 1$
- The vector cps. depend on $(s_z, \xi, \mathbf{Z}) \leftrightarrow (z_N g_z, \mathbf{Z})$

B-L: $z_{\phi} = 0$ and $z_N = 1/2$

Uncertainty due to sterile neutrinos + running of η